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Abstract—We investigate the affective role of spontaneous
facial self-touch (sFST) during cognitive tasks. For that, we
analyze the open desk-bound knowledge work (DKW) dataset.
The dataset was collected through a naturalistic study of 10 aca-
demic researchers while working in their university office for four
days. It includes behavioral, situational, and dispositional data
from ∼170 hours of continuous recordings. Using a MobileNet
CNN, we labeled facial video frames with sFST information.
Then we used these categorical variables along with other
contextual predictors to explain the sympathetic overactivity of
the participants. Sympathetic responses were quantified through
facial electrodermal activity (fEDA). The results of the relevant
multiple regression model suggest that there is a strong positive
association between the frequency of chin-cheek-nose sFST and
sympathetic overactivity. Although it has been ignored in the
affective computing literature, lower-face self-touch is a solid
indicator of sympathetic overactivity, which is a proxy of mental
stress.

Index Terms—spontaneous self-touch of the face, sFST, stress,
arousal, knowledge work, naturalistic study, affective computing

I. INTRODUCTION

Spontaneous touching of one’s own face (sFST) is an
ubiquitous behavior that is associated with cognitively and
emotionally challenging situations. Self-touch facial gestures
have a self-soothing effect [1] with evolutionary roots in
primates [2]. They typically involve the non-dominant hand
[3]. Recent research demonstrated that sFST also plays a role
in improving memory performance. Spille et al. experimented
with a haptic working memory task in n = 49 participants
[4]. They found an underlying grouping of high-touching
individuals (HT) versus low-touching individuals (LT), which
mirrored a grouping in certain personality traits. Importantly,
they found that suppression of sFST in HT individuals had
a negative correlation with memory performance. They also
showed through EEG analysis that the most significant neuro-
physiological changes occur when the hand moves toward the
face, before any skin contact has occurred [5].

This work was partly funded by the National Science Foundation (NSF).

The sFST feature that attracted the most research attention
was frequency. The frequency of self-touch has been shown to
be influenced by negative affect and attention distraction and
may be involved in the regulation of emotions and working
memory functions. Mueller et al. performed a deeper examina-
tion of the temporal patterns of sFST through accelerometric
and electromyographic (EMG) data [6]. They found that not
only frequency, but also point of touch and duration of contact
are influenced by cognitive and emotional demands.

Some researchers also consider age to be a potential factor.
Kyra et al. performed an experiment in 10 pre-adolescent girls
and 10 post-adolescent girls in low and high stress settings.
They found three forms of self-touch in post-adolescent girls,
two of self-regulatory nature and one of conversational nature.
In contrast, no distinct self-touch patterns were found in pre-
adolescent girls. The latter suggests that sFST behaviors fully
form only after a certain stage of brain development [7].

Grunwald et al. showed that skin areas of the face with
a higher number of vellus hairs (and presumably higher
innervation density) are touched particularly frequently during
sFST. The chin is the most prominent among these facial areas.
In fact, the chin, nose, and forehead form the so-called T-zone
of the face, which is touched up to 800 times per day [8].

Parallel to the aforementioned psychological studies, there
have been efforts in the multimodal and computer vision (CV)
communities to develop machine learning (ML) methods for
automated recognition of facial self-touch gestures. Bai et al.
developed one such method based on signals from smartwatch
sensor signals [9]. Beyam et al. trained and tested a Convo-
lutional Neural Network (CNN) on 2 million video frames
from small group conversations that were labeled face-touch
and no-face-touch by 16 annotators (Cohen’s Kappa=0.89).
CNN achieved 83.76% F1 score [10]. Ibrahim et al. intro-
duced a deep learning framework, called FaceTouch, which
detects hand-to-face touches in the wild, including video chat
channels and bus footage [11]. Other researchers constructed
social interaction datasets through laboratory experiments that
include much more than facial touches. The central goal of
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the said efforts was to support the design and evaluation of
ML algorithms that recognize bodily behaviors [12]–[14].

