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Abstract. In cardiac MRI, ECG triggering is used or patients are re-
quired to hold their breath, to alleviate motion artifacts and deterioration
of image quality. However, ECG signal quality is often suboptimal and
patients may not be able to adequately hold their breath. Alternative
solutions for tracking breathing and cardiac beating can open the way
for robust free-breathing and ECG-less cardiac MRI. Herein, we present
a novel approach that isolates the effect of breathing, as well as computes
both the breathing and cardiac beating waveforms directly from real-time
MRI sequences. It turns a challenge into an opportunity to guide the re-
construction of high temporal resolution images. The proposed method
is based on a level-set method to segment the left ventricle from a real-
time MR sequence collected with free breathing and without ECG trig-
gering. The algorithm extracts an evolving surface area, which captures
the heart’s systolic contraction and diastolic expansion in real-time. The
computed time series of the heart’s dynamic area is subjected to wavelet
analysis, where the breathing and pulsation components are separated.
The method was investigated on 12 real-time cardiac MRI acquisitions.
We demonstrate that the left ventricular area, as computed by the level
set method, produces breathing and cardiac waveforms similar with those
extracted by cardiac MR experts (ground-truth). This proof-of-concept
work demonstrates the capabilities of the proposed methodology paving
the way for incorporation into real-time or retrospective reconstruction
of high resolution cardiac MR.

1 Introduction

Cardiac magnetic resonance imaging (MRI) is a widely used modality for evalu-
ation of cardiac morphology and function. There are two major challenges which
make MRI of the heart more difficult than MRI of other body structures, such
as the brain and joints: First, the respiratory motion and second, the motion
of the heart itself [1]. In general, the first challenge is typically overcome by
simply asking the patient to suspend breathing (breath-hold) for a few seconds.
While this is not a challenge in healthy volunteers, it can be quite problem-
atic in patients with underlying cardiac disorders, many of whom have baseline
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Fig. 1. Methodology framework: a Left ventricle segmentation. b Surface area evolu-
tion c Extraction of respiratory and cardiac signal waveforms.

dyspnea [2]. The second challenge of cardiac motion is typically addressed by
timing the acquisition of MRI data with different points in the cardiac cycle
using (electrocardiogram) ECG-gating. While this strategy frequently works,
sometimes there is difficulty obtaining an adequate ECG signal due to strong
electromagnetic noise from the MRI environment [3]. The consequence of these
limitations is ghosting artifacts or blurriness that compromises image quality
and renders clinical interpretation difficult.

To address suboptimal ECG signals and/or inability of patients to perform
adequate breath-holding, MR methods have been introduced to track the two
motions and provide gating. Such methods do not require ECG or breath-
holding, by exploiting the inherent properties of the MR signal or using tai-
lored MR pulse sequences. Notable, characteristic examples include the use of
navigator-echo based MR to track both breathing and cardiac triggering [4], the
analysis of the raw MR data on-the fly, as in the case of self-gated MRI [5], or
using image processing methods, such as model-based approaches [6]. Ideally,
clinical cardiac MR should be performed with free breathing and with real-time
extraction of the cardiac beating waveform.

Despite groundbreaking efforts by numerous groups, such a robust MR pro-
tocol is not yet available. Motivated by the potential benefits of a free-breathing
ECG-less cardiac MR protocol, we propose an approach to extract breathing
and cardiac cycles. This method is based on processing on-the-fly the evolving
surface area of the left ventricle (LV), which has been segmented by the means
of the B-spline level-set method (Fig. 1a). In contrast to [7] we do not only use
the level set method to segment the left ventricle, but we also follow the evolving
1D surface area signal of the left ventricle that captures the heart’s contraction
and expansion, while it is modulated by the superimposing breathing motion.
We apply multi-resolution wavelet analysis (Fig. 1b) on the left ventricle surface
area signal to localize the pulsation and breathing signals at different scales.

Knowing the free-breathing and cardiac beating waveforms, it is then possi-
ble to use the breathing and cardiac motion patterns to either perform on-the-fly
reconstruction or retrospective reordering. In this work, we focused on the first
aspect of such a cardiac MR imaging scheme: the accurate extraction of the
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Fig. 2. Example of evolving surface area of left ventricle (Subject S001).

breathing and cardiac cycles. In section 2, we describe in detail the methodolog-
ical framework and in section 3 we present and analyze experimental data from
volunteers.

2 Methodology

2.1 Left Ventricle Segmentation

The left ventricle surface region contracts and expands periodically with the
beating heart. Therefore, we first have to segment the left ventricle from its
surrounding area. We choose a ROI around the left ventricle on the first frame
of the MRI sequence and apply the B-Spline level set method [8]. We then
select one coordinate point inside the left ventricle point to guide a connected
component analysis which returns as a result only the segmented left ventricle.
We examine the surface area of the left ventricle, which is computed as a polygon
area covered by the level set (Figure 2a). After the first frame, the reference
point for the selection of the left ventricle is updated by the centroid of the
segmented area over time, and automatically updates itself in every frame. The
level set method follows the heart surface while undergoing non-linear tissue
deformations and the evolution of the left ventricle surface over time creates a
1D signal (Figure 2b).

2.2 Wavelet Analysis

Figure 2b shows the surface area plot for a set of MR image sequences consist-
ing of 132 frames. The signal is a combination of the cardiac and respiratory
signals. The cardiac signal is easy to observe, since the surface area of the heart
changes with respect to the heart phase. The respiratory signal has a lower fre-
quency than the cardiac signal. To separate the two sub-signals, we compute
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Fig. 3. Waveform Extraction: a Wavelet coefficients. b Computed wavelet coefficients.
c Extracted pulse and breathing waveforms.

the wavelet energy of the left ventricle surface area signal for different frequency
scales, ranging from 1 to 60 without losing time information. Since the signal is
non-stationary in nature, signal analysis based on wavelet transformation is the
method of choice. To quantify the contribution of pulse and breathing signals, we
first normalize the signal because the wavelet energy computed on normalized
signals exposes detailed information, specifically at the lower scales.

