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Research in the surveillance domain was confined for years in
the military domain. Recently, as military spending for this kind
of research was reduced and the technology matured, the atten-
tion of the research and development community turned to com-
mercial applications of surveillance. In this paper we describe a
state-of-the-art monitoring system developed by a corporate R&D
lab in cooperation with the corresponding security business units.
It represents a sizable effort to transfer some of the best results
produced by computer vision research into a viable commercial
product. Our description spans both practical and technical issues.
From the practical point of view we analyze the state of the com-
mercial security market, typical cultural differences between the re-
search team and the business team and the perspective of the poten-
tial users of the technology. These are important issues that have to
be dealt with or the surveillance technology will remain in the lab
for a long time. From the technical point of view we analyze our
algorithmic and implementation choices. We describe the improve-
ments we introduced to the original algorithms reported in the liter-
ature in response to some problems that arose during field testing.
We also provide extensive experimental results that highlight the
strong points and some weaknesses of the prototype system.

Keywords—Multicamera fusion, object tracking, security
market, security system, surveillance system, threat assessment.

I. INTRODUCTION

The current security infrastructure could be summarized as
follows. 1) Security systems act locally and they do not co-
operate in an effective manner. 2) Very high value assets are
inadequately protected by antiquated technology systems.
3) Reliance on intensive human concentration to detect and
assess threats.
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Taking into account the above state of commercial art and
the maturation of surveillance research many R&D teams,
such as ours, thought that the transfer of surveillance tech-
nology to production is not only warranted but also easy. In
this context, our team undertook amajor effort incoordination
with the Honeywell security business units to field one of the
first advanced urban surveillance products. In our endeavor
we came to learn that good laboratory technology should be
supported by deep knowledge of the business, market, and
user realities to become a success story. Actually, we can now
corroborate that in certain cases technology transfer can be
as challenging as the basic research that preceded it.

The result of our endeavor is Detection of Events for
Threat Evaluation and Recognition (DETER), a prototype
urban surveillance system aimed for the high end of the
security market. DETER can be seen as an attempt to bridge
the gap between current systems reporting isolated events
and an automated cooperating network capable of inferring
and reporting threats, a function currently being performed
by humans. The prototype DETER system is installed at the
parking lot of Honeywell Laboratories (HL) in Minneapolis.
The computer vision module of DETER is reliably tracking
pedestrians and vehicles and is reporting their annotated
trajectories to the threat assessment module for evaluation.
DETER features a systematic optical and system design that
sets it apart from “toy” surveillance systems.

In Section II of this paper, we analyze the current state
of the security market and how it affected our research and
development effort. Then, in Section III, we move on to de-
scribe the recent technical developments reported in the re-
search literature. Sections IV–VIII describe and analyze the
characteristics of our prototype surveillance system. In Sec-
tion IX, we report extensive experimental results from actual
field operations that highlight some strong as well as some
weak points of DETER. Finally, in Section X, we conclude
our paper by summarizing the business and technical results,
drawing conclusions, and outlining our strategic and tactical
plan for the future.
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II. THE CURRENT STATE OF THESECURITY MARKET

The security business has a surprisingly long history. For
example, Pinkerton, one of the premier security services com-
panies, recently celebrated its 150th anniversary. Tradition-
ally, the security industry relies primarily on its human re-
sources. Technology is not always highly regarded and some-
times is viewed with suspicion. The last universally accepted
technological change in the security industry is the adoption
of radio communication between guarding parties. Many of
us may have the impression that analog video recording is an-
other universally adopted technology by the security industry.
This is, however, far from true. There are significant portions
of the security market that do not use video recording at all
and rely exclusively on human labor. A good example is the
majority of stake-out operations performed by law enforce-
ment agencies in the United States.

An understanding of the industry’s peculiarities and the
forces that shape up its current profile is essential for anyone
who is interested to perform technology transfer in the secu-
rity domain. Below, we enumerate what we consider the most
important characteristics of the current security market.

Low Profit Margin: The security market is very cost
sensitive. One can identify two major segments in the se-
curity market: theHome Securityand theBuilding Security.
The competition in the Home Security segment is fierce and
the profit margin very low. The average monthly subscription
to a home security service in U.S. is about $20 per month in
year 2000 valuation. The initial installation cost sometimes is
waived as a means to attract customers. The Building Secu-
rity segment is at the upper end of the market but still cost is
a major issue and the volume of this segment is much smaller
than theHome Securitysegment. In an era where quarterly
profits make or brake corporate giants in areas with much
higher profit margin, the security industry always struggles
to “make the numbers.” Its strategic horizon usually does
not extend beyond six months. It is frequently cited in the
technical literature that the current low cost of computational
power and cameras will open up the way for the automation
of surveillance products and services. As it turns out, “low
cost” is a relative term. A Pentium II PC box running at 233
MHz and priced around $200 in year 2000 valuation is con-
sidered a high-end device with a substantial price tag.

Resistance to Change:Like most traditional industries,
the security industry is not an advocate of innovation by na-
ture. Part of the problem is that some of its customers are also
resistant to change. A typical example is the failed attempt to
introduce GPS receivers into police cruisers in several North
American cities. The GPS receivers would enable police de-
partments to know exactly the position of all their cruisers all
the time. There are obvious benefits to personnel safety and
resource scheduling from this technology. The police unions,
however, opposed the plan because they considered it as an
invasion of privacy to the lives of the individual officers.

Low-Tech Culture:The security industry is permeated
by low-tech culture. The management and the engineers of
the security business units are trained and grown within a
low-tech environment and are ignorant and suspicious of
state-of-the-art developments. Their users and customers are

often underpaid and undereducated security guards that also
view high technology with skepticism.

Hardware Mentality: The most advanced members of
the security industry are probably the camera manufacturers.
Even these, although they produce some advanced electronic
products, have difficulty outfitting them with the necessary
software. An example is Sony, which recently produced
some excellent 1394 security cameras like the DFW-VL500
and started selling them in the market without the necessary
software drivers. Since these cameras can send their video
output only to a computer, without software drivers they
were useless.

The problem is compounded by the mentality of the re-
search community that can support the security industry with
advanced video surveillance concepts. Computer vision re-
searchers both in academia and corporate labs used to per-
form research for military surveillance projects where cost
was not an issue. Even corporate researchers that performed
research and development with a commercial application in
mind used to do that in isolation hypothesizing the problems
and need to be addressed. In most cases, the development
concluded with a demo without addressing system design
issues and without performing some rudimentary cost and
market analysis. When they tried to sell the idea to a business
unit for productization, the result was a predictable failure.

Despite the presence of many negative factors, the future
of the security industry can be viewed only in positive light.
And although the transformation of the industry and the
market will take time to complete, it has already started hap-
pening in small steps. As a result of upcoming technology
offerings, the Freedonia group is projecting significant
growth of the security market during the next several years
(see Fig. 1). This growth will fuel further research and
development and will hopefully bootstrap the process of
incorporating the security industry to the new economy.

Taking into account the practical realities, we decided to
cooperate very closely both with the business unit that would
ultimately productize our surveillance prototype as well as
with potential customers. Out of this cooperation we quickly
formed a very specific strategy.

1) The prototype should be developed and tested within
an actual environment and not in the lab. This would
be the ultimate proof of its fitness.

2) The prototype system should address security needs
of buildings and not homes since the profit margin of
a potential building product would be far greater and
the competition in this market segment less fierce.

3) The prototype system should be geared toward
perimeter surveillance and not toward indoor building
surveillance. Admittedly, indoor building surveillance
correlates more aptly with the notion of “big brother”
and would generate bad publicity among the cus-
tomers’ workforce for ourperspective productoffering.
The majority of U.S. business buildings are surrounded
by parking lots. So it is the case with the perimeter of
suburban malls and other public places. Therefore,
we paid some particular attention to the parking lot
scenario without overconstraining ourselves.
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Fig. 1 The security service market by region in U.S. dollars (billions). The numbers after the year
2000 are projections (source: The Freedonia Group).

