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Abstract— The present paper unveils a methodology to re-
cover the breathing signal from the subject’s nostrils through
thermal imaging. The resulting functionality is equivalent to
that of a thermistor, but it is materialized in a contact-free
manner. First, the nostril region is segmented and it is tracked
over time through coalitional tracking. The mean thermal signal
of the nostril region carries the breathing information. This
information is extracted through wavelets analysis. The method
has been tested on 20 healthy individuals. The frequencies of the
breathing signals determined via the imaging computation were
compared with those of the corresponding signals acquired with
thermistors. The high degree of agreement between the two
measurement methods confirms the validity of the proposed
approach and opens the way for clinical applications.

I. INTRODUCTION

Breath analysis plays an important role in the diagnosis
and management of respiratory diseases like sleep obstructive
apnea, bronchitis, and asthma. In fact, breathing rate is one
of the vital signs and hence, indicative of the overall health
status of a subject. The normal breathing rate of resting adults
varies from 12 − 18 cycles per minute (cpm) [1]. Human
breathing consists of expiration and inspiration phases. The
expiration phase has higher temperature than the inspiration
phase [2][3].

Various types of contact modalities have been developed
to measure human breathing rate. The respiratory belt trans-
ducer measures the breathing rhythm via pressure changes on
the strap sensor fitted on the subject’s chest or abdomen [4].
The nasal thermistor measures nasal air temperature variation
as an indication of respiration [5]. The thermistor probe has
to be secured in front of the nostrils.

The first non-contact breathing rate measurement method
was introduced by Greneker et al. [6] and is based on active
sensing. It is called Radar Vital Signs Monitor (RVSM) and
is able to measure the subject’s heart beat and breathing rate
at distances up to 30 ft. It senses the chest wall moving up
and down during breathing by Doppler modulated radar. The
RVSM measurements are sensitive to small body movement.

Thermal infrared imaging is a passive contact-free modal-
ity. In previous publications we have demonstrated that
thermal imaging can be used to measure various physiolog-
ical variables, including blood flow [7], heart rate [8], and
breathing rate [9][10]. In fact, it is an ideal modality for
sustained physiological monitoring [11].

In [9] we demonstrated for the first time the feasibility of
breath rate measurement through thermal imaging. Specif-

ically, we proposed a statistical methodology that models
breathing as a mixture of expiration and non-expiration
distributions. Every frame is classified as expiratory or non-
expiratory by comparing the incoming distributions with the
existing distributions using the Jeffrey’s divergence measure.
Thanks to this frame labeling we are able to compute the
breathing rate. In [10] we retrofitted the thermal imaging
sensor with an optical band-pass filter in the CO2 absorption
zone to improve the signal to noise ratio. Then, we proceeded
to compute the breathing rate using Fourier instead of
statistical analysis.

In this paper, we introduce a new and improved breath-
ing rate measurement method based on automatic track-
ing/localization of the nasal region and wavelet analysis.
No band-pass optical filtering is necessary. In section II
we describe the tracking and localization algorithms as well
as the wavelet-based signal extraction method. We discuss
the experimental setup in section III-A and present the
experimental results in section III-B. Section IV concludes
the paper.

II. METHODOLOGY

To measure the breathing rate in thermal video we need to
track the motion of subject, localize the measurement region,
and analyze the extracted thermal signal. We address each
of these issues in detail in the following subsections.

A. Tracking Region of Interest
We chose the coalitional tracking algorithm [12] for breath

analysis. It optimizes multi-tracker interaction via game
theory. We used a coalition grid composed of four CON-
DENSATION trackers [13] (see Fig. 1).The CONDENSA-
TION algorithm contains statistical prediction and evaluation
phases.

Fig. 1. (a) Thermal snapshot of a subject’s face. (b) Initialization of
coalitional tracker. (c) Thermal color map.
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B. Localizing Region of Interest

The measurement region of interest (MROI) for breathing
is the nostrils. This region features both spatial and temporal
variances. First, the shape of the nostril region is different for
different individuals. Thermal imaging is a functional image
modality that records the changing image physiology. In the
case of breathing, thermal imagery registers the temperature
fluctuation between the inspiration and expiration phases.
This, however, increases the segmentation difficulty, as the
shape of nostrils varies temporally due to the varying thermal
signature of inspiration and expiration. (see Fig. 2 ).

Fig. 2. Temporal variance of nostril region in thermal imagery during
breathing. (a) Inspiration phase. (b) Transition phase. (c) Expiration phase.
(d) Thermal color map.