In summary, previous work on sFST focused on small exper-
imental studies by psychologists [4], [5] or the development of
ML classification methods on images often captured outside of
real-world situations [10]. We believe that sFST is a complex
affective behavior that is best examined in a naturalistic study
with appropriate models that draw on multiple channels of
information for context. Our work does exactly this, thus
filling a gap in the literature. In more detail, we chose to
analyze sFST in the context of an open multimodal dataset
from a naturalistic study on desk-bound knowledge work
by academic researchers [15]. The dataset will be referred
to as DKW. Using behavioral, situational, and dispositional
channels, the authors of the dataset reported that sympathetic
activation of the participants was strongly associated with the
amount of reading and writing they did, the extent of use of
smartphones, and the frequency of physical breaks they took.
An information channel that was not used in that study was
the sFST channel. Since facial videos of the participants were
recorded throughout the study, sFST extraction is possible.
Hence, we developed a method to do just that and remodel
the stress levels of participants by adding sFST as an extra
predictor.

Our research addresses the following question: RQ: Are
facial self-touches associated with stress in knowledge work?
By stress here we refer to mental stress as opposed to physical
stress that occurs during purposeful physical activity. The
results of the study provide valuable information on sFST
behaviors during knowledge work, a first in the literature.
Importantly, our work introduces a new channel to measure
mental stress. In contrast to conventional stress channels such
as EDA, the sFST channel not only tracks stress but also
quantifies a countermeasure to manage it, due to the known
soothing effect of sFST [8].

In the remainder of the paper, in Section II we summarize
the DKW study [15] that produced the open dataset that we
use. In Section III, we detail the ML method that labels the
facial frames of participants with sFST information. In Section
IV, we present the results of the data analysis, highlighting the
association of sFST with mental stress. The paper ends with
a discussion and conclusion section.

II. DATASET DESCRIPTION

We use the open dataset DKW associated with the study
of knowledge work reported by Hasan et al. [15]. The study
procedures were approved by the relevant Institutional Review
Board (IRB) of the University of Houston. The dataset in-
cludes data from 10 academic researchers (6 men / 4 women)
who were monitored in their university office for four days
(D1, D2, D3, D4). The state and activities of the participants
were captured through the following sensors: a) a facial ther-
mal camera (FLIR Tau 640) to extract perinasal perspiration
signals; These signals constitute a facial EDA measure that
tracks sympathetic activation [16]; b) a visual facial camera
(Logitech HD Pro - C920) to analyze displayed emotions; and

c) a visual ceiling camera (Logitech Brio) to assist in the
classification of the activities of the participants (e.g., playing
with the smartphone). Participants had to complete certain
biographic and psychometric trait questionnaires. They also
had to fill out psychometric state questionnaires every morning
and night. The dataset features 602737 rows of multimodal
information - one for every second, which amounts to nearly
170 hours of observation.

The only controlled process in the study was the daily
baseline session. Before starting work every morning, the
participants had to relax for four minutes in their chair by
imagining a landscape of nature, while the thermal and visual
cameras were recording.

A. Description of Variables

Hasan et al. investigated how behavioral, situational, and
dispositional factors relate to sympathetic overactivity in desk-
bound knowledge work, producing the DKW dataset [15].
Prolonged sympathetic overactivity is not desirable because
it is associated with performance degradation [17] and can
undermine wellness [18]. Hence, identifying the signature
signs of such overactivity provides useful behavioral insights
and can inform future interventions. However, Hasan et al. left
out sFST, a potentially valuable behavioral factor. In this paper,
we introduce this factor and reanalyze the DKW dataset. The
following is a description of all the variables we use in the
expanded multiple regression model.

Response Variable - Proxy for Sympathetic Activation
In the DKW dataset, sympathetic activation is quantified
through perinasal perspiration signals extracted from thermal
facial videos according to the method reported by Shastri et
al. [16]. Perinansal perspiration (PP ), also known as facial
electrodermal activity (fEDA), has been shown to correlate
with palmar EDA [16]. To reduce interindividual variability,
the PP signals are normalized by subtracting their correspond-
ing mean baseline signals PPBL. The latter were collected
daily for each participant. Hence, the normalized sympathetic
activation of participant Pi at time t of day Dj , complete with
logarithmic correction to preserve normality, is:

∆PPij(t) = lnPPij(t)− lnPPBLij
. (1)

Behavioral Factors
1) Observed sFST Gestures: In the enhanced DKW dataset

that we analyze in this paper, we added labels for sFST
gestures as follows:
Che: Participants touched the cheek.
CheChi: Participants touched the cheek and chin.
CheChiN : Participants touched cheek, chin, & nose.
Chi: Participants touched the chin.
Others: Participants touched other parts of the face.

Based on these labels, the dataset calculates the relative
frequency FChe, FCheChi, FCheChiN , FChi, FOthers a partic-
ipant spends each day in Che, CheChiN , Chi, and Others
sFST gestures, respectively.



