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Summary. Recent research has demonstrated distinct advantages of using thermal
infrared imaging for improving face recognition performance. While conventional
video cameras sense reflected light, thermal infrared cameras primarily measure
emitted radiation from objects such as faces. Visible and thermal infrared image
data collections of frontal faces have been on-going at NIST for over two years, pro-
ducing the most comprehensive face database known to involve thermal infrared im-
agery. Rigorous experimentation with this database has revealed consistently supe-
rior recognition performance of algorithms when applied to thermal infrared, partic-
ularly under variable illumination conditions. Physical phenomenology responsible
for this observation is analyzed. An end-to-end face recognition system incorporat-
ing simultaneous coregistered thermal infrared and visible has been developed and
tested indoors with good performance.

6.1 Introduction

Accelerated developments in camera technology over the last decade have
given computer vision researchers a whole new diversity of imaging options,
particularly in the infrared spectrum. Conventional video cameras use pho-
tosensitive silicon that is typically able to measure energy at electromagnetic
wavelengths from 0.4 µm to just over 1.0 µm. Multiple technologies are cur-
rently available, with dwindling cost and increasing performance, which are
capable of image measurement in different regions of the infrared spectrum,
as shown in Figure 6.1. Figure 6.2 shows the different appearances of a human
face in the visible, shortwave infrared (SWIR) midwave infrared (MWIR), and
longwave infrared (LWIR) spectra. Although in the infrared, the near-infrared
(NIR) and SWIR spectra are still reflective and differences in appearance be-
tween the visible, NIR and SWIR are due to reflective material properties.
Both NIR and SWIR have been found to have advantages over imaging in the
visible for face detection [1] and detecting disguise [2].
? This research was supported by the DARPA Human Identification at a Distance

(HID) program under contract #DARPA/AFOSR F49620-01-C-0008.
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Figure 6.1. Nomenclature for various parts of the electromagnetic spectrum.

(a) (b) (c) (d)

Figure 6.2. A face simultaneously imaged in the (a) visible spectrum, 0.4–0.7
µm, (b) shortwave infrared, 0.9–1.7 µm, (c) midwave infrared, 3.0–5.0 µm, and (d)
longwave infrared, 8.0-14.0 µm.

At wavelengths of 3 µm and longer imaged radiation from objects becomes
significantly emissive due to temperature, and is hence generally termed the
thermal infrared. The thermal infrared spectrum is divided into two primary
spectra, the MWIR and LWIR. Between these spectra lies a strong atmo-
spheric absorption band between approximately 5 and 8 µm wavelength, where
imaging becomes extremely difficult due to nearly complete opaqueness of air.
The range beyond 14 µm is termed the very longwave infrared (VLWIR) and
although in recent years it has recieved increased attention, it remains beyond
the scope of this chapter. The amount of emitted radiation depends on both
the temperature and the emissivity of the material. Emissivity in the ther-
mal infrared is conversely analogous to the notion of reflective albedo used
in the computer vision literature [3, 4]. For instance, a Lambertian reflector
can appear white or grey depending on its efficiency for reflecting light en-
ergy. The more efficient it is in reflecting energy (more reflectance albedo) the
less efficient it is in thermally emitting energy respective to its temperature
(less emissitivity). Objects with perfect emissivity of 1.0 are completely black.
Many materials that are poor absorbers transmit most light energy while re-
flecting only a small portion. This applies to a variety of different types of
glass and plastics in the visible spectrum.

As detailed in the following section, the spectral distribution of energy
emitted by an object is simply the product of the Planck distribution for
a given temperature, with the emissivity of the object as function of wave-
length [5]. In the vicinity of human body temperature (37◦ C), the Planck
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distribution has a maximum in the LWIR around 9 µm, and is approximately
one-sixth of this maximum in the MWIR. As we will show through empirical
measurement, the emissivity of human skin in the MWIR is at least 0.91, and
at least 0.97 in the LWIR. Therefore, face recognition in the thermal infrared
favors the LWIR, since LWIR emission is much higher than that in the MWIR.
Thermal infrared imaging for face recognition first used MWIR platinum sili-
cide detectors in the early 1990s [6]. At that time, cooled LWIR technology
was very expensive. By the late 1990s, uncooled microbolometer imaging tech-
nology in the LWIR became more accessible and affordable, enabling wider
experimental applications in this regime. At that time, cooled MWIR technol-
ogy was about ten times more sensitive than uncooled microbolometer LWIR
technology, and even though faces are more emissive in the LWIR, in the
late 1990s MWIR could still discern more image detail of the human face. At
present, uncooled microbolometer LWIR technology coming off the assembly
lines is rapidly approaching one-half of the sensitivity of cooled MWIR. For
face recognition in the thermal infrared, this is a turning point as for the first
time the most appropriate thermal infrared imaging technology (i.e. LWIR)
for studying human faces is also the most affordable.