Fig. 2 shows the nostrils being separated from the rest
of the facial tissue due to colder boundaries formed by
cartilage. This feature can help to localize MROI. We use
the horizontal gradients to detect the left and right edges of
the nostrils and the vertical gradients to detect the nose base.
We obtain the horizontal H(x) and vertical V (y) projection
profiles of nasal tissue by averaging pixel intensities column-
and row-wise in the thermal image. We obtain the left and
right nostril edges by locating the left- and right-most peaks
of H(x). We obtain the base edge of nose by locating the
highest peak of V (y) (see Fig. 3).

The MROI selection varies from frame to frame. Fig. 4 (a)
and (c) show the horizontal and vertical nostril projections
along the timeline for a typical subject. Some projections are
weak and the locations vary as well. We use a time window
of 200 frames to compute the mean horizontal and vertical
projections in Fig. 4 (b) and (d) correspondingly. This time
window is representative of the full spatiotemporal evolution,
as it covers both an expiration and inspiration phases.

Based on anthropometric knowledge we divide the dis-
tance between left and right nostril edges by 3 and use this
as an estimate of the nostrils’ height (see Fig. 5).

Once the nostril region is localized, we compute the mean
temperature within MROI in every frame. This produces a
quasi-periodic thermal signal along the timeline, which is
indicative of the breathing function.

C. Wavelet Analysis

We perform identical wavelet analysis on the extracted
imaging and thermistor nasal signals to recover the breathing
rate. Thus, suffice to present the imaging nasal signal analysis
only. Wavelets is the appropriate analysis tool as breathing

Fig. 3. Top: Determination of left and right nostril edges. Bottom:
Determination of base edge. (a) MROI images. (b) Edge images. (c) Integral
projections.

Fig. 4. Spatiotemporal evolution of integral nostril projections for a typical
subject. (a) Horizontal projections along time. (b) Mean horizontal integral
projection. (c) Vertical projections along time. (d) Mean vertical integral
projection.

is a non-stationary process. The thermal video sampling rate
fluctuates around 55 frames per second (fps). A constant
sampling rate is necessary for optimal results in wavelet
decomposition. We choose δ = 10 fps as the re-sampling
rate of the thermal signal.

We normalize and perform wavelet analysis on sliding
segments (windows) of the re-sampled thermal signal. This
analysis yields the breathing rate. As the sliding window trav-
els along the evolving timeline of the re-sampled signal, we
compute a series of breathing rates. This provides the breath
computation in real time. The details of each algorithmic
step are as follows:
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Fig. 5. MROI based on mean nose edges and anthropometric estimates.

1) Normalization: We define as S(t), t ∈ {0, · · · , N},
the re-sampled breathing signal. We normalize the signal
amplitude as follows:

S′(t) =
S(t)− µ

σ
, (1)

where µ and σ are the mean and standard deviation of S(t)
respectively. The normalization transforms signal S(t) to
S′(t) with mean µ′ = 0 and standard deviation σ′ = 1.

2) Wavelet Transform: We perform Continuous Wavelet
Transformation (CWT) [14] on the re-sampled and normal-
ized thermal signal:

ΨΨ
x (τ, s) =

1√
|s|

∫
S′(t)ψ(

t− τ

s
)dt, (2)

where ψ is the ‘mother wavelet’, τ represents the translation
parameter, while s denotes the scale at which the signal is
examined. We use the Mexican Hat (MH) [14] as the mother
wavelet.

CWT allows analysis at all scales, hence, facilitating the
extraction of the signal component of interest (i.e., breath-
ing). We assume that the breathing component exists at a
scale smax corresponding to a local maximum of the wavelet
energy coefficients WTi(t):

smax = argmax {
∑

|WTi(t)|2}. (3)
i

Given a mother wavelet, the frequency that maximizes its
transform is the center frequency Fc. The ‘breathing’ wavelet
is dilated at scale smax. Taking into account that the thermal
signal has been resampled at a frequency δ = 10 fps, the
breathing rate BR is:

BR =
Fc · δ
smax

. (4)

III. EXPERIMENTS

A. Experimental Setup

The center-piece of the imaging system we use in our ex-
periments is a FLIR SC6000 Mid-Wave Infra-Red (MWIR)
camera with an Indium Antimonite (InSb) detector operating
in the range 3 − 5 µm [15]. The camera has a focal plane
array (FPA) with maximum resolution of 640 × 512 pixels.

The sensitivity is 0.025◦ C. The camera is outfitted with a
MWIR 50mm lens f/2.3, Si : Ge, bayonet mount from
FLIR Systems [15].

