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Abstract—We undertook a study to determine if the automatic These include the risks of high-speed pursuit in lanes ad-
detection and counting of vehicle occupants is feasible. An auto- jacent to stop-and-go traffic and the deterioration of traffic

mated vehicle occupant counting system would greatly facilitate flow when tickets are issued during peak commuting pe-
the operation of freeway lanes reserved for buses, car-pools, and riods

emergency vehicles (HOV lanes). In the present paper, we report - . .
our findings regarding the appropriate sensor phenomenologyand ~ 3) It will enable the state agencies to offer the option to
arrangement for the task. We propose a novel system based on fu- single drivers to use some HOV lanes for a nominal
sion of near-infrared imaging signals and we demonstrate its ade- monthly fee.

quacy with theoretical and experimental arguments. We also pro-

pose a fuzzy neural network classifier to operate upon the fused A complete HOV monitoring system suitable for the above
near-infrared imagery and perform the occupant detection and applications will consist of an occupant detector and a license
counting function. We demonstrate experimentally that the com- 4 reader. Although substantial work has been reported in the

bination of fused near-infrared phenomenology and fuzzy neural - . L
classification produces a robust solution to the problem of auto- technical literature regarding license plate readers [1]-{3], work

matic vehicle occupant counting. We substantiate our argument by for automated vehicle occupant detectors and counters is still
providing comparative experimental results for vehicle occupant in its infancy. There are three major technical challenges in the

counters based on visible, single near-infrared, and fused near-in- development of an automatic vehicle occupant detector/counter.
frared bands. Interestingly, our proposed solution can find a more

general applicability as the basis for a reliable face detector both 1) The imaging signal should provide a clear picture of the

indoors and outdoors. interior of the vehicle. The contrast between the human
Index Terms—Fuzzy neural network, near-infrared fusion, ve- silhouettes and the background should be sufficient to
hicle occupant detection. provide for reliable image processing.

2) The pattern recognition algorithm that performs the ve-
hicle occupant detection and counting should exhibit high
recognition rates and robust behavior. Of course, its per-

HERE are compelling reasons for the existence of an auto-  formance depends to a significant degree on the quality of
matic vehicle occupant counting system in the HOV lane.  the imaging signal. Even the best pattern recognition al-

In particular, such a system will be useful in the following re- gorithm cannot perform reliably when the imaging signal

spects. is corrupted with noise.

The system architecture should be designed in such a way

that will ensure accuracy, real-time operation, and protec-

tion from the weather elements.

|I. INTRODUCTION

1) It will facilitate the gathering of statistical data for road 3)
construction planning. The gathering of usage statistics in
the HOV lane is mandated by the U.S. Federal Highway
Administration. Currently, the gathering of data is per- In earlier publications [4], [5], we reported preliminary re-
formed manually. This is obviously laborious, inefficientsults regarding only the first technical challenge (sensor phe-
and prone to error. nomenology). In this paper, we address all three technical chal-

2) It will facilitate law enforcement in the HOV lane. Cur-lenges. We describe a novel near-infrared fusion system that
rently, HOV lane enforcement requires substantial comrovides high-quality imaging signal both during the day and at
mitments of State Highway Patrol personnel and equipight and in certain adverse weather conditions. Various sensor
ment. HOV lane enforcement has other costs as wellision methods that increase the quality of the imaging signal

and boost system performance have been reported in the litera-
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Fig. 1. The electromagnetic (EM) spectrum.

the fuzzy neural network algorithm for occupant detection an ;g4
counting and provide test results of its performance on sing|
band and fused near-infrared imagery as well as on visible bai
imagery. In Section IV, we describe the system architecture ¢ 80
our prototype vehicle occupant counter. Finally, in Section i
we conclude the paper and briefly mention our ongoing and fig 60
ture work.

Il. THE IMAGING PROBLEM 40

Transmittan

Our research for a solution to the imaging aspect of an HO'
system (sensor phenomenology) was guided by the followin
questions.

\

1) Isthere a band in the electromagnetic (EM) spectrum th:
can penetrate through the vehicle’s window glass, durin
day and at night and in adverse weather conditions? Do
the objects of interest (vehicle occupants) have a consigg. 2. Transmittance of a typical tinted vehicle window. Measurements were
tent appearance in this EM band, irrespectively of thegarried out with a Varian Cary 2400 Spectrophotometer.
physical characteristics?