For over two years, data collections of both visible and thermal infrared
imagery of faces have been taken and continue to take place at regular intervals
of 6 months at the National Institute of Science and Technology (NIST). This
effort is supported by the DARPA HID program [7]. Section 6.2 describes the
comprehensive database resulting from these collections, consisting of over
100,000 images of over 300 individuals so far. This database has provided
the empirical foundation with which to rigorously compare the performance
of various face recognition algorithms between visible and thermal infrared
imagery. Some of these results are summarized in Section 6.6. Also described
in Section 6.6 is a recently completed full-working prototype of the equinox
access control environment (ACE) face recognition system, which uses fused
coregistered visible and LWIR imagery from a novel sensor system.

The main advantage of thermal infrared imaging for boosting face recog-
nition performance is its apparent invariance to changing illumination. Sec-
tion 6.4 attempts to characterize how well thermal infrared images of the
human face are invariant to illumination changes. Section 6.5 delves deeper
into explaining the physical phenomenology responsible for this invariance by
computing the emissivity of human skin in the MWIR and the LWIR. This
culminates in a preliminary thermal model for human skin. Finally, Section
6.7 briefly overviews some of the remaining challenges that thermal infrared
imaging does not immediately remedy for face recognition.
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6.2 The Equinox Visible/Infrared Face Database

Figure 6.3 shows the experimental set-up for imagery being collected on a
regular basis at NIST, simultaneosuly in the visible, SWIR, MWIR, and LWIR
spectra. The objectives for these ongoing data collections are as follows:

1. To be able to directly and rigorously compare the performance of face
recognition algorithms between visible imagery and imagery in the various
modalities of the infrared spectrum.

2. To produce face imagery simultaneously in these modalities under variable
illumination conditions.

3. To produce face imagery with significant intrapersonal variation for each
imaging condition and modality.

Towards the first objective a configuration of four different sensors of re-
spective modalities and interface software has been set-up for simultaneous
acquisition of visible, SWIR, MWIR, and LWIR imagery. All infrared cameras
are of the Indigo Merlin Series with 320∗240 resolution. The visible camera is
a Pulnix 6710 with 640∗480 resolution. A special optical design insures precise
pixel coregistration of visible and LWIR imaging modalities [8, 9]. Although
the SWIR and MWIR imaging modalities are boresighted2, impairing precise
coregistration at close distances, the physical separation between these cam-
eras has been minimized beyond what is shown in Figure 6.3 so that views are
nearly identical. Optically coregistered sensors in the NIR were in use [2, 1] for
face detection. The complexity of coregistering visible and LWIR wavelengths,
however, is much greater due to the larger disparity between them.

Towards the second and third objectives, collection of image data was re-
peated for three different illumination conditions: (i) Frontal, (ii) frontal-Left,
(iii) frontal-Right, with lamps shown in Figure 6.3 using standard 3200 K color
temperature photographic bulbs. Figure 6.4 shows the emission curve for these
bulbs in the wavelengths of interest. Forty image frame sequences of visible,
SWIR, MWIR, and LWIR were digitized simultaneously at 10 frames/second
(i.e., 4-seconds duration), while a human subject was reciting the vowels “a,”
“e,” “i,” “o,” “u.” This creates a continuous image sequence with changes in
expression throughout providing significant intrapersonal variation over the
course of multiple frames. At the same time there is little facial movement
between consecutive image frames 1/10 second apart, allowing for analysis of
image variations due to temporal sensor noise. Figure 6.2 is an example of one
such multimodal frame within this 40-frame sequence. After the acquisition
of each 40-frame contiguous image sequence, for each illumination three more
static images are taken of individuals told to make extreme expressions of
“smile,” “frown,” and “surprise.”
2 The term boresighted typically refers to cameras that have been placed alongside

each other and aimed in the same direction. Due to the separation between the
cameras, it is impossible to obtain the same view of a 3D object from both sensors.
This is often exploited in stereo vision to compute depth maps.
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Figure 6.3. Camera and illumination equipment set-up used for simultaneous data
collection of visible, SWIR, MWIR, and LWIR imagery.

Prior to data collection, the radiometric calibration procedure described
in Section 6.3 was performed for the Indigo Merlin series MWIR and LWIR
cameras using a Model 350 Mikron blackbody source. Software was developed
to convert raw MWIR and LWIR image grayscale values directly into respec-
tive thermal emission values from ground-truth blackbody images. Raw image
gray values for the MWIR and LWIR cameras are 12-bit integers from which
floating point thermal emission values were computed and then rounded back
to 12-bit values with appropriate dynamic range.

At present, the Equinox visible/infrared database consists of over 300 in-
dividuals imaged over five separate data collections at NIST. At least 60 in-
dividuals have participated in two or more of these data collections so that
intrapersonal variations over 6 months or more can be analyzed. To sum-
marize, for each individual a 40-frame sequence plus three static images were
taken for three different illuminations and four spectral image modalities. Not
including duplicate individuals, at least 340 individuals ∗ 43 images/modality
∗ 3 illuminations/individual ∗ 4 modalities = 175,440 images are contained in
the Equinox database. Almost all of this database was collected indoors, with
outdoor imagery beginning to be collected during the last data collection at
NIST in April 2002. A portion of this database is available on the Internet at
http://www.equinoxsensors.com/hid.
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(a) (b)

Figure 6.4. (a) Blackbody Planck curves comparing thermal IR emission from
common natural and artificial illumination sources to thermal IR emission from
human skin. (b) Comparison of an ideal blackbody Planck curve with a nonideal
emitter at the same temperature.