2) Observed Activities: The DKW dataset has labels for
each activity the participants performed every second of the
observation period. The labeled activities included the core
work functions of a researcher, such as reading and writing,
and many others. The list of activity labels is as follows.

RW : The continuum of reading and writing activities,
which represented the knowledge tasks of the par-
ticipants.

SA: Secondary activities, which included eating or lis-
tening to music while working or doing something
else.

SP : Smartphone activities, where participants used their
phones for texting, apps, and other reasons.

I: Participants had interactions with conversational
partners physically in the office or virtually.

Out: Participants walked out of the office taking a break.

Based on these labels, the dataset calculates the percentage
of time TRW , TSA, TSP , TI , TOut a participant spends each
day in RW , SA, SP , I , and Out activities, respectively. The
dataset also calculates the daily frequency fout and the mean
duration tout of breaks per participant.

3) Observed Displayed Emotions: The DKW has valence
labels that correspond to the emotions displayed on the faces
of the participants. The emotion vectors

−−→
DEi,t of participants

are labeled as follows:

L(
−−→
DEi,t) =

DEN , Neutral
DES , Sad
DE−, Surprised + Afraid + Disgusted + Angry
DE+, Happy

DEN indicates a largely neutral facial display. DES indicates
a facial display dominated by sadness, which in the context of
knowledge work is associated with a sober look that people
assume when thinking, due to the activation of the corrugator
muscle [19], [20]. DE− indicates a facial display dominated
by strong negative emotions, including fear, anger, disgust,
and surprise. Surprise is included in the negative emotion
category because it is rarely positive before deadlines, which
participants were working toward. In any case, it has very low
frequency in the dataset and thus is likely inconsequential in
the context of statistical modeling. DE+ indicates a facial
display dominated by happiness.

Situational Factors
The DKW dataset has morning (SAM ) and evening (SAE)
scores of the State and Trait Anxiety Inventory (STAI) Form
Y1 [21] for each participant. It also has NASA Task Load
Index (NASA-TLX) scores, collected from each participant
upon leaving the office for the day. These scores correspond
to the NASA-TLX six subscales: Mental Demand NMD,
Physical Demand NPD, Temporal Demand NTD, Perceived
Performance NP , Effort NE , and Frustration NF [22].

Dispositional Factors
The DKW dataset has biographic information on the sex
S of the participants, with levels SM = Men and SF =
Women. It also has information about the academic rank of
the participants, with levels R1 = Doctoral Student, R2 =
Postdoctoral Researcher, R3 = Junior Faculty, and R4 = Senior
Faculty. Finally, the DKW dataset has scores from the STAI
Form Y-2 questionnaire that measures anxiety predisposition
TA [21].

III. METHOD FOR ASSIGNING SFST LABELS TO VIDEO
FRAMES

We processed each frame of the DKW facial videos using
a MobileNet-based CNN architecture [23]–[25] to detect 2D
keypoints for the face and hands. These anatomical landmarks
were grouped into seven polygonal facial regions: left / right
cheeks, eyes, forehead, nose, and chin (see Fig. 1a–c). The
hand region was similarly represented as a polygon.

A facial self-touch (sFST) event was recorded when the
hand polygon intersected any facial region in the image space.
This geometric overlap was used as a proxy for 3D contact
or close proximity. Although this simplification is common in
image-based behavioral detection, we validated its accuracy
through manual inspection of 2,000 randomly sampled frames
(200 per participant), where 94% classification accuracy was
achieved (Section IV.A.1). Only one instance involved prox-
imity without actual touch, indicating high fidelity.

Each sFST frame was labeled by the region touched —
e.g., Che, Chi, CheChi, CheChiN , or Others — and
these labels were aggregated at the daily level to compute
relative frequencies for modeling (see coding schema in Sec-
tion II.A.1). These annotations provided a new temporally
aligned behavioral channel to investigate mental stress during
knowledge work.

IV. RESULTS

A. Exploratory Analysis

1) Exploratory Analysis of sFST: Figure 2 shows the anno-
tations of sFST performed by MobileNet CNN on a randomly
chosen sample of frames from various participants on various
days. To assess the accuracy of the sFST labels provided by the
MobileNet CNN, we randomly selected a set of 2000 frames
(200 frames from each participant). Two members of our team
inspected the sample frames and rated the accuracy of CNN
classification as 94%. This is an excellent classification rate
that can reliably support subsequent statistical modeling.

