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Abstract 

This paper presents a novel approach to  the prob- 
lem of signature recognition. We iniroduce the use of 
revolving active deformable models as a powerful way 
of capturing the unique characteristics of a signature’s 
silhouette. Ezperimental evidence shows that the sil- 
houette of a signature uniquely determines the signa- 
ture in the majority of cases 1-14, 161. The objective 
of our method i s  to recognize signatures based on the 
spatial properties of the signature boundaries. Our ac- 
livc: deformable models originate from the snakes in- 
troduced to computer vision b y  Kass et al. [9], but 
their implementation has been tailored to the task at 
hand. These computer-generated models interact with 
ihe virtual gravity field created by  the image gradient. 
Ideally, the uniqueness of this interaction mirrors the 
uniqueness of the signature’s silhouette. The proposed 
method obviates the use of a computationally expensive 
segmentation approach and yields satisfacto y results 
reg nrding performance, withoui compromising the ac- 
curacy rate. Interestingly, the active deformable mod- 
els have been implemented in  such a way, that the 
method i s  potentially fully parallelirable. The exper- 
imcnts performed with a signature database show that 
the proposed method is promising. 

1 Introduction 
The recognition of handwritten characters, numer- 

als, and signatures has been an active research topic 
for more than twenty years [l,  2, 3, 4, 5 ,  10, 11, 12, 
14, 15, 16, 171. Nowadays, we have reached the point 
where both graphics and text can be recognized in 
machine-generated documents. However, recognition 
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of highly cursive script and signatures still remains a 
partially solved problem [lo]. 

The automation of signature recognition and veri- 
fication has been justified in a number of papers, for 
financial as well as security reasons [4, 10, 151. Signa- 
ture recognition searches for the identity of a given 
signature through a signature database. Signature 
verification verifies whether a given signature belongs 
to a specified individual. Apparently, the signature 
recognition problem is more complex than the signa- 
ture verification problem and relatively little research 
effort has been focused on this area so far. 

It is customary to distinguish on-line from off-line 
signature recognition and verification systems. In an 
on-line system the user has to sign on an electronic 
tablet which gives a signal ~ ( t )  = [z( t ) ,y( t ) lT (i.e., 
coordinates as a function of time). This system en- 
ables dynamic information such as stroke sequence, 
pressure, and acceleration to be captured in real-time. 
In contrast, in an off-line system the user does not 
use a tablet but instead he/she signs on a paper and 
his/her signature is captured via a camera or a scan- 
ner. Obviously, valuable information that can be eas- 
ily extracted in the on-line method, it is very difficult 
or impossible to be recovered in the off-line method. 
However, the use of special hardware by the on-line 
method restricts its applicability. 

The handwritten signature is considered to be 
among the best means for an automated personal iden- 
tification system. It can be produced nearly anywhere 
and unlike passwords or identity cards cannot be for- 
gotten or lost [4]. It would be of great value an intel- 
ligent identification system, where the user does not 
have to go through the awkward procedure of laying 
an identity claim by punching an ID number (veri- 
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Image 

Figure 1: Block diagram of the signature recognition system. 

fication). Instead, the system should be capable of 
arriving at an identification decision (recognition and 
verification) based solely upon the signature of the 
user. Such a system is the ultimate goal of the line 
of research we are pursuing. We consider the prob- 
lem of signature recognition and verification as a two 
stage proceas. In the first stage, signature recognition 
should be achieved. The second stage should verify 
that indeed the signature has been written by the user 
whose identity has been recovered in the first stage 
and not by an impostor. In the recognition stage, 
the unique characteristics of the signature’s silhouette 
are captured first. Then, if the system cannot arrive 
at a definite conclusion, it should resort to the inter- 
nal structure of the signature. Experimental evidence 
shows that the silhouette of a signature uniquely iden- 
tifies the signature in the majority of casea [14, 161. 
Only for a relatively small percentage of problematic 
signatures, the system needs to  resort to the internal 
structure module. 

In this paper we address the problem of recognizing 
signatures off-line by capturing the unique characteris- 
tics of their boundaries. The organization of the paper 
is as follows: Section 2 presents some previous work 
conducted in the area. Section 3 outlines the pro- 
posed system. !!kctiom 4, 5, and 6 describe in detail 
the various modules of our system. In Section 7 the 
experimental results are presented. Finally, in Section 
8 the paper is summarized and conclusions are drawn. 

