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ABSTRACT

A novel curve segmentation algorithm for deter-
mining control points for deformable-model-based tar-
get tracking is proposed. The algorithm is parameter-
less enabling a full-fledged automated tracking regard-
less of the shape of the object being tracked. Compared
with other curve segmentation algorithms, it selects a
minimal number of control points that yet deliver a
superior shape description. The algorithm is com-
paratively tested with other curve segmentation algo-
rithms in a variety of characteristic target outlines.

1 INTRODUCTION

The need for target tracking arises in a number of
different applications in robotics research. Character-
istic examples include vision-based control of grasp-
ing and manipulation tasks [7] and visual tracking
of moving objects [2]. Target tracking is also impor-
tant in a number of other applications, like the case
of pedestrian tracking in an Intelligent Transporta-
tion System (ITS) [6]. A well-established and popu-
lar technique for target tracking involves the use of
deformable models [2, 6, 7]. Deformable models origi-
nate from the “snake,” a model for representing image
contours first developed by Kass et al. [3].

A necessary first step in the computation of a de-
formable model is to determine a set of control points
to approximate the tracked object’s contour. To date,
this is done by hand through a user-interface. How-
ever, the possibility of using a curve segmentation
algorithm is often indicated. Picking control points
manually, renders difficult the automation of the en-
tire tracking task. In addition, since the user is pick-
ing the points randomly or at best using some heuris-
tic developed through his/her own experience, he/she
tends to pick either too many or too few control
points. On the other hand, using some classical curve
segmentation algorithm [1, 4, 5] only half-automates
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the task since the performance of these algorithms
depends upon the fine tuning of a number of param-
eters. Different object shapes may require different
parameter settings or otherwise the segmentation al-
gorithm will perform at times either excessive seg-
mentation or sparse segmentation.

In this paper we propose a segmentation algorithm
(from now on, we will denote it as P & P) that fills
out the existing gap in all the respects. It fully auto-
mates the selection of the control points since it does
not depend on any parameters and works equally well
for most kinds of shapes. Comparatively to other
curve segmentation algorithms, it manages to select
the minimal number of points that yet deliver a su-
perior description of the original shape.

The organization of the paper is as follows: Sec-
tion presents some previous curve segmentation algo-
rithms and discusses their shortcomings for the task
at hand. Section describes the algorithm we pro-
pose. In Section 3.2, the results from experimental
tests are presented. Finally, in Section 3.2, the paper
is summarized and conclusions are drawn.

2 PREVIOUS WORK

Several interesting techniques that segment contin-
uous lines in various ways have already been proposed
in the literature in fields other than target tracking.
The criteria against which the various curve segmen-
tation algorithms should be judged for deformable-
model-based tracking purposes are the following;:

e First, the number of segmentation (control)
points should be kept to the minimum, since the
speed of deformable-model-based tracking is usu-
ally linear in the number of control points.

e Second, the control points chosen should deliver
an accurate description of the tracked object’s
contour. This is important because it allows the



deformable model to follow small deformations.

The above two criteria appear at first contradic-
tory and researchers resorted to either choosing too
many control points, thus compromising the track-
ing speed, or too few control points, thus compro-
mising the quality of tracking. Interestingly, these
two criteria are not quite met without careful or ad
hoc parameter tuning by many prominent curve seg-
mentation algorithms. Two typical curve segmenta-
tion approaches are briefly presented in the following
paragraphs for illustrative and comparative purposes.

A series of curve segmentation algorithms of the
“split and merge” kind have been proposed by T.
Pavlidis et al. [4, 5]. These algorithms iteratively
construct a polygonal approximation of the curve.
The apexes of the polygonal approximation are the
resultant segmentation points. A “split and merge”
algorithm (from now on we may denote it as P al-
gorithm) uses as a parameter an error factor. The
number of iterations and the approximating power of
a P algorithm depend upon the fine tuning of its pa-
rameter. These algorithms perform well when they
are to reconstruct polygonally simple shapes. When,
however, they are to reconstruct shapes by spline in-
terpolation with any reasonable accuracy, they result
into too many segmentation points.

Brault and Plamondon [1] presented another seg-
mentation algorithm (from now on, we will denote it
as B & P) that was meant to segment complex sig-
nature curves. The main idea of their approach is
that each point ¢ of the curve is considered as a po-
tential segmentation point (vertex). The neighboring
points of point i contribute to its vertex candidacy
provided they meet certain geometric conditions. The
strongest candidates become the resultant segmenta-
tion points. Comparatively to a “split and merge”
algorithm, the B & P algorithm performs substan-
tially better in reconstructing shapes - particularly
complex shapes - by spline interpolation. This algo-
rithm, however, depends on two parameters that need
to be fine tuned. In addition, while the algorithm em-
ploys a very powerful technique for detecting corners,
it does not have an equally powerful way of detecting
key points in round or flat curves.