6.3 Calibration Of Thermal IR Sensors

All objects above absolute zero temperature emit electromagnetic radiation.
In the early 1900s Planck was the first to characterize the spectral distribution
of this radiation for a blackbody, which is an object that completely absorbs
electromagnetic radiation at all wavelengths [5]. According to Planck’s law,
the spectral distribution of emission from a blackbody at temperature T , is
given by

W (λ, T ) =
2πhc2

λ5(e
hc

λkT − 1.0)
[Watts/cm2]µm−1, (6.1)

Q(λ, T ) =
2πc

λ4(e
hc

λkT − 1.0)
[Photons/cm2 − sec]µm−1, (6.2)

expressed in two different units of energy flux which are commonly used. In
the above formulas, h is Planck’s constant, k is Boltzmann’s constant, c is
the speed of light, and λ is wavelength. Figure 6.4(a) shows a comparison of
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blackbody spectral distributions corresponding to the various temperatures
for the Sun, artificial lightbulb illumination at 3200 K color temperature [10],
human skin, and average temperature for the atmosphere.

In reality, only very few objects are near perfect energy absorbers, partic-
ularly at all wavelengths. The proportional amount of energy emission with
respect to a perfect absorber is called the emissivity ε(T, λ, ψ), which takes
values in the range [0, 1]. In addition to temperature T and wavelength λ,
this can also be a function of emission angle ψ. Kirchoff’s law states that
the emissivity at a point on an object is equal to the absorption α(T, λ, ψ),
namely:

ε(T, λ, ψ) = α(T, λ, ψ) .

This is a fundamental law that effectively asserts the conservation of energy.
Blackbody objects are therefore the most efficient radiators, and for a given
temperature T emit the most energy possible at any given wavelength. Ex-
pressed in the same units as equations ( 6.1) and ( 6.2) above, the spectral
distribution of emission from an object with emissivity ε(T, λ, ψ), is given by:

ε(T, λ, ψ)×W (λ, T ), ε(T, λ, ψ)×Q(λ, T ) .

For illustrative purposes, Figure 6.4(b) compares the spectral distribution of
the emission of an ideal blackbody at 500 K (227◦C) with that of a nonideal
emitter (e.g., could be a piece of bare metal) also at the same temperature. In
this case the nonideal emitter has low emissivity at wavelengths in the MWIR
spectral region (3-5 µm) and generally high emissivity in the LWIR spectral
region (8-14 µm).

Under most practical conditions, 2D imaging array thermal IR sensors
(i.e., what are termed staring arrays) measure simultaneously over broadband
wavelength spectra, as opposed to making measurements at narrow, almost
monochromatic, wavelengths (e.g., an IR spectrophotometer which measures
only one point in a scene). With a staring array sensor it is possible to measure
average emissivity over a broadband spectrum (e.g., 3-5 µm, 8-14 µm), which
in Figure 6.4(b) is simply the ratio of the area under the nonideal curve to
the area under the Planck curve over the respective wavelength spectrum.

Some of these principles can be observed in Figure 6.5 (in Section 6.4).
Plastic materials transparent in the visible spectrum that compose glasses are
opaque in the LWIR and appear dark. Emissivity of this material is small
in the visible spectrum while being significantly above 0.80 in the MWIR
and LWIR spectral regions. The dark appearance of glasses in the LWIR and
the MWIR relative to thermal emission from human facial skin is mostly
due to the glasses being close to room temperature, about 15◦C cooler than
body temperature. We performed simple experiments whereby these same
pair of glasses were heated close to body temperature. Sure enough, the glasses
appeared thermally much brighter, but did not show as much thermal emission
as facial skin at the same temperature. Also, from Figure 6.5 the influence
of reflection of external illumination from glasses is far more prominent than



174 Lawrence B. Wolff et al.

that from facial skin. All of this initially suggests that facial skin has very high
emissivity, significantly higher than that of the material comprising glasses.
A quantitative estimate of the average emissivity of facial skin in the MWIR
and LWIR is developed in Section 6.5, supporting this assertion.

Just like visible video cameras, thermal IR cameras measure energy of
electromagnetic radiation, the main difference being that because thermal
IR cameras sense at such long wavelengths, they measure radiation that has
been typically thermally emitted. Of course, visible cameras see radiation
emitted from very hot sources (e.g., the sun or artificial lightbulbs which are
thousands of degrees Kelvin) but the primary scene elements of interest in
the visible are objects from which such light is reflected. Sometimes there
is the misconception that thermal IR cameras directly measure temperature,
which would be true if all objects were blackbodies. Temperature can be
determined indirectly from a thermal IR camera by measurement of energy of
emitted radiation, using precise knowledge of emissitivity of the object, which
is dependent upon a number of parameters.