2) I therg IS more _than one bar_ld, can we fuse the_ mump&ﬁow common in certain vehicle types) prohibits a clear view of
bands in a_r_neamngful way to increase the detecting POWRE \ehicle's interior to visible range sensors (see Fig. 2). Also,
and reliability of th_e system? visible range sensors are incapacitated during foul weather con-

3) Are there appropnate.cameras for these. bands that haYt‘?ons. Finally, vehicle occupants produce variable patterns in
the necessary resolution and speed to live up to the {ga \isible range, depending on their physical characteristics,
quirements of the problem? time of day, and illumination conditions. This variability makes

Fig. 1 shows the EM spectrum. We have limited our senstte machine vision task much more difficult.

phenomenology investigation into the infrared and visible spec-From the above discussion, itis apparent that only the infrared
trum regions. Nature constraints our choices below the visibii@nge holds promise for a solution to the problem. Within the in-
spectrum, since, gamma rays, X rays, and ultraviolet radiatitbared range two bands of particular interest are the reflected-in-
are harmful to the human body. Therefore, the typically actifeared (0.7-3.Q:m) and the thermal-infrared (3.0-5.n and
systems in these ranges cannot be employed in the HOV laB€—-14.0:m) bands. The reflected infrared band on one hand is
Technology constrains our choices beyond the infrared regi@ssociated with reflected solar radiation that contains no infor-
since millimeter-wave and radio-wave imaging sensors are vangation about the thermal properties of materials. This radiation
expensive, bulky, and with insufficient resolution [9]. Still, thds for the most part invisible to the human eye. The thermal in-
visible plus the infrared range is a huge area of the EM spdtared band, on the other hand, is associated with the thermal
trum and we had to identify narrow bands within this area thptoperties of materials. The opacity of far-infrared (8.0-14.0
are appropriate for the task. wm) is well documented in the literature [10]. We soon found

We know from experience as humans that the visible spdbat the mid-infrared (3.0-5.0m) was also difficult to be ex-

trum has certain disadvantages for the purpose of this particuinited for HOV purposes because vehicle glass severely atten-
application. A visible range sensor (like the human eye) canndates EM radiation beyond 24 (see Figs. 2 and 3).

easily see at night unless it is aided by an atrtificial illumina- Fortunately, a major portion of the reflected-infrared range,
tion source. Employing a visible range flashlight to illuminatéhe so-called near-infrared range (0.7—-2m), appeared very
the passing vehicles is definitely not an option since it will dissuitable for the application at hand. In particular, we found the
tract the drivers with probably fatal results. Tinted window glagdsllowing.

03 08 13 18 23 28 33 38 43 48

Wavelength (microns)



74 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 1, NO. 2, JUNE 2000

A A
100 100
Upper curve: clean glass
- Lower curve: dirty glass
§ 80 F \\‘\ — 80 ' Upper curve: clean glass
i / ™ / 1 = f/ \
8 Y ) Mﬂ\/ - % f i Lower curve: dirty glass
\ \
60 l Yo g o0 | )
-E ‘I,f\»" R £ ! \\
S| - » '| g |
N z ; \
& T T ‘ 40| \ ///\ T
N o = N /ST a
20 W My ,‘ | \ \ o | g
! 20| = \\ . e ) 1’ A j// %
| N I // RV RN \Hﬂ N )
N \\,_._ — N x/“’\\\
0 0 " i
0.4 0.8 1.2 1.6 2.0 2.8 03 0.8 1.3 18 23 28

Wavelengths (microns)

Wavelength (microns)

Fig. 3. Transmittance of a typical nontinted vehicle window. Measuremerfgg. 4. Transmittance of an EZKOOL class of vehicle window. Measurements

were carried out with a Varian Cary 2400 Spectrophotometer.

were carried out with a Varian Cary 2400 Spectrophotometer.

1) A camera in this range can safely operate in the HOV

2

~

lane both during day and at night. In low-light conditions
(nighttime, overcast skies) we would need a matchinc
near-infrared illumination source to enhance the scene
Provided that the spectral signature of the illumination
source is deep into the near-infrared range, the light will
be invisible to the human eye. Therefore, no danger to dis
tract the attention of the driver exists.

A camera in this range can “see through” the vehicle’s
windows. The transmittance of typical vehicle windows
in the near-infrared spectrum is at least 40% (see Figs.
and 3). Transmittance remains high across the near-ir
frared band and, therefore, only a portion of the banc
could provide sufficient energy for the operation of an
HOV system. There is an exotic category of vehicle
windows, however, the so-called EZKOOL class that
attenuates near-infrared illumination unevenly and more

severely (see Fig. 4). Currently, only a very small number @
of luxury cars, like the Oldsmobile Aurora, feature
EZKOOL windows. To image effectively the interior

of these vehicles the full length of the near-infrare " y - i
spectrum should be employed. .
3) A camera in this range can operate in certain adver

4)

weather conditions. For example, it has been establist
that the near-infrared spectrum is particularly good i
penetrating haze (see Fig. 5). The explanation for tF
phenomenon lies in the size of the droplets in haze, whi
is smaller than the near-infrared wavelengths. This pro
erty is particularly useful in metropolitan areas wher
haze conditions are endemic (e.g., San Francisco).
If the near-infrared range is split into two bands arour
the threshold point of 1.4m, thelower band(0.7-1.4
wm) and theupper band1.4-2.4,.m), then vehicle occu-
pants will produce consistent signatures in the respecti
imagery. In the upper band imagery, humans will appe
consistently dark irrespectively of their physical char- (b)
acteristics and the illumination conditions. In the lower.

band imagery, humans will appear comparatively IighteE

ig. 5. Natural scene bathed in haze. (a) Image captured with a visible band
amera. (b) Image captured with a near-infrared camera (Sensors Unlimited

This is because human skin appears to have very high-329.