4) We did not try to invent needs. We paid particular at-
tention to the real needs of our potential customers and
tried to address them through state-of-the-art techno-
logical solutions. Two potential customers were inter-
viewed extensively and their needs were factored in
the design of the system to the degree possible. One
customer was the security personnel of our building
and the other was the Dade County Sheriff’s office
in Miami. One could group their feedback into two
trends. The security personnel emphasized the neces-
sity for a few simple automated alarms. An example
was the capture of any vehicle that enters the parking
lot of the building after hours. The sheriff’s office
showed an interest for the capture of more compli-
cated traffic patterns. An example was a vehicle that
enters the parking lot and exits after wandering for a
while without ever parking. Also, the sheriff’s office
was placing a lot of emphasis on the portability of the
system. They wanted a system that would be able to
set easily and quickly, use it for a period, and then
move it to another location. This is consistent with the
mode of stakeout operations they perform. We decided
to accommodate in the system design the detection of
simple as well as somewhat more complicated traffic
patterns but leave out any portability considerations.
We determined that the portability question would sub-
stantially increase the technical risk and the develop-
ment cost while it is of importance only to a small per-
centage of the customer base (law enforcement agen-
cies). Our strategy is to address the portability problem
in a subsequent stage of development after our baseline
product offering generates some revenue first.

5) We decided to design the system in a manner that
would be able to perform multiple functions (beyond

the security domain). This would increase its appeal to
potential customers. We have particularly focused on
analyzing traffic statistics for the benefit of building
operations. For example, traffic statistics may provide
an insight into parking lot utilization during different
times and days. This insight can support a functional
redesign of the open space to better facilitate trans-
portation and safety needs.

6) On one hand, the cost of the hardware components
and installation for the system should be kept at the
minimum because of the cost sensitivity of the secu-
rity industry. On the other hand, the computer vision
algorithms require substantial computational power
and full coverage of the surveyed area. As a way of
compromise, we chose not the low-end processors
(233 MHz), currently in wide use by the security
industry, but rather mid-end processors (500 MHz)
that we project will become the mainstay at about
the same time the prototype system will move into
production in 2002. We also identified the need for an
optimization method that, given the CAD design of
the surveyed area, will produce the minimum number
of cameras and their locations for full coverage.

7) We decided to choose off-the-self hardware and soft-
ware development components and adopt an open ar-
chitecture strategy. For example, we used off-the-shelf
PCs, cameras, and nonembedded software tools. This
was a radical move in the framework of an industry
that is used to produce “proprietary systems.” Our ra-
tionale is that open systems reduce development and
maintenance cost and time. Open systems can also
capitalize upon existing assets at the customer’s site
and make the technology transition more appealing.
We also believe that nowadays the best way to outma-
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neuver the competition is not by building proprietary
systems, but by delivering continuous value to the cus-
tomers through innovation and streamlined operations.

8) In addressing the technical challenges for our surveil-
lance system, we decided not to start from scratch. The
purpose of a corporate R&D effort is not innovation
for the sake of innovation but innovation for the sake
of results. We performed a careful evaluation of the
technical literature to find an appropriate starting point.
Then, we filled up the gaps and improved the initial idea
in step with our experimental experience and results.

III. RELEVANT TECHNICAL WORK

The computer vision community has performed extensive
research in the area of video-based surveillance for the
past 20 years. Initially, the research was focused almost
exclusively to military applications and employed nonvisible
band cameras (e.g., thermal, laser, and radar). The emphasis
was on the recognition of military targets (automatic target
recognition or ATR). An interesting survey of this type of
work can be found in [1]. Upon the end of the cold war in the
1990s, attention shifted gradually to surveillance applications
in nonmilitary settings using visible band cameras. The
research emphasis was also shifted from object recogni-
tion to tracking of human and vehicular motion. Even the
military participated in this research shift to prepare for the
so called “asymmetric threat.” Asymmetric threat refers
to the possibility of terrorist activities against animate and
inanimate government assets (e.g., government officials,
embassies, etc.). The Video Surveillance and Monitoring
program exemplifies the shift to urban surveillance scenarios.
The VSAM program was funded by DARPA in 1997-99 [2],
[3] and pushed the state of the art to a point where future
commercial application of the technology is not unthinkable
anymore. No large-scale research and development effort
has been undertaken since then in the area of surveillance.
Isolated research efforts, however, continued to push the state
of the art in a variety of urban surveillance applications [4],
[5]. In these efforts, we witness increased participation by
commercial R&D labs [6], [7].

The latest research activities in the area of commer-
cial surveillance applications are ripe as they are aided by
improvements in the computational power, the camera tech-
nology, and the introduction of robust statistical methods in
computer vision. All these research efforts try to address to
one degree or the other the fundamental urban surveillance
question:motion detection. If a system can reliably detect mo-
tion, then itcanreasonaboutmotionpatterns, record intrusion,
and issue alerts (reason-record-issue). It is worth mentioning
that existing commercial security systems cannot perform the
sequence of the above three functions. They rely exclusively
on human attention and labor to close the feedback loop.

Some research groups reach a lot further than the basic
reason-record-issue paradigm and perform research on an-
alyzing human motion or modeling human interactions [8],
[9]. Although these investigations are scientifically elegant,
their value to the security industry in the near- and mid-term

is minimal. The industry is preoccupied with a lot more mun-
dane problems at the moment.

A variety of moving object segmenters has been reported
in the literature. There are two conventional approaches to
moving object segmentation with respect to a static camera:
temporal differencing [10] and background subtraction [11].
Temporal differencing is very adaptive to dynamic environ-
ments, but generally does a poor job of extracting all the
relevant object pixels. Background subtraction provides the
most complete object data, but is extremely sensitive to dy-
namic scene changes due to lighting and extraneous events.
Most researchers have abandoned nonadaptive methods of
backgrounding, which are useful only in highly supervised,
short-term tracking applications without significant changes
in the scene. More recent adaptive backgrounding methods
[12] can cope much better with environmental dynamism.
They still, however, cannot handle bimodal backgrounds and
have problems in scenes with many moving objects. Stauffer
et al. [13], [14] have proposed a more advanced object detec-
tion method based on a mixture of Normals representation at
the pixel level. This method features a far better adaptability
and can handle even bimodal backgrounds (e.g., swaying
tree branches). The secret is in the powerful representation
scheme. Each Normal reflects the expectation that samples
of the same scene point are likely to display Gaussian noise
distributions. The mixture of Normals reflects the expecta-
tion that more than one process may be observed over time.

Elgammalet al., in [15], propose a generalization of the
Normal mixture model where density estimation is achieved
through a Normal kernel function. Their method features
some improved behavior with respect to the method pro-
posed in [13] including the suppression of shadows. In gen-
eral, the mixture of Normals paradigm is not only theoreti-
cally elegant but has also produced promising test results in
challenging outdoor conditions. It is for this reason we chose
it as the baseline algorithm for our surveillance system.

Clearly, most of the research in urban surveillance system
was directed toward moving object segmentation. There is a
good reason for that since failures at the segmentation level
can seal the fate of the entire surveillance system. Never-
theless, a comprehensive surveillance system involves ad-
ditional technologies to moving object segmentation. These
technologies include tracking, multicamera fusion, and threat
assessment. The research community addressed these prob-
lems to various degrees. Tracking refers to the association of
segmented objects across the timeline. The tracking methods
employed in surveillance systems are usually borrowed from
research performed for radar applications. The issue of mul-
ticamera fusion is an important one for seamless tracking in
large open spaces that cannot be covered by a single camera.
Researchers have addressed this issue in the surveillance and
other contexts [16]–[18]. The interested reader can look at
[19] for a thorough presentation of the relevant mathematics.
The stage of threat assessment is the least explored. It is the
one that interfaces with the human operator, however, and in
this respect is very important. In Section VIII, we present our
approach to threat assessment, which focuses on the detec-
tion of a few threatening motion patterns.
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IV. SYSTEM ARCHITECTURE

A comprehensive urban video surveillance system, such
as DETER, depends primarily on two different technologies:
computer vision and threat assessment. The computer vision
part consists of the optical and system design, the moving
object segmentation and tracking and the multicamera fu-
sion stages. The threat assessment part consists of the fea-
ture assembly, the off-line training, and the threat classifica-
tion stages (see Fig. 2). We will give a brief overview of each
stage and compare our solutions to others proposed in the lit-
erature.