2 Previous Work 

Traditionally, the techniques used in the off-line 
case can be classified into one of the following three 
categories [IO, 171: 

e Global approach: The extraction of global fea- 
tures is easy [12, 161, but the method deteriorates 
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rapidly when significant distortion and style vari- 
ations are present and satisfactory position align- 
ment cannot be achieved. 

Statist ical approach: The method is more tolerant 
than the global approach to  distortion and style 
variations since it incorporates a certain amount 
of topological and dynamic information [2, 31. 

Geometr ica l  and topological approach: Geomet- 
rical and topological features can tolerate a high 
degree of distortion and style variations, and they 
can even tolerate up to a certain degree of trans- 
lation and rotation variations [l, 5, lo]. 

Outline of the Proposed System 
The geometrical and topological approach has been 

proved the most effective so far. Geometrical and 
topological feature extraction in conventional meth- 
ods is primarily based upon segmentation techniques. 
Segmentation usually leads to  a heavily heuristic ap- 
proach and places a considerable burden on the com- 
putational process. Our approach departs totally from 
this mode of tracing signatures off-line. Instead of 
segmenting the signature, we rather follow a holist ic 
approach. 

We address the problem of capturing the spatial 
properties of signatures’ boundaries using a technique 
that is well established in the area of active vision 
for tracking objects [6, 181 but has never been tried 
before in the field of signature recognition and verifi- 
cation. We introduce the use of computer-generated 
act ive  deformable models for approximating the ex- 
ternal shape of a signature. Our active deformable 
models are similar, but not exactly the same with the 
snakes introduced by Kass et al. [9]. 

In more detail, the proposed method consists of 
three modules (see Fig. 1): 
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Figure 2: Instance of a revolving active deformable 
model (a) Initial position (b) Final position. 

Preprocessing: Preprocessing includes a thresh- 
olding operation to clear up the image and an ori- 
entation normalization procedure that facilitates 
the recognition process. 

Revolving active deformable model: This is the 
main part of the whole procedure. Two-particle 
active deformable models are applied to the sig- 
nature (see Fig. 2). The particles are connected 
through an elastic spring that goes through the 
center of an enclosing ellipse. The particles lie 
initially on the enclosing ellipse 180" apart. Each 
pair of particles gets attracted to the external sig- 
nature edges, locally, under the influence of a vir- 
tual gravity field. The pairs of particles are ap- 
plied in a revolving fashion at equally spaced an- 
gular intervals and at various resolutions. Each 
pair of particles reaches finally a stable condi- 
tion. The dynamic information that pertains to 
the virtual field created around each signature, is 
used to establish the feature vector, based upon 
which, the final module matches the signature im- 
age with one of the signatures from the signature 
database. 

Classification: A unique match between the sig- 
nature image and a prototype signature stored in 
the signature database is established. The classi- 
fication is based on the characteristics of the sig- 
nature's virtual gravity field, which ideally mir- 
rors the unique characteristics of the signature's 
silhouette. In the case of failure to come up with 
a clear-cut match, the system classifies the case 
as inconclusive. 

4 PREPROCESSING 
4.1 Thresholding 

It is very important for the main processing module 
of a recognition system to be applied to a noise-free 
image. We actually need a binary signature image 
where the signature body will clearly stand out in a 
perfectly clean background. This is especially true for 
the case of active deformable models, because salt and 
pepper noise can totally alter the virtual gravity field 
of the image. We also need the thresholded signature 
image to represent the sampled signature as faithfully 
as possible, since the best recognition technique would 
be useless if applied to a heavily distorted image. 

The thresholding technique chosen for that purpose 
is a method devised by Otsu [13]. It involves a non- 
parametric and unsupervised method of threshold se- 
lection. An optimal threshold is selected, so as to 
maximize the separability of the resultant classes in 
gray levels. The algorithm utilizes only the zeroth- 
and the first-order cumulative moments of the gray- 
level histogram and is extremely fast. Fig. 3 shows 
the original image of a sample signature and Fig. 4 
shows the thresholded image. 