PAVLIDIS et al: A VEHICLE OCCUPANT COUNTING SYSTEM 75

A A
70 Upper curve: dark skin 70
60 Lower curve: light skin
—~ 30 =
g 30 / Py | &
8 /‘ é
B 20 /
R P 10
10
0 0 >
> 0.6 1.0 1.4 1.8 22 26
04 06 1.0 1.4 1.8 2.2 26

Wavelength (microns)
Wavelength (microns)

Fig. 8. Reflectance of different fabric materials. Measurements were carried
Fig. 6. Reflectance of dark skin versus light skin. Measurements were carr@ggt with a Varian Carry 2400 Spectrophotometer.
out with a Varian Cary 2400 Spectrophotometer.
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Varian Cary 2400 Spectrophotometer.

Fig. 9. Reflectance of typical leather upholstery. Measurements were carried
) out with a Varian Carry 2400 Spectrophotometer.
reflectance just before 1.4m but very low reflectance

just after 1.4um (see Fig. 6) [11], [12]. an image from the lower band from its matching coregistered

We found that the intriguing phenomenon of the abrupf’@ge in the upper band we can produce a fused image where:
change in the reflectance of human skin around A is 1) the silhouettes of the vehicle occupants’ faces will be re-
due to the water content of the human body. Water absorbs inforced (big difference) and more clearly stand out;
heavily near-infrared radiation above 1 (see Fig. 7) and  2) the background will dim away (small difference).
thus appears as black body in the respective imagery. Humdimgs increased contrast will facilitate a clean-cut segmentation
consist 70% of water and therefore they exhibit spectral bef the fused image. The thresholded result will be an image
havior very similar to the water. Interestingly, other inanimatehere only the face blobs of the vehicle occupants remain and
objects in the vehicle scene maintain their reflectance levelgerything else is eliminated. A good classifier will always clas-
almost unchanged, below and above the threshold pointrh.4 sify fast and accurately such a simple binary pattern, ensuring
[13]-[15]. For example, see Fig. 8 for the reflectance diagrarttse reliable real-time operation of the HOV system.
of some fabric materials commonly found in the interior of The near-infrared camera we found most appropriate to
vehicles. Fig. 9 is especially interesting because it depicts thee for testing our ideas was the Sensors Unlimi&d320
reflectance diagram of a special material: leather upholste($25 000 at 1999 prices). In terms of spectral response it was
The reflectance of leather upholstery also remains stablel@ss than perfect because it did not cover the entire spectral
the near-infrared despite its superficial affinity to animal skirband we were interested in (0.7-2.4n). Instead, it covered
It is not the skin per se that produces the singular reflectantte subband 1.1-1.4m for the lower band and 1.4-1//m
behavior but what is hidden below the skin, that is, the watéar the upper band. These subbands are sufficient for all but
content of the human body. This observation provoked tliee EZKOOL class of vehicle windows. An alternative camera
following line of thought: Ideally, everything but the humarsolution, theSYS256RMyy Santa Barbara Focalplane, that
skin signature should appear proportionally the same in thevers the entire near-infrared band costs three times as much
HOV imagery from the two bands. Therefore, by subtracting75000 at 1999 prices). Because the current number of
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vehicles featuring EZKOOL glass is very small, we opted for a TABLE |

significantly more economical solution at the expense of some RELEVANT RADIOMETRIC FACTORS
accuracy. Our choice was influenced by practical budgetary —Sun Irradiance (Overcast) 8 uW/cm?
constrains of Transportation Departments for this kind of  Windshield Trasmittance (Dirty) 40%
applications. The imaging question we had to address, given Camera Lens. £
our hypotheses and the particular camera model available, was Lens Transmittance 40%

. X ) ) Polarizer Transmittance 40%

if the signal-to-noise{/N) ratio and the speed of the camera Band Pass Filter Transmittance 0%,
would live up to the task. The complete set of calculations Focal Plane Array Area 140 ¥ 105 o
and the interpretation of their results are described in the next

subsection.

We already know the values @#* and A. In order to compute
A. Theoretical Computations the NEP we n.eed to also know the vglueﬁof. The bandwidth
) _ ) ) Af is determined by the exposure time (speed) of the camera.
Our hypotheses, as described in the previous section, hglqyrm, the exposure time depends on the vehicle speethe
great promise. Nevertheless, before we could proceed with aymera’s Instantaneous Field Of View (IFOV), the rarige
experimentation we had to determine if given the particulaig the footprint of the horizontal translatigy,. ). Based on

SU-320camera specifications the parameters, IFOV, =, and f,; we compute the required
1) we would have had an imaging signal with sufficiéiity ~ exposure time (speed) of the camera such that the image smear is
ratio: less than 1 pixel. Then, we check if the exposure time value falls

2) the Speed of the camera would have been sufficient to C;thhln the Operational range of tigJ-320camera. If it doeS, the

ture the vehicle passengers moving at an average speeg@df320camera is adequate for the HOV task in terms of speed.
65 mi/h (freeway speed). We can substitute the corresponding value for the bandwhdth

) ) in (2) and continue the process of computing HéV ratio.