Figure 6.5. A qualitative demonstration of the illumination invariance for LWIR
imagery of a face under different illuminations. Top row: Visible imagery of a face
under three illumination conditions respectively front, left, and right. Bottom row:
Co-registered thermal IR imagery simultaneously acquired for each of the three
images in top row respectively.

Thermal IR cameras can be radiometrically calibrated using a blackbody
ground-truth source. Radiometric calibration achieves a direct relationship
between the gray value response at a pixel and the absolute amount of ther-
mal emission from the corresponding scene element. This relationship is called
responsivity. Depending on the type of thermal IR camera being used, ther-
mal emission flux is measured in terms of watts/cm2 or photons/(cm2 −
second) [11]. The gray value response of pixels for a MWIR camera with an in-
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dium antimonide (InSb) focal plane array is linear with respect to photons/(cm2−
second). The gray value response of pixels for an LWIR camera using a mi-
crobolometer focal plane array is linear with respect to watts/cm2. Two-point
radiometric calibration uses a blackbody plate filling the field of view of the
thermal IR camera and capturing images for the blackbody at two different
temperatures. Given that human body temperature is 37◦C, two good tem-
peratures to use for calibrating the imaging of humans in a room temperature
scene would be 20◦C and 40◦C (293 K and 313 K), as these are relatively
evenly spread about the temperature of skin. A relatively large difference be-
tween the calibration temperatures will insure numerical stability of the linear
regression, while a choice of temperatures nearby the temperature of interest
minimizes possible effects from a secondary nonlinear response of the focal
plane array.

Since absolute thermal emission is known by computing the area under the
Planck curve for the corresponding temperature and wavelength spectrum, a
responsivity line is generated at each pixel by two (greyvalue, thermal emis-
sion) coordinate values. The slope of this responsivity line is called the “gain”
and the vertical translation of the line is “offset.” The gain and offset for each
pixel on a thermal IR focal plane array can be significantly variable across the
array. Radiometric calibration standardizes thermal emission measurement by
generating a responsivity line for each pixel.

Figure 6.6 shows responsivity lines respective to different integration times,
for a single pixel near the center of a MWIR InSb focal plane array that was
used to collect face imagery. Eight different temperatures of a blackbody were
used to generate multiple data points demonstrating the highly linear re-
sponse. It is clearly important to record all thermal IR camera parameters
for a given radiometric calibration. Note that the responsivity lines for dif-
ferent integration times intersect at the same point, related to various DC
bias control settings on the camera. Beyond camera parameters, if an MWIR
or LWIR camera is originally radiometrically calibrated in an indoors envi-
ronment, taking it outdoors where there is a significant ambient temperature
difference, the gain and offset of linear responsivity of focal plane array pixels
will change as the optical lens temperature in front of the focal plane array
changes. Radiometric calibration standardizes all thermal IR data collections,
whether they are taken under different environmental factors or with different
thermal IR cameras or at different times.

6.4 Measuring Illumination Invariance

Variation in illumination is one of the biggest factors that confounds face
recognition algorithms in the visible spectrum [12, 13]. It has been recognized
in the past [2, 14, 6, 15] that changes in illumination appear to play less of a
role in the thermal infrared, but how does one quantify this invariance in terms
that are meaningful to face recognition? One way is to quantitatively compare
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the effect that variation in illumination has on face images in the thermal
infrared with other factors that contribute to changes in face imagery, such as
variations in facial expression and more subtle variations due to camera noise.

Illumination invariance of the human face in the termal infrared can be
qualitatively observed in Figure 6.5 for a coregistered LWIR and visible video
camera sequence of a face under three different illumination conditions. For
this sequence a single 60-W light bulb mounted in a desk lamp illuminates
a face in an otherwise completely dark room and is moved into different po-
sitions. The top row of visible video imagery shows dramatic changes in the
appearance of the face. The bottom row shows LWIR imagery which, unlike
its coregistered visible counterpart, appears to be remarkably invariant across
different illuminations, except in the image area corresponding to the glasses.
As we will see, illumination invariance in the thermal infrared, while not being
completely ideal, is nonetheless strongly approximate.

Figure 6.6. Responsivity curves for different integration times for the Indigo Merlin
Series MWIR camera used for collecting face images.

Figure 6.7 shows simultaneously acquired MWIR and LWIR images of a
subject from the Equinox database, together with corresponding gray value
histograms of an individual under the three illumination conditions previously
described. These images are the third image frame out of each respective 40-
image frame sequence. Gray values in the histograms are represented as 16-bit
integers with the high 12-bits being the actual image gray value. The gray
level histograms are remarkably stable across different illuminations for both
the MWIR and the LWIR images. Of the variations that are present in the
respective histograms, which are due to change in illumination and which are
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due to other factors? For instance, note the darker mouth region in the MWIR
image for right illumination as compared to the mouth region in the MWIR
images for other illuminations. The darker mouth region is due to the subject
breathing-in room temperature air at the moment, thereby cooling down the
mouth. This has nothing to do with any illumination condition.