Our system is probably the only one that features a formal
optical and system design stage. Most of the efforts reported
in the literature had as their main objective to demonstrate
the feasibility of a novel idea and they did not pay any atten-
tion to the practical aspects of fielding a surveillance system.
There is a number of requirements that a surveillance system
needs to fulfill to function properly and be commercially vi-
able. First, it should ensure full coverage of the open space
or blind spots may pause the threat of a security breach. It is
often argued in the technical literature that video sensors and
computational power are getting cheaper and therefore can
be employed in mass to provide coverage for any open space
[20]. In reality, things are not so rosy. Most of the cheap video
sensors still do not have the required resolution to accommo-
date high-quality object tracking. Both cheap and expensive
cameras also need to become weather proof for employment
outdoors, which increases their cost substantially. Then, it is
the issue of installation cost that includes the provision of
power and the transmission of video signals, sometimes at
significant distances from the building. The installation cost
for each camera is usually a figure many times its original
value. Even if there were no cost considerations, cameras
cannot be employed arbitrarily in public places. There are
restrictions due to the topography of the area (e.g., streets,
tree lines) and due to city and building ordinances (e.g., aes-
thetics). All these considerations severely curtail the allow-
able number and positions of cameras for an urban surveil-
lance system.

In addition to optical considerations there are also system
design considerations including the type of computational
resources, the computer network bandwidth, and the display
capabilities. Due to the cost sensitivity of the security market,
all these become critical issues and should be addressed in an
optimal manner.

We achieve motion segmentation through a multi-Normal
representation at the pixel level. Our method resembles the
method described in [14] with some interesting modifica-
tions. The method identifies foreground pixels in each new
frame while updating the description of each pixel’s mixture
model. The labeled foreground pixels can then be assem-
bled into objects using a connected components algorithm
[21]. Establishing correspondence of objects between frames
(tracking) is accomplished using a linearly predictive mul-
tiple hypotheses tracking algorithm which incorporates both
position and size.

Fig. 2. Architecture of the DETER system.

No single camera is able to cover large open spaces, like
parking lots, in their entirety. Therefore, we need to fuse the
fields of view (FOV) of the various cameras into a coherent
super picture to maintain global awareness. We fuse (cali-
brate) multiple cameras by computing the respective homog-
raphy matrices. The computation is based on the identifica-
tion of several landmark points in the common FOV between
camera pairs.

The threat assessment portion of DETER consists of a fea-
ture assembly module followed by a threat classifier. Feature
assembly extracts various security relevant statistics from ob-
ject tracks and groups of tracks. The threat classifier decides
in real time wheteher a particular point in feature space con-
stitutes a threat. The classifier is assisted by an off-line threat
modeling component (see Fig. 2).

V. OPTICAL AND SYSTEM DESIGN

The optical and overall system design for DETER includes
the specification of a camera set arrangement that optimally
covers the HL Minneapolis parking lot. It also includes the
specification of the computational resources necessary to run
the DETER algorithms in real-time. Finally, it includes the
specification of the display hardware and software.

The optical design effort, in particular, has the following
objectives.

1) Specify the camera model.
2) Specify the camera lens.
3) Specify the number of cameras.
4) Specify the camera locations.
We decided to employ dual channel camera systems.

These systems utilize a medium-resolution color camera
during the day and a high-resolution grayscale camera
during the night. Switching from day to night operation
is controlled automatically through a photo-sensor. The
dual channel technology capitalizes upon the fact that
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color information in the low light conditions at night is
lost. Therefore, there is no reason for employing color
cameras during nighttime conditions. Instead we can em-
ploy cheaper and higher resolution grayscale cameras to
compensate for the loss of color information. We have
selected the camera model to be the DSE DS-5000 dual
channel system. The color day camera has a resolution of

. The grayscale night camera has a
resolution of . The DSE DS-5000
camera system has a mm vari-focal auto iris
lens for both day and night cameras. This permits us to vary
the FOV of the cameras from FOV – .

We seek an optimal solution that provides coverage to the
entire parking lot area with the minimum number of cam-
eras and installation cost. There are practical constraints im-
posed by the topography of the area under surveillance. For
example, we cannot place a camera pole in the middle of the
road, existing poles and rooftops should be utilized to the
extent possible to reduce the installation cost and city codes
regarding the aesthetics have to be obeyed. Taking into ac-
count all these considerations we can delineate in the com-
puter-aided design (CAD) of the parking lot the possible in-
stallation sites. These are usually only a small fraction of the
entire open area and, therefore, our search space is drastically
reduced.

The installation search space is reduced even further when
we consider the constraints imposed by the computer vision
algorithms. Specifically:

1) An urban surveillance system such as DETER is mon-
itoring two kind of objects: vehicles and people. In
terms of size, people are the smallest objects under
surveillance. Therefore, their footprint should drive the
requirements for the limiting range of the cameras. In
turn, the determination of the limiting range will help
us to verify if there is any space in the parking lot that
is not covered under any given camera configuration.

2) Each camera should have an overlapping FOV with at
least one more camera. The overlapping arrangement
should be done in such a way, so that we are able to
transition from one camera to the other through in-
dexing of the overlapped areas and manage to visit all
the cameras in a unidirectional trip without encoun-
tering any discontinuity.

3) The overlapping in the FOVs should be between
25%–50% for the multicamera calibration algorithm
to perform reliably. This requirement stems from the
need to get several well-spread landmark points in
the common field of view for accurate homography.
Usually, a portion of the overlapping area cannot
be utilized for landmarking because it is covered
by nonplanar structures like tree lines. Therefore, at
times the common area between two cameras may be
required to cover as much as half of the individual
FOVs.

As we mentioned earlier, the DSE DS-5000 cameras fea-
ture a vari-focal lens with a FOV that can range between
44.4 and 82.4. We choose the intermediate value of FOV

as the basis of our calculations. To satisfy the overlap-
ping constraints, we may need to increase or decrease the
FOV of some of the cameras from this average value. The
camera placement algorithm proceeds as follows.

1) In one of the allowed installation sites place a camera
in such a way that its FOV borders the outer edge of
the parking lot.

2) Continue adding cameras around the initial camera
until you reach the next outer edge of the parking lot.
Make sure there is at least 25% overlapping in neigh-
boring FOVs.

3) Compute the limiting range of the installed cameras.
By knowing the FOV and the limiting range, we know
the full useful coverage area for each camera.

4) Continue with the next installation site that is just out-
side of the already covered area. Make sure that at least
one of the new cameras overlaps at least 25% with one
of the previous cameras.

5) Repeat the above three steps until the entire parking lot
area is covered.

6) Make some post-processing adjustments. These in-
volve usually the increase or reduction of the FOV for
some of the cameras. This FOV adjustment is meant
to either trim some excessive overlapping or add some
extra overlapping in areas where there is little planar
space (lots of trees).

Of particular interest is the computation of the camera’s
limiting range . It is computed from the equation

(IFOV)

where is the smallest acceptable pixel footprint of
a human and IFOV is the instantaneous field of view.
Based on our experimental experience, the signature
of the human body should not become smaller than a

rectangle on the focal plane
array (FPA). Clusters with fewer than 27 pixels are likely to
be below the noise level. If we assume that the width of an
average person is about in then the pixel footprint

. The IFOV is computed from the following
formula:

IFOV
FOV

where is the resolution for the camera. For FOV
and (color day camera), the lim-
iting range is ft. For FOV and

(grayscale night camera), the lim-
iting range is ft. In other words, between two
cameras with the same FOV, the higher resolution camera
has larger useful range. Conversely, if two cameras have
the same resolution, then the one with the smaller FOV has
larger useful range. During post-processing, we needed to
reduce the FOV (FOV ) in some of the lower resolu-
tion day camera channels to increase their effective range
limit. Extended tree lines in the HL parking lot necessitate
larger overlapping areas than the anticipated minimum.
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Fig. 3. Camera configuration scheme for DETER in the HL
parking lot. This figure depicts the FOVs for the day channels of
the cameras.

Fig. 4. Camera configuration scheme for DETER in the HL
parking lot. This figure depicts the FOVs for the night channels
of the cameras.