4.2 Normalization 
The normalization process involves only an orienta- 

tion normalization and not a size normalization. The 
classifier later on classifies according to features that 
are size invariant. More specifically a signature is ori- 
ented in such a way that its elongation axis is hori- 
zontal. The alignment of the elongation axis with the 
horizontal axis is achieved through the use of second- 
order spatial moments [7]. 

Utilizing only second-order moments for orienting 
a 2-D shape leaves us with a two-way ambiguity. The 
elongation axis has been properly aligned to the hor- 
izontal axis of the coordinate system, but it is not 
known if the oriented shape should be rotated by 180" 
or not (that is, which part should face east and which 
should face west). To resolve this matter we resort to 
the determination of the most distant point from the 
centroid [8]. 

The most distant point from the centroid is com- 
puted as the one of the eight extremal points of the 
signature image that has the maximum Euclidean dis- 
tance from the centroid. The extremal points of a 
signature region R can be defined in terms of the top- 
most row (zmin) of R; the bottommost row (zmaz) 
of R; the leftmost column (ymin) of R; and the right- 
most column (pmaz) of R. These extremal rows and 
columns are in fact determined during the computa- 
tion of the bounding rectangle of the signature, that is 
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absolutely essential during the next processing stage, 
and thus, they do not constitute an additional com- 
putational burden. Fig. 5 shows the signature image 
after the orientation normalization phase. 

Figure 3: Signature image before thresholding. 

Figure 4: Signature image after thresholding 

Figure 5: Signature image after orientation normal- 
ization. 

5 Revolving Active Deformable Model 
An active deformable model is a mesh of artificial 

massive particles connected to each other by artificial 
elastic springs. Each particle interacts with the silhou- 
ette of the signature through attracting forces created 
by high values in the image-gradient map. The move- 
ment of the active deformable model on the image 
plane is governed by the laws of classical mechanics. 
Our active deformable models are modeled after the 
active deformable models used by Couvignou et  al. 

[SI for visually tracking moving objects with two no- 
table differences. First, our active deformable models 
are not used in tracking moving objects but rather 
in capturing the spatial properties of the silhouette 
of static signature images. Second, we don't arrange 
the mesh of particles in a rectangular fashion around 
the signature, but we rather apply pairs of particles in 
succession, along the enclosing ellipse of the signature, 
at equally spaced intervals and in a revolving fashion. 
'This mode of active deformable model application not 
only yielded dramatic performance gains but entailed 
the method to be potentially fully parallelizable. 

In more detail, the enclosing ellipse of the signa- 
ture is defined as the ellipse whose foci are the middle 
points of the left and right edges of the bounding rect- 
angle. The particles are connected through an elas- 
tic spring that goes through the center of the ellipse. 
The particles lie initially on the enclosing ellipse 180" 
apart. We chose the starting positions of the particles 
to be on the enclosing ellipse, because it gives us a nice 
parametric model to achieve half a revolution around 
the signature, and in addition, it circumscribes the 
signature more closely than any other simple closed 
curve, facilitating a strong interaction with the signa- 
ture's gravitational field. Each pair of particles gets 
attracted to the signature edges, locally, under the in- 
fluence of a virtual gravity field. The particles are 
moving in the image plane, and the motion of each 
ith particle obeys the classical dynamic equation, 

where r, = ( ~ , , y i ) ~  is the position vector of the i th 
particle in the image plane, Ff"' is the external force, 
exerted by objects external to the system, and FiY' is 
the internal  force exerted on the iih particle by the 
j t h  particle. External forces are created by the im- 
age gradient magnitude of the signature's boundary 
pixels. Internal forces are spring forces that tend to 
oppose the deformation of the model. The pairs of 
particles are applied in a revolving fashion, at equally 
spaced angular intervals and at various resolutions. 
Each pair of particles finally reaches a stable condi- 
tion, represented pictorially by small circular traces 
on the signature's boundary (see Fig. 6, 7, and 8). 

6 Classification 

The system is trained by presenting it one sample 
signature of every individual we consider as a user of 
the system. The feature extraction for the prototype 
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samples is taken place by applying the revolving ac- 
tive deformable model at its maximum resolution. The 
maximum resolution in the current system is 36 pairs 
applied at 5" apart from each other. Then, for each 
test case, the revolving active deformable model is ap- 
plied at various resolutions. Currently, it is applied at 
ti, 9, 12, 18, and 36 pair resolution. These correspond 
to angular intervals of 30°, 20", l5", lo", and 5'. 