The histograms in Figure 6.7 can be compared with those in Figure 6.8,
which shows gray value histograms corresponding to the fourth and twenti-
eth image frame out of the 40-image frame sequence respective to the frontal
illumination condition. In this case, illumination is the same but the fourth
frame being consecutive with the third frame isolates changes due to camera
noise, and the twentieth frame occuring just under two seconds later means
the subject has changed facial expression. The variations in the gray level his-
togram due to camera noise and to different facial expression under the same
illumination are of similar magnitude to variations occurring under different
illumination.

A quantitative analysis of invariance in the framework of hypothesis testing
was also performed. The following analysis is repeated for two different dis-
tance measures between images. Firstly we consider the L2 distance between
normalized images taken as vectors. Secondly, we use the Kullback–Leibler
divergence3 between the histograms of the normalized faces, given by

I(P, Q) =
∫

P log
P

Q
,

where P and Q are the respective normalized histograms.
For each video sequence of 40 + 3 frames4, we compute the 43 · 42/2 =

903 distances between normalized faces for distinct pairs of frames. Also, we
compute the 43 · 43 = 1849 distances between normalized faces for sequences
of the same subject and modality, one sequence with frontal illumination and
the other with lateral illumination. From these computations we estimate
(nonparametrically) the distribution of distances for images with the same
illumination condition and with different illumination conditions. Figures 6.9,
6.10, 6.11, and 6.12 show the estimated distributions for the L2 distance and
KL-divergence for two subjects in our database. With an infinite supply of
images, we would expect the distances to behave according to a χ distribution
with the number of degrees of freedom matching the number of pixels in
the normalized faces, and indeed the experimental estimates approximate χ
distributions.

It is clear from Figures 6.9, 6.10, 6.11, and 6.12 that the distances between
normalized visible faces with different illumination conditions are much larger
3 The Kullback–Leibler divergence does not satisfy the triangle inequality, and thus

is not strictly a distance. However, it provides an information-theoretic measure
of similarity between probability distributions.

4 Recall that 40 consecutive video frames were collected while subjects recited the
vowels, and then three additional static frames were acquired while the subjects
were asked to act out the expressions “smile,” “frown,” and “surprise.”
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MWIR LWIR
FRONTAL ILLUMINATION

MWIR LWIR
RIGHT ILLUMINATION

MWIR LWIR
LEFT ILLUMINATION

Figure 6.7. MWIR and LWIR imagery of a face for three illumination conditions
and respective histograms of the third frame out of a sequence of 40 images.

than those for visible faces with the same illumination condition. This indi-
cates that the variation in appearance due to change in illumination is much
larger than that due to change in facial expression. The corresponding state-
ment for LWIR imagery does not hold. That is, looking once again at Figures
6.9, 6.10, 6.11, and 6.12, one can see that the distribution of distances between
normalized faces with different illumination conditions is comparable (but not
equal; see below) to the distribution obtained by using images acquired with
the same illumination condition. In other words, the variation in appearance
introduced by changes in illumination and expression is comparable to that
induced by changes in facial expression alone. Phrasing these statements as
formal hypothesis, we can reject the null-hypothesis of illumination invari-
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MWIR LWIR
FOURTH FRAME

MWIR LWIR
TWENTIETH FRAME

Figure 6.8. MWIR and LWIR imagery of the same face as Figure 6.7 respective
to frontal illumination for the fourth frame (top row) and twentieth frame (bottom
row) out of a sequence of 40 images.
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Figure 6.9. Distribution of L2 distances for visible (left) and LWIR (right) images
of subject 2344.
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Figure 6.10. Distribution of Kullback–Leibler divergences for visible (left) and
LWIR (right) images of subject 2344.
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Figure 6.11. Distribution of L2 distances for visible (left) and LWIR (right) images
of subject 2413.
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Figure 6.12. Distribution of Kullback–Leibler divergences for visible (left) and
LWIR (right) images of subject 2413.
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ance for visible imagery with a p-value smaller than 0.015, whereas we are
unable to reject the null-hypothesis for LWIR imagery with any significant
confidence. The slight shift in the distributions to the right for variable illu-
mination suggests that illumination invariance in the LWIR is not completely
ideal.

6.5 Emissivity Of Human Facial Skin

Figure 6.4(a) shows that the amount of thermal emission from a common light-
bulb is three to four orders of magnitude greater than the thermal emission
from skin in both the 3–5 µm MWIR region and the 8–14 µm LWIR region.
Empirical observation with our own MWIR and LWIR cameras showed that
direct illumination from an incandescant filament through lightbulb glass and
plastic diffuser is at least 300 times greater than thermal emission from human
facial skin. This is a rather striking fact given that thermal IR imagery of faces
is highly illumination invariant. Human skin must absorb a large quantity of
radiation in both the MWIR and the LWIR implying that skin has very high
emissivity.