A good optical design is essential to the success of
an urban surveillance system and many computer vision
projects often ignore this aspect altogether. The principles,
algorithms and computations we used for the DETER optical
design can be codified and automate the optical design of
future similar security systems in any other parking lot or
open area.

Our study concluded that seven cameras in the configu-
ration shown in Figs. 3 and 4 is the recommended arrange-
ment for our parking lot. We have assigned one standard PC
(500-MHz Pentium) for the processing requirements of each
camera. One of the seven PCs is designated as the server and
this is where the fusion of information from all seven cam-
eras takes place. As a way of comparison, see in Fig. 5 the
camera arrangement in the parking lot of our building before
DETER. The inadequate coverage is the typical outcome of
bad design and budgetary restrictions.

The fused video information is displayed in a 44-inch flat
panel display along with all the necessary annotation. This
comprehensive high-quality picture allows the security op-

Fig. 5. Camera configuration scheme in the HL parking lot before
DETER. The ad-hoc and inadequate coverage is obvious.

erator to maintain instant awareness without the distraction
of multiple fragmented views. It also underlines our ultimate
goal, which is the enhancement and not the replacement of
the role of the security guard.

Our design philosophy is geared toward open systems.
We chose to use standard NTSC cameras that are favored
by the security industry. We do not aim at developing smart
on-the-chip cameras. We project that the cost of developing
special hardware and embedded software is quite substan-
tial. Also, a product based on smart cameras would appeal
only to new customers. The management of existing build-
ings would much rather prefer to upgrade their legacy in-
frastructure than scrap it altogether. With our design, they
can use their old cameras and possibly add a few more to
achieve complete coverage. Also, the computational hard-
ware could be found for free. Most corporations renew their
PCs every 2–3 years. Since DETER is designed to run on
moderate PC hardware, recycled PC units can be used for the
processing of the video information. There is no bandwidth
problem between the camera and the PC since the standard
coaxial cable can accommodate comfortably video transmis-
sions of 30 frames per second. After the information is pro-
cessed at the PC, either is stored locally or transmitted across
the building’s intranet on an event basis. Based on the above
description, DETER can be sold more as an upgrade service
instead of a new security product. We believe that this busi-
ness model is necessary for the rapid spread of high tech-
nology in the security marketplace.

VI. OBJECTSEGMENTATION AND TRACKING

A. Initialization

The goal of the initialization phase is to provide statisti-
cally valid values for the pixels corresponding to the scene.
These values are then used as starting points for the dynamic
process of foreground and background awareness. Initializa-
tion happens only once and there are no strict real-time pro-
cessing requirements for this phase. We process a certain
number of frames ( ) on-line or off-line.
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Fig. 6. Visualization of the mixture of normals model at the pixel level. The normals of a gray
channel is depicted for simplicity purposes.

Each pixel is considered as a mixture of five
time-varying trivariate normal distributions

where

and

are the mixing proportions (weights) and denotes
a trivariate Normal distribution with vector meanand vari-
ance-covariance matrix . The distributions are trivariate to
account for the three component colors (red, green, and blue)
of each pixel in the general case of a color camera. Please
note that

where , , and stand for the measurement we re-
ceived from the red, green, and blue channel of the camera
for the specific pixel

For simplification, the variance-covariance matrix is as-
sumed to be diagonal with , , having identical vari-
ance within each Normal component, but not across all com-
ponents (i.e., for components). Therefore,

Other similar methods reported in the literature initialize
the pixel distributions either randomly or with the K-means
algorithm. Random initialization results in slow learning
during the dynamic mixture model update phase. Some-
times, it even results in instability. Initialization with the
K-means or the expectation-maximization (EM) method
[22] gives significantly better results. The EM algorithm is
computationally intensive and takes the initialization process
off-line for about 1 min. In the parking lot application where
human and vehicular traffic is small, the short off-line
interval is not a problem. Actually, the EM initialization
performs a little better particularly if the weather conditions
are dynamic (e.g., fast moving clouds). But, if the area under
surveillance were a busy plaza (many moving humans and
vehicles), the on-line K-means initialization might have
been more preferable.

B. Segmentation of Moving Objects

The initial mixture model is updated dynamically there-
after. The update mechanism is based on the incoming ev-
idence (new camera frames). Several things could change
during an update cycle.

1) The form of some of the distributions could change
(weight , mean , and variance ).

2) Some of the foreground states could revert to back-
ground and vice versa.

3) One of the existing distributions could be dropped and
replaced with a new distribution.

At every point in time, the distribution with the strongest
evidence is considered to represent the pixel’s most prob-
able background state. Fig. 6 presents a visualization of the
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Fig. 7. Visualization of the mixture model update mechanism.
The normals of a gray channel is depicted for simplicity purposes.
The small ellipse marks the pixel area under monitoring.

mixture of Normal’s model while Fig. 7 depicts the update
mechanism for the mixture model.

The update cycle for each pixel proceeds as follows:

1) First, the existing distributions are ordered in de-
scending order based on their weight values.

2) Second, the algorithm selects the firstdistributions
that account for a predefined fraction of the evidence

arg

where are the respective distribution
weights. These distributions are considered as back-
ground distributions while the remaining distri-
butions are considered foreground distributions.

3) Third, the algorithm checks if the incoming pixel value
can be ascribed to any of the existing Normal distribu-
tions. The matching criterion we use is the Jeffreys (J)
divergence measure and is a key differentiator of our
approach from other similar approaches.

4) Fourth, the algorithm updates the mixture of distribu-
tions and their parameters. The nature of the update
depends on the outcome of the matching operation. If
a match is found, the update is performed using the
method of moments. This is also a key differentiator of
our approach. If a match is not found, then the weakest
distribution is replaced with a new distribution. The
update performed in this case guarantees the inclusion
of the new distribution in the foreground set, which is
another novelty of our method.

The matching and model update operations are quite in-
volved [23] and are described in detail in the next three sub-
sections.

1) The Matching Operation:We use the Jeffreys di-
vergence measure [24] to determine whether the
incoming data point belongs or not to one of the existing

five distributions. The Jeffreys number measures how
unlikely it is that one distribution () was drawn from the
population represented by the other (). For a presentation
of the theoretical properties of the Jeffreys divergence mea-
sure, see [25]. The five existing Normal distributions are:

, . Since the relates to
distributions and not to data points, we need to associate the
incoming data point with a distribution. We construct the
incoming distribution as . We assume that

and

where is the incoming data point. The choice of
is the result of experimental observation about the typical
spread of successive pixel values in small time windows. The
five divergence measures betweenand , are
computed by the following formula:

Once the five divergence measures have been calculated,
we find the distribution ( ) for which

and we have a match betweenand if and only if

where is a prespecified cutoff value. In the case where
, then the incoming distribution cannot be

matched to any of the existing distributions.
The key point here is that we measure dissimilarity against

all the available distributions. Other approaches, like [13],
measure dissimilarity against the existing distributions in a
certain order. Depending on the satisfaction of a certain con-
dition the process may stop before all five measurements are
taken and compared. We will see in Section VI-B4 how this
“preferential” treatment can weaken the performance of the
segmenter under certain weather scenarios.

2) Model Update When a Match is Found:If the
incoming distribution matches to one of the existing distri-
butions, we pool them together to a new Normal distribution.
This new Normal distribution is considered to represent
the current state of the pixel. The state is labeled either
background or foreground depending on the position of the
matched distribution in the ordered list of distributions. The
next issue needed to be clarified is how we update the param-
eters of the mixture. We use theMethod of Moments. First,
we introduce some learning parameter, which weighs
on the weights of the existing distributions. So we subtract

weight from each of the five existing weights and

1486 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 10, OCTOBER 2001



we assign it to the incoming distribution’s weight. In other
words, the incoming distribution has weightsince

and the five existing distributions have weights: ,
.

Obviously, for we need to have . The choice
of depends mainly on the choice of . The two quantities
are inversely related. The smaller the value of, the higher
the value of and vice versa. The values of and are
also affected by how much noise we have in the monitoring
area. So if, for example, we were monitoring an outside re-
gion and had a lot of noise due to environmental conditions
(rain, snow, etc.), then we would need a “high” value of
and thus a “small” value of , since non-match to one of the
distributions is very likely to be caused by background noise.
On the other hand, if we were recording indoors where the
noise is almost non existent then we would prefer a “small”
value of and thus a “higher” value of, because any time
that we do not get a match to one of the existing five distri-
butions, that is very likely to occur due to some foreground
movement (since the background has almost no noise at all).