In order to avoid border discontinuity errors, we have to extend the signals
beyond the boundary limits before computing wavelet coefficients. As our signals
are non-stationary in nature, we select the symmetric extension technique. Since
the selection of an appropriate signal extension length is very important in the
wavelet energy computation, we apply three different extension lengths, 2N, N,
and N/2. For each signal, we choose the one that has the minimal border discon-
tinuity error in the wavelet energy computation. To quantify the contribution of
pulse, and breathing in the preprocessed signals, we apply a continuous wavelet
transform (CWT) with a Mexican Hat mother wavelet. Finally, we compute
the energy of each signal in all scales (Figure 3a). Figure 3b shows the wavelet
energy at different scales. There are two peaks on the plot, one corresponds
to heartbeat (cardiac), the other corresponds to breathing. Corresponding peak
waveforms are extracted from the wavelet coefficients as seen in Figure 3c-higher
frequency represents the cardiac signal, lower frequency represents the breathing
signal.

3 Experimental Results

3.1 Experimental Design

For the purpose of testing the performance of the level set method in the context
of left ventricle segmentation, the authors used 12 real-time MRI sequences clips
from 12 different subjects. Each sequence contains anywhere between 106 to
211 frames. Data were acquired with a 1.5T MAGNETOM Avanto Siemens
MRI scanner. The collected real-time sets included short axis views of healthy
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Fig. 4. Time series plot of the left ventricle surface area sizes as given by Ground-truth
(GT) and level set (LS) method.

volunteers (N = 4), subjects with a diagnosis of low ejection fraction (N = 4)
and fibrillation (N = 4).

To ascertain how well the segmentation performed, one needs to have the
ground-truth location of the left ventricle area and compare the level set method
output with the ground-truth throughout the timeline. Ground-truth (GT) was
manually labeled by an expert. The labeled points were recorded as time series
of the polygon area of the left ventricle. Then, the level set method (LS) was
applied on the real-time sequences to obtain the 1D signal of the evolving left
ventricle surface area.

3.2 Experimental Results

First of all we need to check whether the level set method is capable to track
efficiently the periodic movement of the recorded surface. For this reason we
provide the time series plot where at each frame the total number of pixels from
the level set and ground truth surfaces are recorded. From Figure 4 we observe
that there is a good agreement regarding the size of the surface as this is proposed
by the level set and ground-truth data. The closer the level set time series to
the corresponding ground-truth time series, the better. To quantify further the
agreement between the two, we provide the scatterplot diagrams of the level set
surface size versus the ground truth surface size for each of the 12 subjects (in
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Fig. 5. Scatterplots (and correlation coefficients) for the surface area size given by the
Level Set Method versus Ground-truth.

each plot every data point corresponds to the sizes given by LS and GT for the
surface in a specific frame). In these plots linearity indicates good agreement in
the periodic motion of the left ventricle. We further quantify the strength of the
linear relationship by computing the correlation coefficient for each scatterplot.
From Figure 5 we observe that there is strong linear relationship between the two
time series (GT and LS) indicating that the LS method is capable of following
efficiently the periodic change of the size of the ROI.

The agreement on the size of the surface between LS and GT will be valuable
as long as the LS surface overlaps with the GT surface to an extensive degree
(i.e, perfect agreement between GT and LS on the size of the ROI will be useless,
if the two ROIs have as intersection the empty set). We therefore also computed
the locations of the centroids of LS and GT output area for each frame in the
data sequence of each subject and then calculated the Euclidean and Manhattan
distances of each pair of (LS, GT). We provide the boxplots of Euclidean (Fig-
ure 6a) and Manhattan (Figure 6b) distances versus subject to have a better
view of the distribution of the distances across subjects. From the figures we ob-
serve that in general the centroids are relatively close and there do not seem to
be big discrepancies among the distributions of Euclidean/Manhattan distances
across subjects. The reason we tried both Euclidean and Manhattan distances
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Fig. 7. Waveforms of a Breathing signals and b Cardiac signals extracted from the
surface area signals.

was to provide some evidence that the results seem to be robust independently
of the type of distance used.

Figure 7 shows results of the extracted cardiac and breathing waveforms
produced using our automated tool. We observe that there is good agreement
for the cardiac waveforms and some slight offset for the breathing waveforms.
This is due to the automatic detection of the local wavelet energy peak point



representing the breathing function, which was tuned towards fast processing so
it can be applied on-the-fly.

4 Discussion

We described a method to compute physiological functions, namely, cardiac and
breathing in real-time MR image sequences, which can be used to guide a recon-
struction or retrospective reordering process. The method computes the surface
of the evolving heart surface using a level set method to segment the left ven-
tricle of the heart. The output of the level set method area forms a time signal,
which when subjected to wavelet analysis reveals local energy maxima in high
and low scales. We have implemented the proposed method into an automated
tool. In the experimental analysis on real-time MR cardiac image sequences from
breathing subjects, we demonstrated that the selected B-Spline level set method
performs very well.

This method may find applicability in diagnostic cardiac MRI, by removing
the breath-holding restriction on patients as well as the need for additional
gating sensors. Indeed, the method’s value is not only that it can effectively deal
with breathing motion, but also that it can compute both breathing and cardiac
function (in real-time), turning a challenge to an opportunity.
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