Figure 6.13 shows a human subject in the same scene with a 6in ∗ 6in
square blackbody (Mikron Model 345) imaged in the MWIR and LWIR spec-
tra. Separate images are taken for the blackbody at two different tempera-
tures: 32◦C and 35◦ C. The corresponding histograms show gray value modes
for the facial skin image region and for the blackbody image region. Prior
to imaging, an Anritsu thermocouple was used to make contact tempera-
ture measurements on the forehead, on both cheeks and on the chin of the
human subject. An average skin surface temperature of 32◦C was observed.
Note, however that the face thermally emits more energy than does a 32◦C
blackbody. Recall that a blackbody is, by definition, a perfect emitter at all
temperatures and wavelengths. Therefore, we have a physical contradiction
unless we can account for the extra radiation. Since the path self-emission
from the atmosphere between the subject and the sensor is negligible com-
pared to the emission from the subject, we conclude that the extra radiation
must be originating below the skin surface (where body temperature is around
37◦C) and shining through the translucent skin layer and onto the sensor. This
may reveal an important aspect of how thermal emission arises from human
anatomy and perhaps even a physical mechanism for why skin has such high
absorption in the thermal IR.

Figure 6.14 illustrates a preliminary high-level model of human skin in
terms of optical and thermal properties. Evidently, skin layers must be sig-
nificantly transmissive to thermal emission from underlying internal anatomy
5 This means that the likelihood of our rejecting the hypothesis of illumination

invariance for visible imagery while at the same time the hypothesis being true
is lower than 1%[16].
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MWIR LWIR

MWIR LWIR

Figure 6.13. Direct comparison of MWIR and LWIR imagery of a face with a
groundtruth blackbody at two different temperatures, 32◦C and 35◦C.

which is at a higher temperature. This is qualitatively evidenced from ther-
mal observation of prominent vasculature beneath the skin particularly in the
neck and forehead. Just how far below the skin surface thermal emission is
transmitted is unclear and is an avenue for future research. If at least the
outer layers of skin are transmissive, then incident thermal IR illumination
must be first transmitted and then absorbed within deeper layers of skin or
other anatomy. This may explain why the amount of thermal emission from
skin seems to be independent of external skin color in the visible spectrum.

���������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������

�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������

�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

SIGNIFICANT TRANSMISSION

37 Deg. C.

32 Deg. C. EPIDERMIS

SUBCUTANEOUS FAT LAYER

MIDDLE LAYER

HIGHER ABSORPTION

LOW INDEX OF REFRACTION AT AIR/SKIN INTERFACE

INTERNAL ANATOMY

Figure 6.14. Preliminary thermal model for human skin.

We now proceed to compute a quantitative estimate of the average emis-
sivity respective to the MWIR and the LWIR for human facial skin from the
data in Figure 6.13. First we compute the mean thermally emitted energy of
facial skin Skinmean

energy. Since the thermal IR imagery used is radiometrically
calibrated, we can compute the mean gray value in the histogram for the
facial lobe and determine the corresponding energy by linearly interpolating
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between the gray value peaks for the blackbody at 32◦C (305 deg. K) and
35◦C (308 K) and respective blackbody energies. For the MWIR this is

Skinmean
energy = BB305K

energy+

[BB308
energy −BB305

energy]
Skinmean

gray −BBgray305Kmax
BBgray308Kmax −BBgray305Kmax

, (6.3)

where

BB308K
energy =

∫ 5

3

Q(λ, 308K)dλ,

BB305K
energy =

∫ 5

3

Q(λ, 305K)dλ .

For the LWIR replace Q(λ, T ) with W (λ, T ) and integration occurs over wave-
lengths from 8 to 14 microns.

We then make a conservative estimate of the lower bound for average
emissivity, ε, by comparing the mean thermally emitted energy of facial skin
to a blackbody at internal body temperature 37◦C. This yields:

εskin
mwir >

Skinmean
energy∫ 5

3
Q(λ, 310K)dλ

= 0.91,

εskin
lwir >

Skinmean
energy∫ 14

8
W (λ, 310K)dλ

= 0.97.

These lower bounds are conservative as this effectively assumes that thermal
emission is being sensed from a material that has a temperature of 37◦C
throughout. In reality there is a temperature gradient from the skin surface
at 32◦C through skin layers and blood vessels eventually to 37◦C internal
body temperature. The average temperature lies somewhere between 32 and
37◦C. It is clear that skin at least has high emissivity in the MWIR and
extremely high emissivity in the LWIR supporting a physical basis for excellent
illumination invariance.

As the emissivity of skin is so close to 1.0, it is meaningful to quantify what
is the average skin temperature due to the internal temperature gradient below
the skin. This can be defined in terms of a blackbody equivalent temperature
of skin, to be the temperature of a blackbody emitting equivalent energy as
Skinmean

energy. This temperature, SkinBBT , can be computed by numerically
solving the following integral equations:

∫ 5

3

Q(λ,SkinBBT
MWIR)dλ = Skinmean

MWIR energy,

∫ 14

8

W (λ,SkinBBT
LWIR)dλ = Skinmean

LWIR energy .
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From the data presented in Figure 6.13 we compute:

SkinBBT
MWIR = 34.3◦C, SkinBBT

LWIR = 34.7◦C.

(a) (b) (c)

Figure 6.15. Face imaged in the LWIR (a) low activity, (b) after jogging, (c) after
being outdoors at 0◦C ambient temperature.