Figure 3 shows the daily relative frequency of various types
of sFST for participant T001. It is evident that the participant
(who was right-handed) self-touches his left cheek much more
than he touches his right cheek. This bias of sFST towards the
non-dominant hand has been documented in the psychological
literature [3], offering additional assurances for the goodness
of our classification method.

Figure 4 shows the daily relative frequencies of the
sFST of the participants as stack plots. To reduce the
number of sFST levels, for effective regression modeling,



a b c

Fig. 1: Visualization of landmarks. [a] Detected facial keypoints. [b] Detected hand keypoints. [c] Seven key face regions RF delineated
by our method; they include left eye, forehead, right eye, left cheek, nose, right cheek, and chin. The method also delineated a hand
region RH; it corresponds to the left hand.

a b c d

Fig. 2: Examples of sFST from the DKW dataset highlighting the diversity of face-hand interactions. In most cases, participants
touch their chin, cheeks, and forehead. The annotations in cyan text are provided by the MobileNet CNN and are correct. The
snapshots were randomly chosen from the following recordings: [a] Participant T017 in Day 2. [b] Participant T013 in Day 1. [c]
Participant T007 in Day 2. [d] Participant T015 in Day 2.
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Fig. 3: Distribution of frequencies of sFST for participant T001 during the four days of observation. In all four days, the frequency
of touching the left cheek is noticeably bigger than the relative frequency of touching the right cheek. The pattern is representative
of all study participants. The said pattern is in agreement with prior reports in the psychological literature, suggesting that sFST
are acted predominantly by the non-dominant hand [3]. Consequently, this result serves as a validity check for the goodness of the
data and the classification we applied.

we consolidated the left and right sFST. For example,
the self-touch of the left cheek and chin LCheChi and
the right cheek and chin RCheChi consolidated into
CheChi = LCheChi ∪ RCheChi. Naturally, most of the

time the participants did not touch their face while doing
knowledge work. However, some were self-touching a lot
more than others throughout the four-day period. Specifically,
participants T017 and T019 self-touched their face quite
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Fig. 4: Stack plots of relative frequency sFST data for each
participant and each day. Chi stands for chin self-touch, CheChiN
stands for cheek-chin-nose self-touch, Che stands for cheek self-
touch, CheChi stands for cheek-chin self-touch, and Others
stands for all other observed self-touch combinations. NoTouch
stands for the absence of facial self-touch, which is what partic-
ipants did most of the time.
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Fig. 5: Descriptive plots of daily sympathetic activation. a.
Violin plots of participants’ mean log-corrected and normalized
perinasal perspiration measurements for each day of the study.
The abundance of positive values in these boxplots suggests
widespread sympathetic overactivation for the participants across
all days b. Violin plots of participants’ mean valence probabilities
for each day of the study. VN stands for Neutral facial display.
VS stands for Sad facial display. V− stands for display of
negative emotions as the union of Angry ∪ Afraid ∪ Surprised ∪
Disgusted. This mix of negative emotional displays is dominant
in all four days of the study. V+ stands for Happy facial display.

frequently while participant T003 self-touched her face very
sparingly. The two former are high self-touch individuals
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Fig. 6: Descriptive plots of key model predictors. a. Daily
violin plots of participants’ mean percent time devoted to read-
ing/writing TRW , secondary activities like eating and working
TSA, smartphone use TSP , conversations with others TI , and
physical breaks away from the desk TOut. b. Daily violin plots of
participants’ physical break frequency fout. c. Daily violin plots
of participants’ NASA-TLX subscale scores. d. Daily violin plots
of participants’ morning SAM and evening SAE anxiety.

(HT), while the latter is a low self-touch individual (LT).
Such cases have been reported in the psychological literature
[5]. Hence, we encounter the full spectrum of self-touch
profiles in the DKW dataset, which is a sign of representative
sampling.