As we stated earlier, we consider two spectral bands, onerjg. 10 shows the configuration of ti4J-320camera relative
above the 1.4+m threshold point and one below it. We asig ine oncoming traffic. The camera is locatgg,ua = 3.6 m
sume that twdsU-320cameras would film simultaneously thegpove the 9roUNG;ceway = 7.5 M off the edge of the freeway,
same scene. One camera would be equipped with an upper baRd 4t 5 distance of = 40 m from the oncoming traffic. This
filter and one with a lower band filter. Both cameras would bgyrangement ensures that the camera is located in a safe place
equipped with a polarizer during daytime to reduce solar glarghq has the appropriate field of view. We assume that the camera
They would also be equipped with a tele-photo lens. Becaus&gfyses at the centerline of the incoming vehicle, at the level of
constrains due to the quantum efficiency of 8lg-320camera ihe occupants’ face§gouwma = 1.2 m). The half width of a
we limit the upped band to the range 1._4—/]m7! and the lower gtandard freeway lane idne = 1.8 m. We assume that the
band to the range 1.1-1/4m. As we will prove, these trun- yepicle travels in the middle of the freeway lane. Therefore, the

cated near-infrared ranges allow the acquisition of usable ifgrerg| distance of the vehicle’s centerline from the camera is
agery for vehicle windshields that feature at least 40% transmit-
Cvehicle = Cfreeway + Wiane = 75+ 1.8=93m (3)

tance (dirty, non-EZKOOL windows). We will demonstrate our
S/N computation for the lower band only, since very similafinally, we assume that, for a typical vehicle’s windshield, the
results also apply to the upper band. average width and height at&,;, = 1.5 m andh,,;, = 0.9 m,

We assume that the camera is pointed at the vehicle’s wi@spectively.
shield, not at the side-window. For all practical purposes, the The IFOV isthe camera’s field of view with respect to a single
Department of Transportation is primarily interested if passirijx€l (see Fig. 11). We assume that the distarids approxi-
vehicles carry at least one more person (“the passenger”) in egtely equal to the camera’s rangér’ ~ r = 40 m). Then,
dition to the driver. The passenger usually sits in the front of tfiée IFOV can be computed from the following equation:
vehicle. The radiant power on the camera pixel is given from the arctan [(hyin/2) /7]
following relation: IFOV =

(hrra/2)

=0.0001 rad (4)

-Ppixel =A* Iamera

=0.084 %1072 W (1) where hppa = 240 pixelsis the vertical dimension of the
) SU-320Focal Plane Array (FPA).
where A is the area of thesU-320Focal Plane Array (FPA)  attimet, the camera’s IFOV sees a small portion of the occu-
and/camera IS the irradiance at the camera’s FPA. The value @fanps face of diameted. This small face area is what is imaged

Icamera Can be computed from the radiometric factors listed ipig 5 single pixel. We can determine the valueldfrom the
Table I. The factor values were chosen to reflect a typical WORgfilowing equation:

case scenario.
The camera’s detectiviti* is D* = 10*? cm—/Hz/W. The D 2= IFOV xr
Noise Equivalent Power NEP is related to detectivity, pixel =0.004. (5)

areaA, and electronic bandwidth f by the following equation: o _ _
The angléd in Fig. 11 is the angle between a horizontal plane

NEP = (A4 x Af)l/Q/D*. (2) and the optical axis of the camera. Because we have assumed
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Fig. 10. Configuration of the camera set.

We assume that the vehicle occupants travel at the nominal
freeway speed of = 65 mi/h orv = 29.3 m/s. At this freeway
speed the footprinf, is covered during time;

tf = fht/v
=2.28 ms. (8

Therefore, the exposure tinig.,osure Of the camera should be
texposure < 2.28 ms if we would like to have image smear of not
more than 1 pixel. The operational range of 81¢-320camera
in terms of exposure time is 127s—16.3 ms. Therefore, the
required exposure time Gfxposure < 2.28 ms is within the
camera’s operational range or, in other words, the speed of the
SU-320is up to the HOV task. We choose to set the exposure
time of the camera to 1 méu{,oewre = 1 Ms< 2.28 ms) which
corresponds to a bandwidth &ff = 1 kHz.

Now, that we have addressed the speed question and we know
the value ofA f, we can substitute the values fér A f, andD*
gn (2) and calculate the NEP

NEP=1.18 x 10~ 3 W. 9)

Direction of vehicle’s movement

Fig. 11. Geometry for the computation of the footprint of a single pixel in
horizontal plane.