Let us assume that we have a match between the new dis-
tribution and one of the existing distributions where

. Then, we update the weights of the mixture
model as follows:

and

We also update the mean vectors and the variances. If we
call as: , i.e., is the weight of the th
component (which is the winner in the match) before pooling
it with the new distribution and if we call i.e., the
weight of the new observation, then define

Using the method of moments [26], we get

while the other four (unmatched) distributions keep thesame
mean and variance that they had at time .

3) Model Update When a Match is Not Found:In the case
where a match is not found (i.e., ),
then we commit the current pixel state to be foreground and
we replace the last distribution in the ordered list with a new
one. The parameters of the new distribution are computed as
follows.

1) The mean vector is replaced with the incoming
pixel value.

2) The variance is replaced with the minimum vari-
ance from the list of distributions.

3) The weight of the new distribution is computed as fol-
lows:

where is the background threshold index. This for-
mula guarantees the classification of the current pixel
state as foreground. The weights of the remaining four
distributions are updated according to the following
formula:

4) Justification of the Modifications Introduced to Normal
Mixture Modeling: We initially implemented the Normal
Mixture Modeling reported in [13] . The performance of the
moving object segmenter under that scheme was satisfactory
in the experimental trials and we did not plan on modifying
the approach in any way. During late spring and early
summer of 2000, however, weather phenomena in Min-
neapolis revealed some weak points of the method. During
this time of year, the weather in Minneapolis features broken
clouds, due to increased evaporation from the lakes and
brisk Canadian winds. Small clouds of various density pass
rapidly across the camera’s field of view in high frequency.
This type of weather substantially affected the performance
of the segmenter and either increased dramatically the false
alarms or reduced the detection sensitivity depending on
how we set the algorithmic parameters.

In [13], the distributions of the mixture model are always
kept in a descending order according to , where is
the weight and the variance of each distribution. Then, in-
coming pixels are matched against the ordered distributions
in turn from the top toward the bottom of the list. If the in-
coming pixel value is found to be within 2.5 standard de-
viations of a distribution, then a match is declared and the
process stops. This method is vulnerable to the following sce-
nario: An incoming pixel value is more likely to belong, for
example, to distribution 4 but still satisfies the 2.5 standard
deviation criterion for a distribution earlier in the queue (e.g.,
2). Then, the process stops before it reaches the right distri-
bution and a match is declared early (see Fig. 8). The match is
followed with a model update that unjustly favors the wrong
distribution. These cumulative errors can affect the perfor-
mance of the system after a certain point. They can even have
an immediate and serious effect if one distribution (e.g., 2)
happens to be background and the other (e.g., 4) foreground.

The above scenario can be put into motion by fast moving
clouds. In [13], when a new distribution is introduced into
the system it is centered around the incoming pixel value
and is given an initially high variance and small weight. As
more evidence accumulates, the variance of the distribution
drops and its weight increases. Consequently, the distribu-
tion advances in the ordered list of distributions. Because,
however, the weather pattern is very active, the variance of
the distribution remains relatively high since supporting ev-
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Fig. 8. Visualization of the failure mode of the method described in [13].

idence is switched on and off at high frequency. This re-
sults in a mixture model with distributions that are relatively
spread out. If an object of a certain color happens to move
in the scene during this time, it generates incoming pixel
values that may marginally match distributions at the top of
the queue and therefore interpreted as background. Since the
moving clouds affect wide areas of the camera’s field of view
post-processing cannot save the day.

In contrast, our method does not try to match the incoming
pixel value from the top to the bottom of the ordered distri-
bution list. It rather creates a narrow distribution that repre-
sents the incoming data point. Then, it performs the match
by finding the minimum divergence value between the in-
coming distribution andall the distributions of the mixture
model (see Fig. 9). In this manner, the incoming data point
has a much better chance of being matched to the right dis-
tribution than in [13].

C. Multiple Hypotheses Predictive Tracking

In the previous section we described a statistical procedure
to perform on-line segmentation offoreground pixelscorre-

sponding to moving objects of interest, i.e., people and ve-
hicles. In this section, we describe how to form trajectories
traced by the various moving objects. Fig. 10 shows a snap-
shot of the output from the various computer vision modules
of DETER. The basic requirement for forming object trajec-
tories is the calculation of blob centroids (corresponding to
moving objects). Blobs are formed after we apply a standard
8-connected component analysis algorithm to the foreground
pixels. The connected component algorithm filters out blobs
with area less than pixels as noise. According
to our optical computation in Section V, this is the minimal
pixel footprint of the smallest object of interest (human) in
the camera’s FOV.

A Multiple Hypotheses Tracking (MHT)algorithm is then
employed that groups the blob centroids of foreground ob-
jects into distinct trajectories. MHT is considered to be the
best approach to multitarget tracking applications. It is a re-
cursive Bayesian probabilistic procedure that maximizes the
probability of correctly associating input data with tracks. Its
superiority against other tracking algorithms stems from the
fact that it does not commit early to a trajectory. Early com-
mitment usually leads to mistakes. MHT groups the input
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Fig. 9. Visual representation of the way our method matches incoming data points to existing
distributions.

data into trajectories only after enough information has been
collected and processed. In this context, it forms a number
of candidate hypotheses regarding the association of input
data with existing trajectories. MHT has shown to be the
method of choice for applications with heavyclutter and
densetraffic. In difficult multitarget tracking problems with
crossed trajectories, MHT performs very well as opposed
to other tracking procedures such as theNearest Neighbor
(NN) correlationand theJoint Probabilistic Data Associa-
tion (JPDA)[27].

Fig. 11 depicts the architecture of our MHT algorithm. An
integral part of any tracking system is the prediction module.
Prediction provides estimates of moving objects’ states and
in the DETER system is implemented as a Kalman filter.
Kalman filter predictions are made based on a priori models
for target dynamics and measurement noise. Validation is
a process which precedes the generation of hypotheses re-
garding associations between input data (blob centroids) and
the current set of trajectories (tracks). Its function is to ex-
clude, early on, associations that are unlikely to happen thus
limiting the number of possible hypotheses to be generated.

Central to the implementation of the MHT algorithm is the
generation and representation of track hypotheses. Tracks are
generated based on the assumption that a new measurement
may:

1) belong to an existing track;
2) be the start of a new track;
3) be a false alarm.
Assumptions are validated through the validation process

before they incorporated into the hypothesis structure. The
complete set of track hypotheses can be represented by a hy-
pothesis matrix as shown in Table 1. The hypothetical situa-
tion inTable 1corresponds toasetof twoscansof2and1mea-
surements made respectively on frame and .
Some notation clarification is in order. A measurement
is the th observation (blob centroid) made on frame. In ad-
dition, a false alarm is denoted by 0 while the formation of
a new track ( ) generated from an old track ( ) is
shown as . The first column in this table is the
Hypothesis index. In our example case we have a total of four
hypotheses generated during scan 1, and eight more are gen-
erated during scan 2. The last column lists the tracks that the
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Fig. 10. Visualization of the computer vision operation of DETER. The snapshot was taken “live”
on March 3, 2000. (a) Live video feed. (b) Segmented moving object. (c) Dynamically updated
backgroud. (d) Trajectories of the current moving objects. (e) Centroids of the moving objects.
(f) Results of the blob analysis. (g) Cumulative trajectory visualization of human and vehicle
traffic for the past hour.

Fig. 11. Architecture of the MHT algorithm.

particular hypothesis contains (e.g., hypothesiscontains
tracks 1 and 4). The row cells in the hypothesis table denote
the tracks to which the particular measurement belongs
(e.g., underhypothesis the measurement belongs to
track 5). A hypothesis matrix is represented computationally
by a tree structure as it is schematically shown in Fig. 12. The
branches of the tree are in essence the hypotheses about mea-
surements-track associations.