2) Exploratory Analysis of Other Variables: Figure 5a
shows daily violin plots of log-corrected and normalized peri-
nasal perspiration values for the DKW dataset. A significant
portion of the values are positive (∆ lnPP = 0.1 ± 0.2),
indicating the widespread presence of sympathetic overacti-
vation in the participants throughout the monitoring period.
Figure 5b shows daily violin plots of the probabilities of
emotions displayed facially for the DKW dataset. The mix
of negative emotions stands out with the overall probability
V− = 0.5±0.3, reflecting the challenging nature of continuous
cognitive work, and is consistent with the sympathetic overac-
tivation manifested in measurements of perinasal perspiration.
Positive emotions are scarcely displayed, having a probability
V+ = 0.04 ± 0.07. Neutral expressions and sadness act



as a counterweight to the negative mix, as they are almost
as prevalent when considered together (VN = 0.2 ± 0.2
and VS = 0.2 ± 0.2). Sadness here does not appear to be
felt sadness, but rather the sober look people assume when
thinking hard about something, due to autonomic activation
of the corrugator muscle [19], [20].

Figure 6 shows descriptive plots of key study variables at
the day level, reflecting values used in our modeling process.
In more detail, Fig. 6a shows the boxplots of relative times of
the activities the researchers were engaged in. Across days, the
distribution of relative time devoted to reading/writing TRW

(on average 67.7 ± 21.7 %) far outweighs the relative time
distributions of all other activities, which on average are as
follows: TSA = 0.3±06 % for secondary activities like eating
while working, TSP = 3.0± 3.9 % for smartphone use; TI =
2.9 ± 9.0 % for interactions with other people; and. TOut =
10.2±10.5 % for physical breaks, away from the desk. These
numbers confirm the cognitive nature of the daily work of the
participants. Furthermore, Fig. 6b shows the box plots of the
frequency of physical breaks, which on average is 0.5 ± 0.4
per hour, that is, researchers go away from their desk about
every two hours.

Figure 6c shows the score boxplots of the six NASA-TLX
subscales. On average, physical demand scores are quite low
(NPD = 5.3 ± 5.2), as desk-bound research is a sedentary
activity. The frustration scores are also low (on average NF =
6.2 ± 6.1), suggesting the absence of strong negative affect.
Temporal demand is moderate (on average, NTD = 9.0±5.6),
indicating a significant, but not overwhelming presence of time
pressure. Mental demand and effort tend to be high, which
is in line with the demanding nature of research work; on
average, NMD = 12±4.9 and NE = 11.6±4.9. Performance
scores tend to have the highest values among all subscales
(on average NP = 14.9± 4.0, indicating that researchers felt
their hard work paid off. Figure 6d shows the boxplots of the
morning and evening anxiety scores. On average, the scores
are moderate, being located close to the middle of the normal
range (SAM = 34.6± 10.2 for morning anxiety and SAE =
35.8± 10.7 for evening anxiety).

B. Multiple Regression Model and Results

We constructed an enhanced multiple linear regression
model (MLR), which, unlike the model reported by Hasan
et al. [15], includes predictors that manifest sFST behaviors.
In more detail, the model response variable is the mean
sympathetic activation of the participant Pi ≡ i on day Dj ≡ j
while working in the office. The momentary sympathetic
activation of participants is proxied by the log-corrected and
normalized measurements ∆ lnPP (t) of their facial EDA -
see Eq. (1).

The model predictors include the behavioral, situational,
and dispositional factors described in Section II-A. Because
the relative times of activities add to 100%, we drop one
factor to avoid cross-correlations; we chose this factor to be
the relative time of physical breaks TOut. Similarly, because
the probabilities of facially displayed emotions add up to 1,

we drop the neutral expression probability factor DEN . For
the remaining factors, we compute the variance-inflation factor
(VIF) to examine if there are any strong collinearities among
them. As a result of this examination, we remove from the
model the factors NE , NTD, NF , and DE+, because we
find that they correlate strongly with other factors. As our
study features a repeat measures design, we take into account
participant-centered random effects - see term (1|Pi) in the
models. The full model is shown in Eq. (2).

∆ lnPP (i, j) ∼
β0 + β1TRW + β2TSA + β3TSP + β4TI +

β5fout + β6tout + β7DES + β8DE− +

β9D + β10TD + β11SAM + β12SAE +

β13NMD + β14NPD + β15NP +

β16G+ β17R+ β18TA+

β19FChe + β20FCheChi + β21FCheChiN+

β22FChi + β23FOthers + (1|Pi).

(2)

The first two lines of Eq. (2) have the daily behavioral
characteristics of the participants, including the relative time
they devote to various types of activities (TRW , TSA TSP and
TI ), the frequency and mean length of their breaks (fout and
tout), and their facial emotions (DES and DE−). The next
two lines of Eq. (2) have the participants’ daily situational
characteristics, including the day of observation D (D1 is
reference), the daily time TD spent in the office, the anxiety of
the participants in the morning and evening (SAM and SAE),
and their perceived workload (NMD, NPD, and NP ).