The ground-truth system is composed of a PowerLab 8/30
data acquisition system and a thermistor from ADInstruments
[4]. An electronic trigger synchronizes the imaging and
ground-truth systems.

The experiments took place in a climate controlled room.
Subjects were located 6 ft away from the imaging system
and offered a frontal view while sitting in a comfortable
chair. The subjects were also fitted with the nasal thermistor
to ground truth the imaging measurements. The MWIR
camera was calibrated with a two-point calibration at 28◦ C
and 38◦ C, which are the end points of a typical temperature
distribution on a human face. We recorded ∼ 3 min thermal
clips (and corresponding thermistor signals) for twenty (20)
subjects.

B. Experimental Results

Based on the methodology described in Section II, we
determine the breathing rate from the thermal imaging and
thermistor signals by computing the wavelet energy curves
in all scales and selecting the local maximum in the small
scale region. The small scale region corresponds to relatively
high frequency phenomena embedded in the signals, and
breathing is one of them. Actually, it is expected to be
the strongest phenomenon present due to the measurement
locale. Fig. 6 shows the imaging and thermistor energy
curves for the corresponding signals of a subject included in
the test population. One can observe the simultaneous peaks
of the two curves, which indicate agreement between the
two modalities as to the scale (and thus, the frequency) of
the breathing phenomenon.

Fig. 6. Wavelet energy curves of the thermal imaging PT and thermistor
PG signals for a subject. Only small scales [1-32] are shown.

Table I shows the detailed experimental results. The
imaging measurements (BRT ) are juxtaposed with the cor-
responding ground-truth ones (BRG) obtained through the
thermistor.

The comparison between the two modalities is based on
two measures, CAND and CuSum. CAND stands for
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TABLE I
BREATHING RATE RESULTS

Subjects BRG BRT CAND(%) CuSum(%)
S01 12.83 12.81 99.81 13.27
S02 18.49 18.34 99.19 6.80
S03 8.22 8.33 98.68 10.37
S04 21.52 21.23 98.64 7.45
S05 20.76 21.17 98.03 6.80
S06 14.89 14.88 99.97 8.26
S07 16.56 16.68 99.26 6.88
S08 16.08 16.22 99.09 13.10
S09 15.20 14.80 97.39 11.99
S10 18.70 18.69 99.95 7.24
S11 13.55 13.22 97.54 19.54
S12 13.30 13.10 98.49 11.27
S13 13.31 13.06 98.07 13.65
S14 13.67 13.52 98.89 9.04
S15 21.65 21.88 98.92 9.46
S16 12.75 11.63 91.25 13.40
S17 16.41 16.23 98.94 6.33
S18 17.72 17.55 99.06 10.06
S19 14.50 13.99 96.48 11.25
S20 15.59 15.25 97.83 12.44

Mean 15.79 15.63 98.27 10.42

Complement of the Absolute Normalized Difference:

CAND = 1− |BRT −BRG|
BRG

, (5)

which is the absolute difference between the thermal
imaging and ground-truth measurements normalized against
the ground-truth and subtracted from unity. This gives a
weighted indication of how close the thermal imaging mea-
surement (BRT ) is to the ground-truth measurement (BRG)
in each case. The mean CAND for the experiment is
98.27%.
CuSum stands for Cumulative Sum and is an indication

of the instantaneous error in the imaging measurement with
respect to the ground-truth measurement:

CuSum =
1
T

T∑
t=1

|BRT (t)−BRG(t)|
BRG(t)

× 100%. (6)

The mean CuSum error for the experiment is 10.42%.
On average (see CAND), the two modalities give almost
identical measurements. There is more discrepancy if one
examines the measurements on a beat by beat basis (see
CuSum) , but these tend to cancel out on the whole.

IV. CONCLUSION

Breathing is one of the vital signs. It is used as an indicator
of overall health status and also in diagnosis of chronic or
acute diseases, like obstructive sleep apnea or heart attack. In
this paper we have described a new method based on passive
imaging to measure breathing rate. It is a step forward with
respect to previous methods we reported on this matter. The
present method automatically localizes the nasal region and
cancels the effect of head motion. Also, a novel departure
from previous methods that we reported is the use of wavelet
analysis for the determination of the breathing rate. This is a

better approach than Fourier analysis, as breathing is a non-
stationary process. Based on the largest scale experiment we
conducted yet, the thermal imaging measurement appears to
be in par with the existing clinical standard. Imaging-based
breathing measurements may find wide applicability in sleep
studies and neonate physiological monitoring due to their
unobtrusive nature.
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