As it is evident from the above example, the hypothesis
tree can grow exponentially with the number of mea-
surements. We apply two measures to reduce the number of

Table 1
Complete Set of Track Hypotheses with the Associated
Sets of Tracks

hypotheses. Our first measure is to cluster the hypotheses into
disjoint sets [28]. In this sense, tracks that do not compete
for the same measurements compose disjoint sets which in
turn are associated with disjoint hypothesis trees. Our second
measure is to assign probabilities on every branch of hypoth-
esis trees. The set of branches with the highest prob-
abilities are only considered. The derivation of hypothesis
probabilities is out of the scope of this paper. However, the
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Fig. 12. Formation of a hypothesis tree.

interested reader is referred to [28] and [29]. It only suffices
to say that a recursive Bayesian methodology is followed for
calculating hypothesis probabilities from frame to frame.

VII. M ULTICAMERA FUSION

Monitoring of large sites (such as parking lots) can be
accomplished only through the coordinated use of multiple
cameras. In DETER, we need to have seamless tracking of
humans and vehicles across the whole geographical area
covered by all cameras. We produce a panoramic view of
the HL parking lot by fusing the individual camera FOVs.
Then, object motion is registered against a global coordinate
system. We achieve multicamera registration (fusion) by
computing theHomographytransformation between pairs
of cameras (see Fig. 13). Our homography computation
procedure takes advantage of the overlapping that exists
between pairs of camera FOVs. We use the pixel coordinates
of more than four points to calculate the homography trans-
formation matrix. These points are projections of physical
ground plane points that fall in the overlapping area between
the two camera FOVs. We select and physically mark these
points on the ground with paint during the installation phase.
We then sample the corresponding projected image points
through the DETER graphical user interface (GUI). This is
a process that happens only in the beginning and once the
camera cross-registration is complete is never repeated.

A. Homography Computation

The homography computation is challenging primarily for
two reasons.

• It is an underconstrained problem that is usually based
on a small number of matching points.

• It introduces inaccuracies in specialized transforma-
tions (e.g., pure rotation or translation).

A very popular and relatively simple method for the com-
putation of the homography matrices is the so-calledleast
squaresmethod [16]. This method may provide a poor so-
lution to the underconstrained system of equations due to
biased estimation. It also cannot effectively specialize the
general homography computation when special cases are at
hand.

We have adopted the algorithm by Kanatani [17] to com-
pute the homography matrices. The algorithm is based on
a statistical optimization theory for geometric computer vi-
sion [18] and cures the deficiencies exhibited by the least

squares method. The basic premise is that theepipolar con-
straint may be violated by various noise sources due to the
statistical nature of the imaging problem (see Fig. 14).

VIII. T HREAT ASSESSMENT

Automation is clearly necessary to allow limited and fal-
lible human attention to monitor a large protected space. The
primary objective of DETER is to alert security personnel to
just those activities that require their scrutiny, while ignoring
innocuous use. DETER achieves its objective by processing
the computer vision information through its threat assess-
ment module. All of the threat assessment analysis is done
after converting the pixel coordinates of the object tracks
into a world coordinate system set by the CAD drawing of
the facility. Thus, we can use well-known landmarks to pro-
vide content for evaluating intent. Such landmarks include
individual parking spots, lot perimeter, power poles, and tree
lines. The coordinate transformation is achieved through the
use of the optical computation packageCODE V.

The feature assembly uses the trajectory information pro-
vided by the computer vision module to compute relevant
higher level features on a per-vehicle/pedestrian basis. The
features are designed to capture “common sense” beliefs
about innocuous, law abiding trajectories, and the known or
supposed patterns of intruders. In the current prototype, the
features calculated include the following:

• number of sample points;
• starting position ( );
• ending position ( );
• path length;
• distance covered (straight line);
• distance ratio (path length/distance covered);
• start time (local wall clock);
• end time (local wall clock);
• duration;
• average speed;
• maximum speed;
• speed ratio (average/maximum);
• total turn angles (radians);
• average turn angles;
• number of “M” crossings.

Most of these are self explanatory, but a few are not so
obvious. The wall clock is relevant since activities on some
paths are automatically suspect at certain times of day—par-
ticularly late night and early morning.

The turn angles and distance ratio features capture aspects
of how circuitous was the path followed. The legitimate users
of the facility tend to follow the most direct paths permitted
by the lanes. “Browsers” may take a more serpentine course.

The “M” crossings feature attempts to monitor a
well-known tendency of car thieves to systematically check
multiple parking stalls along a lane, looping repeatedly back
to the car doors for a good look or lock check (two loops
yielding a letter “M” profile). This can be monitored by
keeping reference lines for the parking stalls and counting
the number of traversals into stalls. An “M” type pedestrian
crossing captured by DETER is illustrated in Fig. 15.
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Fig. 13. Fused view from two DETER cameras. Because we compute a near optimal camera
configuration scheme (coverage versus cost), the cameras are far apart and their optical axes form
angles that vary wildly. As a result, one can notice the substantial image skewing produced by the
highly nonlinear homography transformation. Despite the nonlinearity we achieve smooth image
display thanks to a proprietary Honeywell warping algorithm.

Fig. 14. The statistical nature of the imaging problem affects
the epipolar constraint.O andO are the optical centers of the
corresponding cameras. P(X;Y;Z) is a point in the scene that
falls in the common area between the two camera FOVs. Ideally,

the vectors
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��!
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���!

O O are coplanar. Due to the noisy

imaging process, however, the actual vectors
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may not be coplanar.

The output of the feature assembly module for trajectories
recorded from the site over some period of time is fed into
the off-line training module. The goal of off-line training is to
produce threat models based on a database of features. In the
current system, we have gathered data by running DETER
over a period of several hours. During this period, we staged
several suspicious events (like “M” type strolls) to enrich
our data collection. We then manually labeled the individual
object trajectories as either innocuous (OK) or suspicious
(THREAT). In the future, a clustering algorithm (see Fig. 2)

Fig. 15. An M-pattern traced by DETER. The centroids
constituting the track are superimposed on the parking lot’s CAD
drawing. The M-pattern is a stroll mode favored by potential car
thieves and it was one of the events staged during the benchmark
recording.

will assist in the production of more parsimonious descrip-
tions of object behavior. The complete training data consist
of the labeled trajectories and the corresponding feature vec-
tors. They are all processed together by a classification tree
induction algorithm based on CART [30]. The trained clas-
sifier is then used on-line to classify incoming live data as
either innocuous or suspicious.
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IX. EXPERIMENTAL RESULTS

At the time of the writing, DETER has been operating for
almost a year. During this time there have been incremental
improvements at the algorithmic and software level. We use
the experience of the building’s guards as the primary feed-
back mechanism. This feedback is primarily qualitative but
is very important since this is the way products are evaluated
in the security market place. The fundamental criteria they
use in their evaluation are as follows.

• Is the system trustworthy? In other words, does it pro-
duce a lot of false alarms or does it miss important
events?

• How does it compare with the legacy system?
• Does it add value to their function?
• Is it easy to learn and operate?

In the matter of trustworthiness, the guards were the first to
pinpoint the faulty behavior of the system when the weather
featured broken clouds and brisk winds. This prompted the
investigation by the R&D team that led to the modification
of the moving object segmenter. After the modified com-
puter vision subsystem was put into use in August 2000, the
problem was fixed and no other major complaints came into
being.

The guards were also very excited with some functions of
DETER that did not relate directly to automated surveillance.
An example was the fusion of the multiple camera field of
views into a super picture and its projection on a big flat panel
display. This gives the guards a comprehensive view of the
entire perimeter of the building and does not fragment their
attention. This attitude is a testament to the anthropocentric
character of the security market.

The only persistent complaint that still stands regards the
user interface portion of DETER. Ultimately, the guards
would like to add functions, like the detection of over-
speeding, by clicking and pointing away. Right now they
need the help of a member of the R&D team whenever they
want to set a new function for the threat assessment module.

In addition to the qualitative testing performed by the ac-
tual users, we also performed quantitative testing for bench-
marking purposes. Since August 11, 2000, we measured the
tracking performance of DETER in the HL parking lot for
8 h. The testing was done in 1 h increments spread over dif-
ferent days, times of day, and seasons. Meticulous ground-
truthing was performed by two R&D engineers and their
results were compared and reconciled for accuracy. We se-
lected this data set to fulfill certain requirements.