3 THE ALGORITHM

The algorithm we propose (P & P) takes a step
further than the B & P algorithm. It does not de-
pend on any parameters and thus offers a potential
for true automation. It features a coherent mech-
anism for detecting not only corners but also some
key points between corners. In this way, it improves
its spline approximating power at the minimum cost.

And because of its ability to locate some key points
with relatively flat or round surroundings, it also per-
forms satisfactorily in the case of rounded and flat
objects.
3.1 Corner Determination

The determination of corners is done in a way very
similar to the method followed in the B & P algorithm
[1]. The notable difference is that there is no need for
parameter tuning. The basic mechanism is the same
with that of the B & P algorithm. Each point ¢ of
the curve is seen as a potential corner. The neighbor-
ing points from either side of point ¢ contribute to
the cornerness of ¢ in a degree determined by certain
conditions.

center of pair (cti) ®(c-i)

Figure 1: Geometric model for corner determina-
tion.

In more detail, the angles w(c + i) and w(c — 7)
(see Fig. 1) are computed for each pair of neighbors
cti (i =1,2...). In order for a pair ¢+ to belong to
the corner domain of point ¢ the following inequalities
must be satisfied:

w(c+i)<g and w(c—i)<g. (1)

The contribution C'F' (Cornerness Factor) of each
pair ¢ £ to the making of the candidate corner c¢ is
computed by the formula

CF(c,i) = cos(w(c+1)) % cos(w(c—1)). (2)

Using 7 as a fixed upper limit in the inequalities
(1) is a major departure from the method followed in
[1] and is what renders the corner determination pa-
rameterless. The above choice as well as formula (2)
can be easily explained if we consider the geometrical
model of a corner (see Fig. 2). In the domain of an
ideal corner (see Fig. 2(a)) the formula (2) operates
at the left extremum of the range [0, 7), and hence-
forth gives its maximum response. The formula shuts
off the domain of the ideal corner at its base where
the angles w(c + i) and w(c — i) become §. In the
neighborhood of less acute corners the formula op-

erates at intermediate values of the range [0,F). In



these cases, the shut off of the corner’s domain takes
place once w(c+1) or w(c—1) become greater or equal
than 7 (see Fig. 2(b)). The formula gives its weakest
response in the case of an almost straight line where
it leaves the candidate corner (really, a non-corner)

without domain at all (see Fig. 2(c)).
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Figure 2: Range of geometric models for corners
handled effectively by Formula (2). (a) Ideal corner
(almost a spike). (b) Typical corner. (c) Non-corner
(almost a straight line).

The first M (c) points that satisfy the inequalities
(1) constitute the corner domain of point ¢ and their
total contribution to the cornerness of point ¢ is com-
puted by

(0)
TCF(c) = Z CF(c,i). (3)

The corner segmentation points are identified by
searching the values of the function TCF(c). The
TCF values of the curve points present a very con-
sistent pattern: strings of nonzero values spaced by
strings of zero values. Each of the nonzero strings cor-
responds to a high curvature segment, and the maxi-
mum value contained in each such string corresponds
to a corner segmentation point.

3.2 Key Flat Point Determination

While corners are the perceptually most important
parts in a curve, corners alone provide insufficient
data for an accurate reconstruction of the curve by
spline interpolation. If we are to fully automate the
tracking task, we should keep the tension parameter
of the spline fixed at a moderate value. This means,
that spline-interpolating between corner points only,
may yield substantial approximation errors to the
original curve. The magnitude of the errors depends
on the distance between the corners and the curva-
ture of the original between-the-corners curve seg-
ments. The situation improves dramatically if we
provide some key points with rather flat surround-
ings, that lie between corners, as extra segmentation
points. The way we find these flat points is conjugate
to the way we find the corner points.
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Figure 3: Geometric model for key flat point deter-
mination.

More precisely, a separate processing step is tak-
ing place for the location of the key flat points. The
geometric parameters shown in Fig. 3 are the same
with these in Fig. 1 and are computed for each pair
of neighbors f +i (i = 1,2...) of every point f of
the curve. This time, however, the larger the angles
w(f +1), w(f —1i) are than I, the more the corre-
sponding pair of neighboring points contributes to the
flatness of point f. As a result, by a suitable analysis
of the angles w(f+14) and w(f —17), one can determine
whether or not the pair of points f %+ i is part of the
flat domain of f and, in addition, can estimate the
importance of the contribution of these points to the
flatness of point f.