Modeling thermal emission from human faces is a good first step toward
improving infrared face recognition performance. Much as understanding re-
flective phenomenology in the visible spectrum has led to development of
algorithms that take explicit account of illumination variation [17, 18, 19],
the same is true for understanding of underlying emissive phenomenology in
the thermal context.

6.6 Comparison Of Face Recognition Performance In
The Visible And Thermal Infrared

Over the course of the last two years, successively more comprehensive per-
formance testing of existing appearance-based face recognition algorithms has
occurred on the Equinox visible/infrared database [8, 9, 20]. The algorithms
tested include principal component analysis (PCA) also known in the face
recognition community as eigenfaces [12], local feature analysis (LFA) [21],
linear discriminant analysis (LDA) — also known in the face recognition com-
munity as Fisherfaces [22] — and independent component analysis (ICA) [23].
Although we have available to us imagery from the visible spectrum and three
different infrared spectra, we selected for direct comparison the visible and
LWIR spectra since they are the most complementary respective to reflec-
tive versus emissive phenomenology. Also of key importance has turned out
to be experimentation with precisely coregistered fusion of visible and LWIR
imagery.

Prior to the mid-1990s, Wilder et al. [15] had directly compared perfor-
mance on a smaller dataset of visible and thermal infrared imagery. In this case
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the thermal infrared was MWIR imagery taken with a platinum silicide sen-
sor. Their study concluded that both modalities yielded approximately equal
performance. No image fusion of visible and MWIR was tested, although it
was suggested in conclusion that such fusion might be beneficial.

Only the most basic features of testing conducted in [8, 9, 20] will be re-
viewed presently, and these references should be consulted for further details.
Prior to testing, each face image is preprocessed using standard geometric im-
age normalization techniques by manually locating eye features and frenulum.
These images are then subsampled and subsequently cropped to remove all
but the inner face. Figure 6.16 shows examples of normalized visible and LWIR
image pairs from the Equinox database. As discussed in [24] face recognition
performance is analyzed using pairs of sets called gallery gallery and probe face
image sets6. The gallery is an exemplar image set of known individuals, and
the probe is an image set of unknown individuals that need to be classified.
For testing correct identification performance of a face recognition algorithm,
consecutive gallery images can be rank-ordered with respect to how well they
match an unknown probe image with the closest gallery image match being
the highest rank and consecutive lower rankings corresponding to consecu-
tively worse matches with respect to a given metric. One way of quantifying
correct identification by a given algorithm is by the percentage of probe images
that correctly correspond to the matched individual who is highest ranked in
the gallery. Table 6.1 shows a brief summary of performances for different
algorithms on visible, LWIR, and fused imagery. This test set is particularly
challenging for two reasons. First, the gallery and probe images were taken at
different times, ranging from six months to two years apart. Secondly, while all
the gallery images were acquired indoors, a portion of the probe images were
acquired outdoors. We see that a PCA-based algorithm has very low perfor-
mance on both visible and LWIR. Interestingly, in this case fused performance
is actually lower than LWIR performance. This occurs only when recognition
performance in one or both modalities is severely impaired, as is the case
here. Performance for an LDA-based algorithm is much better, and exhibits
improvement when visible and LWIR results are fused. Best performance on
this set is obtained with Equinox’s proprietary fused algorithm, which reduces
the residual error by about 23% over the fused LDA-based result.

Figure 6.17 depicts distributions which compare the performance of an
LDA-based algorithm with respect to a Monte Carlo simulation of 30,000
gallery-probe image set pairs for visible, LWIR and fused visible/LWIR modal-
ities. Figure 6.17(a) shows the distribution of top-match recognition perfor-
mance for an LDA-based algorithm when applied to visible, LWIR and fused
imagery. It is easy to see that mean recognition rates are considerably higher
for LWIR imagery than for visible imagery, and that when both modalities
are fused, recognition performance climbs even higher. Not only is the mean
6 A third set, the training set, is used to determine algorithm parameters, and is

disjoint from gallery and probe sets.
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Figure 6.16. Example of visible (top) and LWIR (bottom) normalized face images.

Table 6.1. Top match recognition performance summary for different algorithms
on visible, LWIR and fused imagery. Probe images are six months to two years older
than corresponding gallery images. All gallery images are taken indoors, while some
probes are taken outdoors.

PCA Angle LDA Angle Equinox

Visible 19.355 55.323

LWIR 30.968 61.452

Fused 23.548 74.451 80.323

correct identification highest for fused visible/LWIR but note the smaller stan-
dard deviation, indicating more stability over variations in gallery and probe
sets. In Figure 6.17(b), we see paired performance differences for the same
set of experiments. In this case for each random experiment, the performance
difference between LWIR and visible and fused and visible becomes one data
point. The distribution of these differences, shown in the figure, indicates that
LWIR affords an average performance gain of 6 percentage points over visible
imagery, while fusion of visible and LWIR increases that gain to 9 percentage
points. Note that this constitutes a reduction of the residual error by 75%
when using fused imagery versus visible imagery alone.