1) Sizeable duration (several hours).
2) Scenarios with significant traffic and others predomi-

nantly inactive. Typical busy times that were captured
were in mid-afternoon during a workday when people
leaving for their homes. Typical inactive times were
late night hours.

3) Inclusion of some unusual events. We have induced
these events ourselves in the absence of criminal ac-
tivity.

Table 2
Experimental Results for the 8-Hour-Long Data Set

4) Challenging weather conditions. We have included a
partly cloudy day with strong winds (1 h). We have
also included a snowy day (1 h) and a rainy day (1 h).

Table 2 shows the results of the DETER performance in
the field tests . The ground truth was done by indexing back
the actual events on the video clip to the annotated output
of DETER on the CAD design of our lot (see Fig. 16).
Parking lot activity included walking and running of a single
individual, simultaneous walking of a number of individuals
(following crossing or parallel paths), driving of a single
and multiple cars, and finally a combination of cars and
humans in motion. As we explained earlier, staged events
included geometrically interesting walking patterns such as
the ones we callM-Patterns(see Fig. 15) and dangerous
driving. These events were identified as suspicious by the
Threat Assessment classifier.

DETER detected and tracked perfectly 554 objects out
of 666. In 77 instances, DETER has lost momentarily track
of the object but regained it very quickly. The result was
a split track. That was typically the case with pedestrians
as they ventured momentarily under the tree lines (summer
and early fall trials). Tracking was correctly resumed once
the pedestrians were again out of the tree line and in clear
view. We do not consider the split tracks of pedestrians as a
sign of algorithmic weakness. DETER employs a relatively
small number of cameras because it is a cost-sensitive ap-
plication. Therefore, during summer time when the trees are
fully bloomed, coverage under the tree lines is not perfect.
The problem can be solved by employing additional cam-
eras if split tracks prove to be a serious security loophole
(cost versus risk analysis). Alternatively, DETER can main-
tain the same number of cameras and recognize objects that
appear and disappear from the FOV within short time in-
tervals. To perform this recognition function, DETER needs
cameras with higher resolution to capture detailed features
of cars and especially humans. A solution would be to have
the DETER cameras equipped with automated zoom mech-
anisms. Then they will be able to zoom in momentarily on
every detected object and capture a detailed object signature.
This capability will increase exponentially the algorithmic
and software complexity of DETER.

Another type of event that was prone to split tracks was the
unparking of vehicles in the parking lot. As the vehicles back
up to get out of the parking stall, they stop temporarily before
they start moving forward. This results in the loss of track
association. This is a predictive tracking problem and not an
object segmentation problem. For all practical purposes, it
does not have any substantial effect on the intended use of
the system and we have decided to ignore it.

In a few occasions (16) where pedestrians were moving
next to each other (party of two), DETER correctly detected
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Fig. 16. Live video snapshot of a car moving out of the parking lot and its itinerary (line marked by
the letter D) as it is recorded by DETER at the CAD design level.

and tracked the motion but as a single object. This is a camera
resolution problem. If we covered less area with each camera
the resolution would have been better and the segmentation
of closely spaced moving objects more accurate. This loss
of information would have been important only if we were
interested in monitoring human interaction.

DETER produced a small number of false alarms. Four
of the five false alarms were produced in a snowy day as
accumulated iced snow was hovering from the top cover of
one of the cameras.

Finally, DETER missed altogether three objects—all
pedestrians. The puzzling thing is that all three cases were
recorded on a clear day and the objects were in clear view
of the cameras. The issue is under study. Although the

number of missed objects is small, it is clearly a concern
since it relates to DETER’s most important requirement—to
function as a sophisticated motion detector.

In general, the computer vision part of DETER and partic-
ularly the moving object segmenter performed very well for
the purposes of its intended use.

We have also set up a laboratory experiment to quantify
the performance of our latest moving object segmenter with
regard to the old moving segmenter modeled after [13]. The
experiment was geared to gauge the performance of the two
systems under frequent global illumination changes. The ex-
periment took place in our lab where we had a model train
that was running up and down a fixed track. During the ex-
periment, we were switching on and off some of the over-
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Fig. 17. Three different snapshots from the lab experimental
setup. The scene appears in three different lighting conditions.
One can notice the proximity in tones of the train and the floor
background.

head lights randomly from time to time to emulate the ef-
fect of passing clouds (see Fig. 17). The experiment run for
15 min. During this period, the model train made 30 passes
through the camera’s field of view and, thus, a perfect de-
tection and tracking performance would have produced 30
tracks. Table 3 shows the results of the experiment.

The older system modeled after [13] produced a rather
high number of instances of split and missed tracks verifying
the field test indications and our theoretical analysis (see Sec-
tion VI-B4). This behavior can be rectified if one lowers sub-
stantially the background threshold B that defines how many

Table 3
Experimental Results for the Comparative Experiment in the
Laboratory

of the distributions can be considered background at each
point. Of course, the system then performs at a high false
alarm rate, which is worse because it affects performance
during normal weather conditions. Our modified system ex-
hibited substantially better detecting power at only a slightly
higher false alarm rate.

X. CONCLUSION AND FUTURE WORK

We have presented DETER, a prototype urban surveil-
lance system for monitoring large open spaces. We have
provided the context of the current state of the security
market and how it affected the design of DETER. DETER
reliably tracks humans and vehicles both day and night. It
consists of a computer vision module and a threat assess-
ment module. The two primary components of the computer
vision module is the moving object segmenter and the
associated tracker. We have adopted the general approach
described in [13] . We have introduced, however, some
modifications that improve the performance of the system
when there is high frequency of global illumination changes.
Based on the object segmentation results, tracks are formed
using a MHT algorithm and external multicamera calibra-
tion is achieved through the computation of homographies.
The calibrated scene is mapped into the CAD design of the
area under surveillance to facilitate higher level reasoning.
The threat assessment module reports suspicious patterns
detected in the annotated trajectory data at the CAD level.
The threat assessor also uses the information produced by
the computer vision module to perform some nonsecurity
functions, like monitoring the capacity of the parking lot.

DETER is the result of compromise among lofty research
and development ideals and the business and market reali-
ties. It is characteristic that the information produced by the
computer vision module is used only for a small number
of relatively simple functions (e.g., motion detection, recog-
nition of a few specific motion patterns, and detection of
overspeeding). The current experimental users of the proto-
type find these features nearly overwhelming. Our ongoing
work focuses on the development of a more sophisticated
user interface that will allow naive users of the system to
introduce new behaviors at the CAD level by pointing and
clicking away. Additionally, we are working toward the im-
provement of the threat assessment module with the inclu-
sion of a clustering algorithm. The clustering algorithm will
help in the partial automation of the off-line training, cur-
rently performed manually.

DETER is scheduled for productization in 2002, after
the above mentioned improvements get incorporated into
the prototype. It is characteristic of the global nature of
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the security industry that the software maintenance of the
product (or service) has been assigned to the Honeywell
division in Bangalor India to keep the price competitive and
the marketing to the Honeywell Australian security division.

ACKNOWLEDGMENT

We would like to thank a number of individuals for con-
tributing to the success of this project, including K. Haigh,
M. Bazakos, J. Droesller, R. Van Riper, P. Reutiman, and T.
Faltesek.

REFERENCES

[1] J. A. Ratches, “Aided and automatic target recognition based upon
sensory inputs from image forming systems,”IEEE Trans. Pattern
Anal. Mach. Intell., vol. 19, pp. 1004–1019, Sept. 1997.

[2] Vsam home page [Online]. Available: www.cs.cmu.edu/
vsam/vsamhome.html

[3] R. T. Collins, A. J. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y.
Tsim, D. Tolliver, N. Enomoto, O. Hasegawa, P. Burt, and L. Wixson,
“A system for video surveillance and monitoring: Vsam final re-
port,” Robotics Institute, Carnegie Mellon Univ., Pittsburgh , PA ,
Tech. Rep. CMU-RI-TR-00–12, 2000.

[4] E. Stringa and C. S. Regazzoni, “Real-time video-shot detection for
scene surveillance applications,”IEEE Trans. Image Processing,
vol. 9, pp. 69–79, Jan. 2000.