. Therefore, the camera signal-to-noise rafjaVv will be
that the camera is focused at the level of the occupants’ faces 9 Jov

(see the geometry in Fig. 10), the angles S/N = Ppixe/NEP=0.7. (10)

In conclusion, assuming a typical worst case scenario
(overcast day, dirty windshield) we determined that$tue 320
camera, equipped with &/ lens, a 1.1-1.4:m filter, and a

=3.43. (6) polarizer, if it is positioned at a distance of= 40 m from the
incoming vehicle and at a height af.ouna = 3.6 m above the
Since we know the values fdp and#, from the geometry of ground, will achieve the following.
Fig. 11 we can compute the footprirfit, of a single pixel's
horizontal translation

Cground — Pground

f = arctan -

I's

1) An acceptable smear of less than one pixel because the
required exposure time of 1 ms is within the camera’s
speed capabilities.

fnt =D /sin(0) 2) A poor signal-to-noise rati6/N = 0.7. To boost the
=0.067 m @) S/N ratio to a higher value on overcast days we need to
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TABLE I Fig. 12(a) and (b) shows the images from a particular scene in

S/N RATIOS FORDIFFERENTDAY CONDITIONS AND SPECTRAL BANDS the upper and lower bands. The scene is quite interesting be-
[11-14pm [14-17Tpm cause it features as a passenger a mannequin and not a real

Clear Day 700.0 500.0 human. One can observe the significant brightness difference

Overcast Day 0.7 0.5 on the face of the driver between the two images. In contrast,

the face of the mannequin and all the other inanimate objects
in the scene maintain about the same brightness levels in both

employ an illumination source. This illumination sourcéands.
will also be useful during nighttime. If we operated inthe The image in the upper band is subtracted (fused) from the
visible spectrum the use of illuminator in the HOV langmage in the lower band and produces the image in Fig. 12(c).
would be prohibitive. Fortunately, in our case, the speqhe weighting factor (coefficient) of the subtraction is deter-
tral signature of the illuminator should match the ranggined on-line based on the relative readings of the HOV pho-
1.1-1.7um. Since this range is deep into the near-inometers in the upper and lower band. Because the illumina-
frared spectrum there is no danger of distracting the drivgén source of the HOV system continuously adjusts its power
and the illuminator can be safely employed in the HOYo maintain relatively steady and even illumination levels in the
lane. Contrary to the overcast sky scenario $/i& ratio  scene, the subtraction coefficient is usually closeand rarely
is exceptionally good in the case of a clear day in boffakes values abo& The fused image is cropped to the approx-
bands (see Table ). Therefore, in clear day conditiongate area of the windshield only. This area is computed based
the system can work passively without any use of artifon the camera geometry and the information provided by a radar
cial light source. sensor regarding the position and speed of the incoming vehicle.
The cropping ensures that the image subtraction operation ap-
plies only to objects found in the interior of vehicles (such as

Based on the above theoretical scenario we designed and upholstery, faces, and clothes). We have studied the reflectance
plemented a prototype HOV counting system in one of the Dproperties of such objects well and we anticipate excellent be-
partment of Transportation’s traffic monitoring and research faavior for our dual-band imaging method.
cilities (Mn/Road) in Minneapolis. During experimentation we The image in Fig. 12(c) demonstrates clearly the increase
found that lighting conditions change continuously even in relaf the brightness levels in the face of the driver (real human)
tively stable weather conditions. ConsequerfijfV ratios fluc- and the diminution of the mannequin’s head and the rest of the
tuate between the extreme values listed in Table Il all the tim@ackground. This allows for nearly perfect segmentation of the
We also found that/N ratios above 250 are essential to theriver's face in Fig. 12(d). The thresholded image has been nor-
flawless operation of the system. We addressed this problemalized in terms of position (face blob is aligned to top row) and
by outfitting the HOV counter with a sophisticated light mansize to facilitate subsequent processing by a pattern recognition
agement system that senses the near-infrared light levels in &hgorithm. The mannequin has been eliminated altogether since
scene and automatically adjusts the power levels of the artifiis an inanimate object with no water content in its body sim-
cial illumination sources, so that a minimuy N > 250 is ilar to that of a human being. Therefore, like the other inanimate
maintained at all times. Establishing the minimum acceptaldjects in the image the mannequin does not change abruptly its
illumination levels is very important. It allows us not to overreflectivity around 1.4:m. One should also notice the glimpse
power the scene with excessive illumination and either thwaot the driver's hands in the final thresholded image. In general,
the image or cause harm to the eyes of people that for somehis final stage, live, uncovered human skin is the only object
strange reason look toward the illuminator for prolonged péhat appears in the image. Fig. 12(d) demonstrates the primary
riods of time. Although, near-infrared light is not sensed by thedvantage that our imaging method provides. It seals away the
human eye, it still enters the retina and its raw energy shoutémendous variability that would otherwise be introduced be-
be regulated. Also, maintaining relatively steady scene illumiause of light changes and skin color. Instead, it provides the
nation levels(250 < S/N < 500) by continuously adjusting pattern recognition algorithm with a simple and consistent bi-
the illumination source, simplifies the image processing task ivary pattern featuring a face blob for each vehicle occupant.
general. The images in Fig. 13 show typical scenes in the visible

An additional implementation challenge was presented by thand during day- and nighttime. Although, the image quality
theoretical requirement for perfect coregistration between ttserather fair during daytime (provided the vehicle’s window is
lower and upper band cameras. This coregistration is essential tinted), it is unacceptable during nighttime where $iiévV
for the performance of the image fusion (weighted subtractiomitio is almost zero. The worst is that this deficiency cannot be
We solved this problem by providing an optical signal splitterectified since the employment of a visible illuminator would
between the two cameras. The optical splitter functions simgiause safety hazards.
taneously as a bandpass optical filter funneling the lower band
light signal of the scene into one camera and the upper band
into the other. More details about the architecture of the HOV
counter are provided in Section IV.