Figure 6.18 shows a set of receiver operating characteristic (ROC) curves
for an LDA-based facial verification algorithm applied to visible, LWIR and
fused visible/LWIR imagery. These curves are obtained by averaging the re-
sults from thousands of experiments generated by randomly selecting different
nonoverlapping gallery and probe sets. Recall that an ROC curve shows the
trade-off between correct verification versus false acceptance, as the security
setting of the system is varied from low to high. The equal-error-rate (EER)
is the point on the curve at which false acceptance equals correct verification,
and is often used as a scalar summary of the entire ROC curve, with lower
values indicating higher performance. In this case, we see that the use of fused
visible/LWIR imagery cuts the EER by more than 50% versus visible imagery
alone.

An end-to-end face recognition system based upon coregistered visible and
LWIR imagery has been developed. The bottom row of images in Figure 6.5
illustrates a visualization of fused visible/LWIR imagery. This system, called
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Figure 6.17. Performance comparisons of linear discriminant analysis (LDA) for
visible, LWIR and fused visible/LWIR modalities. (a) Performance distributions,
(b) paired performances. Taken from [20].
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Figure 6.18. Receiver operator characteristic (ROC) curve comparing the same
LDA-based algorithm for visible, LWIR, and fused visible/LWIR modalities. Taken
from [20].

the Equinox access control environment (ACE), is capable of enrolling in-
dividuals into a database, and then for unknown individuals automatically
detecting their faces in an image and recognizing whether they belong to the
database. Face detection is another involved technical aspect separate from
the recognition stage, and is beyond the scope of this article [25]. A recent
demonstration of the Equinox ACE system over three days in July 2002 en-
rolled 105 individuals into this system at a trade show. Approximately two-
thirds of these individuals returned to be recognized of which well over 90%
were correctly identified as a top ranked match in the database. This included
subjects that purposely attempted to fool the system by partially obstructing
the view of their face, or attempting to mask their thermal appearance by
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applying ice cubes to their face. Plate I shows one of the interfaces for this
system explained in the caption. Note that while the system exploits fused
visible and thermal imagery, the interface may be used in visible-only mode
for ease of interpretation by the operator.

6.7 Conclusions, Challenges Ahead, and On-Going Work

This article provides a broad overview of research that has been proceeding at
Equinox Corporation for the past two years on using thermal infrared imagery
for enhancing face recognition. The following key aspects were described:

• Collection of a comprehensive database of thermal infrared imagery of
human faces incorporating radiometric calibration, multiple illumination
conditions, and imagery of duplicated individuals over time.

• Extensive experimental testing of the performance of appearance-based
face recognition algorithms, directly comparing performance on visible,
LWIR, and fused visible/LWIR modalities.

• Quantification of illumination invariance and examination of physical phe-
nomenology responsible for illumination invariance of human faces in ther-
mal infrared imagery.

• Development of a working end-to-end face recognition system using a novel
sensor configuration that precisely coregisters visible and LWIR image
modalities.

Statistically significant evidence was presented indicating that appearance-
based face recognition algorithms applied to thermal infrared, particularly
LWIR imaging, have consistently better performance than when applied to
visible imagery. Application of these algorithms to fused visible/LWIR con-
sistently showed even better improvement in performance.

To date, the largest issue not yet addressed by face recognition using ther-
mal infrared is performance analysis under different extreme activity levels and
extreme ambient temperature. It should be carefully noted that examples of
extreme varying activity levels, which pose a potentially serious disadvantage
to recognition using thermal infrared, have not yet been incorporated into
the Equinox visible/infrared database. By virtue of the fact that the Equinox
database is comprised of imagery taken at intervals of six months for over
two years means that some range of normal activity level must be inherently
incorporated for duplicate individuals. So far, this does not appear to have an
adverse effect on recognition performance. More precisely, performance degra-
dation over time is similar for visible and thermal imagery, with a possible
advantage toward the thermal modality. However, it is important to note that
data collections under different deliberate changes in activity level do need
to be performed. Figure 6.15 shows the large difference in thermal infrared
signatures for the same face at rest, after jogging and after coming in from
outdoors at winter time. Additionally, the effect of other confusers such as
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heavy makeup application must be evaluated. Existing data is not sufficient
to perform a valid evaluation, but we intend to collect data specifically for
this task. Evidence from small-scale experiments performed in-house indicates
that recognition performance using fused visible/LWIR imagery remains high
in the presence of differences in facial hair or glasses between gallery and
probe images. These variations in appearance do not noticeably hinder our
system’s ability to recognize faces. We should, however, point out that these
results may not be statistically significant, due to the small sample size. We
do expect to see some performance degradation in a large-scale experiment.
It has already been noted that thermal infrared imagery has the potential for
being used to identify an individual’s activity state and even state of inebri-
ation [14, 26]. Unfortunately, this benefit may counterbalance to some degree
the performance accuracy of unique face recognition capability. On-going work
is incorporating more thermal infrared face imagery in outdoor environments,
and will also shortly include varying activity and ambient temperature con-
ditions as well.
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