[5] C. Sacchi and C. S. Regazzoni, “A distributed surveillance system
for detection of abandoned objects in unmanned railway environ-
ments,” IEEE Trans. Veh. Technol., vol. 49, pp. 2013–2026, Sept.
2000.

[6] X. Gao, T. E. Boult, F. Coetzee, and V. Ramesh, “Error analysis of
background adaptation,” inProc. 2000 IEEE Conf. Computer Vision
and Pattern Recognition, vol. 1, Hilton Head Island, SC, June 2000,
pp. 503–510.

[7] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking of non-
rigid objects using mean shift,” inProc. 2000 IEEE Conf. Computer
Vision and Pattern Recognition, vol. 2, Hilton Head Island, SC, June
2000, pp. 142–149.

[8] D. Ormoneit, H. Sidenbladh, M. J. Black, T. Hastie, and D. J. Fleet,
“Learning and tracking human motion using functional analysis,”
in Proc. 2000 IEEE Workshop Human Modeling, Analysis and Syn-
thesis, Hilton Head Island, SC, June 2000, pp. 2–9.

[9] N. M. Oliver, B. Rosario, and A. P. Pentland, “A bayesian computer
vision system for modeling human interactions,”IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 19, pp. 1004–1019, Sept. 1997.

[10] C. H. Anderson, P. J. Burt, and G. S. V. D. Wal, “Change detection
and tracking using pyramid transform techniques,” inProc. SPIE
Int. Soc. Opt. Eng., vol. 579, Cambridge, MA, Sept. 16–20, 1985,
pp. 72–78.

[11] I. Haritaoglu, D. Harwood, and L. S. Davis, “W/sup 4/s: A real-time
system for detecting and tracking people in 2 1/2d,” inProc. 5th Eur.
Conf. Computer Vision, vol. 1, Freiburg, Germany, June 2–6, 1998,
pp. 877–892.

[12] T. Kanade, R. T. Collins, A. J. Lipton, P. Burt, and L. Wixson,
“Advances in cooperative multi-sensor video surveillance,” inProc.
DARPA Image Understanding Workshop, Monterey, CA, Nov.
1998, pp. 3–24.

[13] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture
models for real-time tracking,” inProc. 1999 IEEE Conf. Computer
Vision and Pattern Recognition, vol. 2, Fort Collins , CO, June
23–25, 1999, pp. 246–252.

[14] , “Learning patterns of activity using real-time tracking,”IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, pp. 747–767, Aug. 2000.

[15] A. Elgammal, D. Harwood, and L. Davis, “Non-para-
metric model for background subtraction,” inProceedings
IEEE FRAME-RATE Workshop, Corfu, Greece , Sept. 2000,
www.eecs.lehigh.edu/FRAME.

[16] L. Lee, R. Romano, and G. Stein, “Monitoring activities from mul-
tiple video streams: Establishing a common coordinate frame,”IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, pp. 758–767, Aug. 2000.

[17] K. Kanatani, “Optimal homography computation with a reliability
measure,” inProc. IAPR Workshop Machine Vision Applications,
Makuhari, Chiba , Japan, Nov. 1998, pp. 426–429.

[18] , Statistical Optimization for Geometric Computer Vision:
Theory and Practice. Amsterdam, The Netherlands: Elsevier,
1996.

[19] R. Hartley and A. Zisserman,Multiple View Geometry in Computer
Vision. Cambridge, U.K.: Cambridge Univ. Press, 2000.

[20] W. E. L. Grimson, C. Stauffer, R. Romano, and L. Lee, “Using adap-
tive tracking to classify and monitor activities in a site,” inProc.
1998 IEEE Conf. Computer Vision and Pattern Recognition, Santa
Barbara, CA, June 23–25, 1998, pp. 22–29.

[21] B. K. P. Horn,Robot Vision. Cambridge, MA: MIT Press, 1986,
pp. 66–69.

[22] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm (with discussion),”J.
Roy. Stat. Soc. B, vol. 39, pp. 1–38, 1977.

[23] P. Tsiamyrtzis, “A Bayesian approach to quality control problems,”
Ph.D. dissertation, School of Statistics, Minneapolis, MN, 2000.

[24] H. Jeffreys,Theory of Probability. London, U.K.: Oxford Univ.
Press, 1948.

[25] J. Lin, “Divergence measures based on the Shannon entropy,”IEEE
Trans. Inform. Theory, vol. 37, pp. 145–151, Jan. 1991.

[26] G. J. McLachlan and K. E. Basford,Mixture Models Inference and
Applications to Clustering. New York : Marcel Dekker , 1988.

[27] S. S. Blackman,Multiple-Target Tracking with Radar Applica-
tions. Norwood, MA: Artech House , 1986.

[28] D. B. Reid, “An algorithm for tracking multiple targets,”IEEE
Trans. Automat. Contr., vol. 24, pp. 843–854, 1979.

[29] I. J. Cox and S. L. Hingorani, “An efficient implementation of reid’s
multiple hypothesis tracking algorithm and its evaluation for the pur-
pose of visual tracking,”IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 18, pp. 138–150, Feb. 1996.

[30] W. Buntine, “Learning classification trees,”Stat. Comput., vol. 2,
no. 2, pp. 63–73, 1992.

[31] “World security services to 2004,” The Freedonia Group , Tech. Rep.
1348, 2000.

Dr. Ioannis Pavlidis (Senior Member, IEEE) re-
ceived the B.S. degree in electrical engineering
from the Democritus University, Greece, the M.S.
degree in robotics from the Imperial College of
the University of London, and the M.S. and Ph.D.
degrees in computer science from the University
of Minnesota.

He joined the Honeywell Laboratories, Min-
neapolis, MN, immediately upon his graduation
in January 1997. His expertise is in the areas of
computer vision beyond the visible spectrum and

pattern recognition of highly variable patterns. He published extensively in
these areas in major journals and refereed conference proceedings over the
past several years. He is the co-chair of the IEEE series of Workshops in
Computer Vision Beyond the Visible Spectrum and serves as a Program
Committee member in several other major conferences.

Dr. Pavlidis is a Fulbright Fellow and a Member of ACM.

Vassilios Morellas(Member, IEEE) received the
B.S. degree in mechanical engineering from the
National Technical University of Athens, Greece,
the M.S. degree in mechanical engineering from
Columbia University, and the Ph.D. degree in me-
chanical engineering from the University of Min-
nesota.

He has been with the Honeywell Laboratories,
Minneapolis, MN, since 1998. His expertise is in
the areas of computer vision, sensor integration,
and learning theories as they apply to enhancing

robot autonomy and advancing machine intelligence. Prior to his current po-
sition, he pioneered the SAFETRUCK research project while working at the
University of Minnesota as a Research Associate. SAFETRUCK success-
fully demonstrated the use of differential GPS (global positioning system)
and radar sensing technologies to enhance safety of semi-tractor-trailers
by developing lane departure detection and collision avoidance systems.
SAFETRUCK won the second prize in the 1997 ITS World GPS Showcase
competition.

1496 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 10, OCTOBER 2001



Panagiot Tsiamyrtzis received the B.S. degree in mathematics from the
Aristotle University, Greece, and the Ph.D. degree in statistics from the Uni-
versity of Minnesota.

He served as a faculty member in the Department of Statistics of the Uni-
versity of Minnesota in Fall 2000. He is currently with the Greek Army. His
expertise is in the area of quality control.

Dr. Tsiamyrtzis was the recipient of the best student paper award in 2000
from the American Statistical Association.

Steve Harp received the Ph.D. degree in
psychology (program in perception) from North-
western University in 1986, where his research
was on the perception of visual motion and
camouflage, and the M.S. degree in statistics
from the University of Minnesota in 1994.

He has been with the Honeywell Laboratories,
Minneapolis, MN, since 1985, when he was first
employed as an intern. Since then, he has worked
on a wide range of projects involving artificial
intelligence, statistical analysis, communications

networks, and user interfaces. He has delivered numerous public talks and
papers on these topics.

Dr. Harp is the recipient of two technical achievement awards and the
Honeywell Sweatt award. He is a Member of the American Statistical As-
sociation and the American Association of Artificial Intelligence.

PAVLIDIS et al.: URBAN SURVEILLANCE SYSTEMS 1497