The prototype HOV counting system became fully functional After having solved the imaging problem we concentrated
in February 2000 and it has undergne regular testing since theut attention to the algorithmic aspect of the HOV system. We

B. Experimental Validation

I1l. V EHICLE OCCUPANT DETECTION AND COUNTING
ALGORITHM
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@ (b)

© (d)

Fig. 12. Scene with a driver and a mannequin. (a) Lower band image. (b) Upper band image. (c) Weighted difference (fusion) between images (a) and (b).
(d) Thresholded outcome of image (c).

chose to perform the counting of vehicle occupants witha neural  easier and less expensive ground-truthing, an important
network. During neural network operation, output neurons (see  factor in a cost-critical endeavor such as ours.
Fig. 14) are assigned symbolic meaning by encoding classe?) Stable Categorizationlhis property is related to the de-
of images. In our case, each class corresponds to a different gree that a neural network forgets categories (patterns)
number of vehicle occupants. In particular, we opted for afuzzy ~ which it had encountered in the past. This is the so-called
neural network that implements the Adaptive Resonance Theory  stability—plasticitydilemma. The ART network features a
(ART). This type of neural network features a series of ap-  feedback mechanism between the layers that helps solve
pealing properties for the application at hand. the stability—plasticity problem. This feedback mecha-
nism facilitates the learning of new information without
1) Self-OrganizationThis is a property that characterizes destroying old information. Most important, stable cate-
the operation of the neural network. In self-organized gorization is maintained even at a fast learning pace.
networks there arao distinct training and performance  3) Broad and Narrow ClassificatiorART networks have an
phases Instead, a certain metric (i.e., fuzzy metric for explicit parameter calledgilancethat controls their gen-
Fuzzy ART networks) is used for measuring similarity of eralization capability. In other words, vigilance controls
inputs in the feature space and a learning procedure en- the formation of broad and narrow classifications. This
ables the clustering of inputs into classes. Therefore, in  control is very useful in the presence of highly variable
contrast to supervised learning networks (i.e., back-prop-  patterns of vehicle occupants.
agation), Fuzzy ART networks do not need external guid- 4) Fuzzy Classification.The incorporation of fuzzy set
ance for training on specificinput sets. This translatesinto  theory into the operation of ART networks addresses the
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(I1, I, ..., In). Inour application each input node represents
the gray level intensity of a pixel

I;el0,1], Vje(l,2, ...,N). (11)

Specifically, N = 320 x 240 and represents the number of
pixels in a standard subimage we are extracting from each
frame. The subimage is centered on the window area of the
incoming vehicle. The vehicle window is located based on the
camera geometry, information regarding the speed and position
of the incoming vehicle provided by the HOV radar, and the
Hough transformation. The input vectdr is augmented to
achieve input normalization through a process that is called
complement coding. The complement coded input vedtor
becomes & N-dimensional vector

P= (f, fC)z(Il, I IE IS (12)

wherel? = 1-1;. One may observe that the complement-coded
input P is normalized since

|ﬁ|=‘(f’—f;) Iifi+<N—ifi>=N- (13)
i=1 i=1

The M nodes in the output layer represent the classification
categories. In our application we have two image classes: the
one-occupant class (single driver) and the two-occupant class
(driver and front passenger). To have these classes established
we initially present to the network one representative image
(b) of each class. The presentation order is importary for the
assignment of symbolic meanings to the output neurons. The
first image we present depicts a single occupant and for that
reason the leftmost output neuron symbolizes the single-occu-
pant class. The second image we present depicts two occupants
and, consequently, the next output neuron symbolizes the two-
occupant class. If the initial presentation order was reversed so
would the meaning of the output neurons. If during network op-
eration, output neurons besides the first two are activated, that
means that the neural network mistakenly did not classify the
incoming image as one of the only two possible cases. Instead,
it started forming new unknown categories (clusters) where it
assigns the misclassified patterns.

Each output neuron; is associated with a vector
w; = (w1, wye, ..., wey) of adaptive weights that represent
the knowledge that the neural network retains at the current
. _ time. The values of the elements of this vector change during
Fig. 14.  ART networks are two-layer neural modules. There exists a compl hee neural network operation. Initially, they all have unit values.
set of bottom up weights from the input layer (dark box) neurons to the out 2 )
layer (light box) neurons. The size of the adaptive weights, which change For a typical input?, a choice functiori; is computed for
through learning, is graphically denoted by the different size of the blobs tr@\‘/ery output neuron as

surround the output neurons. The light colored output nedr@nthe category
selected for the present input. S

Ty(P) = ——— (14)

Fig. 13. Visible band images. (a) Daytime. (b) Nighttime.

problem of disambiguating overlapping categories with

minimum risk. where the fuzzy AND operaton is defined by(Z A ¥); =

min(z;, y;) and| e | represents the Hamming distance norm.
The choice function measures the degree to which the weight
Fuzzy ART neural networks are comprised of an input layeectorw; is a fuzzy subset of the inpl}?. There is only one

Fy and an output laye#; [16]. The typical structure of an neuron that is activated for a particular inp82¢ x 240 image)

ART neural module is shown in Fig. 14. The input layer corthat is presented in the input layer. In other words, fuzzy

sists of N nodes (neurons) which encode the input vedter ART networks belong to the class winner-take-all networks.