The next line of Eq. (2) has the dispositional characteristics
of the participants, including their sex G (GF is taken as a
reference), academic rank R (R1 is taken as a reference), and
trait anxiety (TA). The last two lines of Eq. (2) hold the
relative frequencies of the participants in the sFST modes.

Subsequently, we run a backward elimination process, based
on the Akaike Information Criterion (AIC), arriving at the
reduced model shown in Eq. (3).

∆ lnPP (i, j) ∼β′
0 + β′

1TRW + β′
2TSP + β′

3fout+

β′
4NPD + β′

5FCheChiN + (1|Pi).
(3)

The AIC of the reduced model in Eq. (3) is AIC = 27.874.
This is a radical improvement over the full model in Eq. (2)
whose AIC = 187.5. The summary results of the reduced
model are presented in Table I and detailed graphs are shown
in Fig. 7. Keeping in mind that sympathetic activation in the
context of knowledge work is tantamount to mental stress, the
results show that the relative frequency of touching the cheek,
chin and nose FCheChiN is positively correlated with sympa-
thetic activation, which answers the question that motivated
this work. Furthermore, the results show that the frequency of
physical breaks fout, the relative time spent doing activities
related to knowledge TRW , and the use of smartphones TSP

are also positively correlated with the sympathetic activation
of the researchers.
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TABLE I: Results for the sympathetic activation predictors featured in the reduced model shown in Eq. (3). The model’s AIC =
27.874 with n = 40 observations (4 days × 10 participants). Levels of significance: *: p < 0.05, **: p < 0.01, ***: p < 0.001.

Coefficient Estimate Standard Error Degrees of Freedom t-value Pr(>|t|)
β′
0 for Intercept −0.858 0.187 34.000 −4.579 < 0.001∗∗∗

β′
1 for TRW 0.005 0.002 34.000 2.827 0.008∗∗

β′
2 for TSP 0.028 0.008 34.000 3.590 0.001∗∗

β′
3 for fout 0.603 0.110 34.000 5.491 < 0.001∗∗∗

β′
4 for NPD 0.015 0.006 34.000 2.399 0.022∗

β′
5 for FCheChiN 0.022 0.007 34.000 3.074 0.004∗∗

When optimizing the model using the elastic net method-
ology instead of the backward elimination process, two vari-
ables survive: the frequency of physical breaks fout and the
frequency of self-touch on the cheek-chin-nose FCheChiN .
Hence, irrespective of the optimization method, sFST remains
a significant predictor of mental stress in the DKW dataset.
Moreover, the model of Eq. 3 has R2 = 0.52. This is reduced
to R2 = 0.41, if we remove FCheChiN . Hence, the mental
stress model loses about 20% of its explainability if we do
not consider sFST. This finding becomes even more important
if we consider the absence of emotional facial expressions as
a significant predictor of mental stress.

V. DISCUSSION

We introduced a new set of predictors in a multiple linear
regression model that explains the sympathetic activation of
academic researchers included in the KWD dataset. These new
predictors are instantaneous facial self-touch (sFST) labels
extracted through a MobileNet CNN algorithm. To the best
of our knowledge, this is the first time such behavioral
predictors have been used in affective computing research. The
results of the modeling suggest that the relative frequency of
simultaneously touching the cheek, chin, and nose (Fig. 2b)
is positively associated with sympathetic activation, that is,

the physiological manifestation of mental stress in knowledge
work.

Regarding all other predictors, our results mirror those
reported by Hasan et al. [15]. In more detail, we found
that reading and writing, the use of smartphones, and the
frequency of physical breaks are associated with sympathetic
activation. The result of smartphone use complements recent
reports in the literature that associate smartphone use with
stress levels [26]. The physical break result likely points
to a coping mechanism for sympathetic overactivity in
desk-bound work. The significance of both sFST and physical
breaks in the model suggests that these predictors may act
synergistically to manage elevated stress during cognitive
work, opening a promising line of future affective research.

VI. CONCLUSION

Our findings suggest that in the context of solitary knowl-
edge work, facial expressions offer limited predictive value,
whereas facial self-touch behaviors, often overlooked in af-
fective computing, are strongly related to mental stress. This
points to sFST as a potentially valuable observational channel
for affective monitoring systems in knowledge-based work
environments.
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