The angles w(f + i) and w(f — i) must satisfy the

following inequalities:

or w(f—i)>g. (4)

The contribution F'F' (Flatness Factor) of each pair
f £ to the making of the candidate key flat point ¢
is computed by the formula

w(f+i)>g

FF(f,i) =| cos(w(f,i)) | * | cos(w(f,1)) | - (5)

In contrast to equation (2), equation (5) uses the
absolute value of the trigonometric function cos since
the range of the angles w(f +¢) and/or w(f — i) fea-
tures now 7 as a lower and not as an upper limit.
The total contribution of the first M (f) points be-
longing to the flat domain of f (the ones that satisfy

the inequalities (4)) is computed by

M(f)
TFF(f) = Z FF(f,i). (6)

The identification of the key flat segmentation
points from the function TFF(f) is done in a way
analogous to the determination of the corner points
from the function TCF(c).



4 EXPERIMENTAL RESULTS

The algorithm was tested with the outline curve
of a characteristic object (see Figs. 4) we use for
target tracking in our robotic experimental setup. It
was also tested with the outline figure of a pedestrian
image (see Fig. 8) taken from our Intelligent Trans-
portation System experimental setup. The outline
curve of the object is produced by applying an edge
following algorithm on the difference image produced
from the original dynamic scene. The same curves
were also subjected to segmentation by the B & P
and P algorithms for comparison purposes.

The comparative experiments between the three
segmentation algorithms were designed in the follow-
ing way. As it was explained in the previous sec-
tion, no parameters needed to be fixed in our P &
P algorithm. The algorithm produced a set of con-
trol points for each curve that accurately described
the original figure. The accuracy of description has
been tested by using the control points as interpolat-
ing points for cardinal splines. The resulting spline
curves almost completely coincided with the corre-
sponding original curves. A careful parameter tuning
for the other two segmentation algorithms was per-
formed for each curve. This happened in order for
the algorithms to produce sets of control points that
deliver similarly accurate descriptions of the original
figures. Apart from the fact that parameter tuning
was needed for the B & P and P algorithms, our al-
gorithm produced substantially fewer control points
for the same fine descriptive results.

In the case of the rectangular target (Figs. 4
through 7), it is apparent the way our P & P al-
gorithm works. The corners have been detected by
the corner detection part of the algorithm, while the
key flat points fall somewhere between the corners.
The working logic is more obscure in the case of the
B & P algorithm and even more so in the case of P
algorithm, that seems to work simply by brute force.

In the case of pedestrian tracking (Fig. 8), the
outline figure is a rather complex true real world fig-
ure. Our algorithm still outperforms the other two.
It achieves this, by distributing control points more
densely in parts of rapid curvature change and more
sparsely in parts of slow curvature change. By fol-
lowing such a consistent strategy, the algorithm while
economizes in control points it still delivers superior
shape description.

In Fig. 12, bar charts that show the performance
of the three segmentation algorithms for the various
target types are presented. The results correspond
to control point sets with highly accurate descriptive
power for all three algorithms. It is apparent, that our

Figure 4: A
rectangular target
(black blob).

Figure 6: Rect-
angular outline seg-
mented by B & P.

Figure 5: Rect-
angular outline seg-
mented by P & P.

Figure 7: Rect-
angular outline seg-
mented by P.

P & P algorithm delivers the same high descriptive
accuracy with the other two algorithms by utilizing
a smaller number of control points. Interestingly, our
algorithm performs comparatively better as the shape
of the targets becomes increasingly complex.

While in general, the proposed algorithm per-
formed very well in a variety of shapes, there has been
at least one instance where the algorithm exhibited
a degrading performance. In Fig. 13 a wide-angle
triangular shape is shown for which the P & P al-
gorithm failed to locate one corner and one key flat
point. Because of the nature of the shape, there is
a large continous run of points with non-zero TCF
values. That run is visualized as the grey part of the
curve in Fig. 13. The run gives the maximum TCF
value at point 1, where the corner segmentation point
is placed. Unfortunately, the apex of the wide angle,
which is perfectly legitimate to be a corner point, has
a lower T'C'F" value than point 1. Since both point 1
and the apex of the wide angle are on the same run,
point 1 is chosen as the sole corner representative of
the run. A similar explanation accounts for the loss
of one key flat point.

5 SUMMARY

A new curve segmentation algorithm for locating
control points for deformable-model-based tracking
has been described. Comparatively to other curve
segmentation algorithms, the proposed algorithm de-
livers the minimal amount of control points for the



Figure 8: A pedes-
trian target.

Figure 9: Pedes-
trian outline seg-
mented by our algo-
rithm.

Figure 10: Pedes-
trian outline seg-
mented by B & P.

Figure 11: Pedes-
trian outline seg-
mented by P & H.

same fine descriptive detail. Moreover, no param-
eters need to be fixed and the algorithm performs
equally well for any type of curve. The algorithm
achieves such results by segmenting the curve at its
corner and some key flat points only. Its net effect
is to distribute control points more densely at parts
with high curvature change rate and more sparsely at
parts with slow curvature change rate.

On one hand, the proposed algorithm completely
automates the deformable-model-based robotic track-
ing and on the other hand optimally solves the contra-
dictory requirements of using as few control points as
possible for the deformable model, that still describe
accurately the original figure.
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