A. The Fuzzy Neural Network Algorithm
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The output nodeJ is the chosen candidate for classifying the
current input for which

Ty(P)=max{I;|j =1, ..., M}. (15)

Then, as a final step, the chosen candidate neurolassifies
correctly the presentinput if it meets thigilancecriterion. The
vigilance criterion is mathematically described by the following
equation:

|P A @y
|P|

> p (16)

1 I

wherep is the vigilance parameter. If (16) is met we say thdfig- 15. Classes in fuzzy-ART networks are represented as color-coded
resonanceccurs. Hence, resonance occurs when the .degre%?féﬂgrlzi'rg?‘p:;z;gzzgg'mm;?e?e‘;%g';‘i‘\l:rclrggfng'e are classified by the
which the inputP is a fuzzy subset afi; exceeds the vigilance
parametep, which takes values in the intervé, 1]. The vig- i :
ilance parameter defines the lower bound of the degree of 4 the fact that fuzzy concepts are incorporated into the neural
similarity of disparate inputs that are classified under the safigWorK.

category. If the vigilance criterion is not met, the choice function .

associated with the chosen neuron is resettr’;(5) = —1) C- Performance of the Algorithm

until the presentation of a new input. The same process forThe neural network described above was tested compara-
choosing a different neurohis then repeated until one is foundtively in four different experiments. Each experiment included
that meets the vigilance criterion. When such a categomas imagery from a particular EM band or processed category, that
been found we say that it is a fuzzy subset choice for id_fzut is:

For this selected output neurdnlearning occurs as follows: . S . i
1) experiment with visible spectrum imagery;

_(new) _(old) = . o(old) 2) experiment with lower band near-infrared imagery;
=(1-p 3 (P A 17

W (1= By + ( W ) (7 3) experiment with upper band near-infrared imagery;
where the learning parametgrcan take values in the interval 4) €xperiment with thresholded imagery.

(0, 1]. For each experiment we used 100 images. The corresponding
. . images of the three EM bands (visible, upper near-infrared, and
B. Geometric Representation of the Fuzzy Neural Network e near-infrared) were captured simultaneously by our pro-
Classification totype HOV system installed in the Mn/Road experimental fa-
There is an interesting geometric interpretation of the catiity. The images of the visible band were acquired with a pro-
egory formation process when fuzzy-ART networks are enfessional grade digital camera (SONY DSR-200), which is part
ployed at the fast learning modg & 1). In order to make our of the HOV prototype system. The visible band camera is used
point clear, we will assume that our inputs represent two—dimefior comparative evaluation purposes only and is not a critical
sional (2-D) vectors instead of t1320 x 240-dimensional pixel part of the HOV system. The upper and lower band near-infrared
vectors that were used in our application. The results from thmages were captured with the dual-b&id-320camera appa-

2-D case can easily be generalized to Malimensional case. ratus. The images are accurately coregistered since they were
The formation of classification categories is shown in thacquired through an optical signal splitter/filter that splits the
space of input vectors (see Fig. 15). When an output nodeseme scene information into two bands and funnels it to the
chosen for the first time we say that the neuron commits tocarresponding camera FPAs. The thresholded images were pro-
new class. For example, by presenting to the network an imadyigced from the corresponding lower and upper band images

of one occupant as the very firstimage, the leftmost output noder fusion and thresholding. The fusion (subtraction) coeffi-
is committed to the “one occupant” class. Since this input is tlveent was determined on-line at each case based on the instan-
only pointin the class, this point represents the respective classmeous readings from the upper and lower band photometers in
The second time this committed output neuron is selected to réipe scene.