Figure 6: Snapshot of a revolving active deformable 
model in action-towards the initial phase. 

Figure 7: Snapshot of a revolving active deformable 
riiodel in action-towards the middle phase. 

Figure 8: Snapshot of a revolving active deformable 
model in action--towards the final phase. 

The feature vector we are using is constructed as 
follows: each particle of every active deformable model 
follows a trajectory from its initial position to the bor- 
der of the signature under the combined influence of 
the local virtual gravity field of the signature image 
and the internal spring forces. The trajectories of all 
the particles of the revolving active deformable model 
characterize the virtual field of the signature, and it 

makes strong intuitive sense to incorporate in some 
way this information into our feature vector. For each 
particle i (1 5 i N )  we keep the tangent of the angle 
ai formed between the elongation axis and the aver- 
age trajectory of the particle. We define as the average 
trajectory of each particle, the line segment that con- 
nects its initial position with its final position. We call 
these angles, approach angles. Thus, for each proto- 
type signature in the database, the feature vector is a 
point in the 36-dimensional space. For each test case, 
similar feature vectors are constructed in the 6-, 9-, 
12-, 18-, and 36-dimensional space. These feature 
vectors are compared with the 36-dimensional refer- 
ence vectors of the database. For the vectors of the 
test cases that have less than 36 dimensions a simple 
interpolation scheme is used to facilitate comparison. 
The Euclidean distance has been chosen as the dis- 
criminating measure. The winning reference vector at 
each resolution, is the vector that is closest to the test 
case vector, in terms of Euclidean distance. Matching 
occurs with that winning reference vector that stands 
the farthest apart from its contender. If the difference 
is too narrow then the system classifies the case as 
inconclusive. 

The fact that various resolutions come into play 
during the recognition process compensates for the 
variability factor in the signatures of the same indi- 
vidual. For example, the gap usually encountered in 
some signatures between the first and the last name 
may vary at each try. In that case, a coarser resolu- 
tion will alleviate the gap effect and help the matcher 
lock in the correct reference signature. This will be 
expressed as a clear-cut distance in the feature space 
from the immediate contender at the specific resolu- 
tion. 

7 Experimental Results 
The user population of the system is currently forty 

individuals. The system has been trained with one 
sample signature from each individual user. The sys- 
tem has been tested with 120 test signalures, three 
from each user. The test signatures have been col- 
lected at different days and times and no restrictions 
have been applied. The test subjects were graduate 
and undergraduate students and various profession- 
als. Out of 120 test signatures, 85 have been correctly 
recognized which amounts to 70.83% success rate, 16 
test cases have been signaled as inconclusive (13.33%), 
and for the remaining 19 signatures (15.84%) the sys- 
tem gave false recognition. The system failed to rec- 
ognize particular problematic signatures. The results 
are summarized in Table 1. 

775 



Table 1 

85 or 70.83% I 16 or 13.33% I 19 or 15.84% 
Correct I Inconclusive I False 

8 Conclusion 

In this paper we addressed the question of whether 
elastic structures similar to snakes introduced by K w s  
et  al. [9] can be of some d u e  in a first stage clasai- 
fier in the area of signature recognition and verifica- 
tion. 'The most important contribution of this work 
is the introduction of the revolving active deformable 
models ( ~ 8  a powerful meane for capturing the spatial 
properties of a signature's eilhouette. The experiments 
confirmed that signatures are uniquely determined by 
their silhouette in the great majority of cams. Recog- 
nition rates are satisfactory for a first stage classifier, 
and the system responds reasonably fast. Speed, how- 
ever, will increaee dramatically once we exploit the 
paralleiization potential of the model. 

Future reaearch efforts will focus on diminishing the 
false recognition rate. This is the moet important hur- 
dle before we move on to the verification part of our 
perspective system, since the verification process for 
these false recognized cases will be meaningless. We 
need to transfer as much as possible out of the false 
percentage to the inconclusive percentage. Then, the 
perspective internal structure module will be able to 
resolve the ambiguity. In case that the false percent- 
age is not zeroed, the first best two or three matches 
might need to be considered in the subsequent stages. 
In the current system, the correct match is always 
among the top three best matches. 
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