resent another input different from the previous one, the smallesfThe 1004-tuple image sets (upper band, lower band, fused,
rectangle that will contain those two points will be formed. Thiand thresholded) were selected randomly among thousands of
is the rectangle that will represent the class from now on. Thechived sets. They represent typical scenes during day and
same process will be repeated for new inputs throughout clasgsght over a period of four months (February—May 2000).
fication. The maximum size of the rectangles (represented by Tsey also represent various weather conditions ranging from
perimeter) is determined by the vigilance parameter. In a similavercast skies to clear days. Some scenes were shot during
fashion other classes beyond the initial two are formed duritight rain. No scenes exist with heavy rain or snow due to the
classification if the hyperspace points fall outside the greatestrprisingly mild winter and spring of 2000 in Minnesota.
hyperrectanagle determined by the vigilance parameter. One blevertheless, our theoretical prediction is that the performance
see that classes (grey-level-coded rectangles) may overlap diihe system will degrade in downpour conditions.
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TABLE Il | Power Supply
CONFUSIONMATRIX FOR THE VISIBLE BAND EXPERIMENT ) MnROAD
Classes & —
1P 2P | Other e
1P 10 { 10 40 1 4
Images | 2P 10 [ 10 | 20 e .
Other | O 0 0 n_| ,'.;ﬁl —
spditter Filber 11 wrte Digital
TABLE IV sl e
CONFUSIONMATRIX FOR THE LOWER NEAR-INFRARED EXPERIMENT
Classes | Fadar
1P | 2P | Other Lo
1P 20 | 30 10 [ ]
Images | 2P 0 |10 30 —
Other || 0 0 0 Homenyrwell Weh
TABLE V Fig. 16. Architecture of the prototype HOV counting system.
CONFUSIONMATRIX FOR THE UPPERNEAR-INFRARED EXPERIMENT
5 g’;”e‘z)ther Finally, in the experiment with the thresholded images that
were produced through dual-band fusion and thresholding, the
1P [[20][30] 10 P 9 9
Images | 2P o T30 20 score is perfect (100%). This is the experimental confirmation
Other 70 T 0 0 for the superiority of our proposed method. It seals away all

the variability that affects the performance of the other three

methods. Instead, it provides the neural network with simple and

consistent binary patterns day or night, with or without clouds.
A live demonstration for all four experiments can be found in

TABLE VI
CONFUSIONMATRIX FOR THE THRESHOLDEDEXPERIMENT

Classes the HOV project web site [17].
1P | 2P | Other
1P 60§ 0 0
Images | 2P 0 | 40 0 IV. ARCHITECTURE OF APRACTICAL HOV COUNTING SYSTEM
Other || 0 1] 0

Based on the results of our sensor phenomenology and algo-
rithmic study, a prototype HOV counting system was designed
For each experiment, we selected one image with a singled built by February 2000. The system employs two near-in-
vehicle occupant and one with two occupants as the initial inpinared cameras, one in the lower band and one in the upper
set. The classification results for the four experiments are shoand. The cameras are coregistered and operate in sync (gen-
in the respective confusion matrices (see Tables llI-VI). In diicked). Coregistration is achieved through an optical signal
these tabled P stands for a single vehicle occupant @l  splitter/filter. Since vehicles are passing by the system only oc-
stands for two vehicle occupants. casionally and not continuously we have the cameras working in
The lowest correct classification performance (20%) is scoredliscrete mode. The cameras take snapshots of the road scene
in the case of the visible band imagery. This is rather expectedly when they are triggered by a radar device (see Fig. 16).
since the network cannot classify all the nighttime images in thidhe radar device issues a trigger signal when it senses the pres-
band, which account for almost half of the total image populance of anincoming vehicle. The radar also communicates to the
tion. This fact also reflects to the large number of images (60%ymputer that controls the HOV system the position and speed
classified in the inconclusive category “Other.” information of the incoming vehicle. There are certain advan-
The second worst performance (30% correct classification)tages to having the cameras operate in discrete mode, including
scored in the case of the lower band experiment. The relativeigvings in computational power as well as reduced storage for
improved performance in comparison with the visible band caeage archival.
owes to the employment of near-infrared illumination. Never- The dual-band camera system rests upon a computer-con-
theless, variability is still high, which keeps the overall recogntrolled pan-tilt device, so that accurate aiming is feasible
tion score in low levels. through remote operations. The camera system is accompanied
In the case of the upper band experiment the correct clasdlfir an artificial near-infrared light source. The light source is
cation score is improved even further (40%). The reflectancemdwered by a computer-controlled power supply. The computer
the human skin in the upper band is more stable comparativalytomatically adjusts the illumination level of the light source
to the lower band. Also, there is a sharper and more consistemtan optimum value based on the readings of two external
contrast between the human skin that reflects almost nothingar-infrared photometers (upper and lower band). The goal is
and the other objects in the scene that usually feature signif-maintain at all times5/N ratios above 250, the minimum
cant reflectance. requirement for a clear imaging signal.
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Fig. 17. Image of a Caucasian male outdoors in (al) the upper band and (a2) the lower band of the near infrared. The vehicle’s window is open amakis not a fac
(c) The result of fusion between (al) and (a2). (d) The final thresholded result. () The Visionics Facelt alignment operation fails to locaté the fadgect
as evidenced by the location of the white crosses. Facelt is a state-of-the-art face recognition system marketed by the Visionics Corporation [20].

The subtraction of the upper band image from the lower banitle the capability for law enforcement if they are bundled with
image is performed with a weighting factor that is determineallicense plate reader. Locally, the computing and digital storage
by the readings of the photometers. Thresholding and neuegjuipmentis encased in a weather-proof cabinet. The local HOV
processing follow in the computational pipeline. The originaystem communicates with our lab through a slower web link
images along with the processing results are stored locally {see Fig. 16). The web link provides the means to control re-
archival purposes. Every incoming piece of data contributes tmotely the equipment, to get up-to-date global statistics from the
ward the update of a global statistical measure (vehicle ocaystem, and to download at a relaxed pace the locally archived
pancy on the HOV lane). Future HOV systems may even prdata for permanent storage purposes.
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