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Abstract—We undertook a study to determine if the automatic
detection and counting of vehicle occupants is feasible. An auto-
mated vehicle occupant counting system would greatly facilitate
the operation of freeway lanes reserved for buses, car-pools, and
emergency vehicles (HOV lanes). In the present paper, we report
our findings regarding the appropriate sensor phenomenology and
arrangement for the task. We propose a novel system based on fu-
sion of near-infrared imaging signals and we demonstrate its ade-
quacy with theoretical and experimental arguments. We also pro-
pose a fuzzy neural network classifier to operate upon the fused
near-infrared imagery and perform the occupant detection and
counting function. We demonstrate experimentally that the com-
bination of fused near-infrared phenomenology and fuzzy neural
classification produces a robust solution to the problem of auto-
matic vehicle occupant counting. We substantiate our argument by
providing comparative experimental results for vehicle occupant
counters based on visible, single near-infrared, and fused near-in-
frared bands. Interestingly, our proposed solution can find a more
general applicability as the basis for a reliable face detector both
indoors and outdoors.

Index Terms—Fuzzy neural network, near-infrared fusion, ve-
hicle occupant detection.

I. INTRODUCTION

T HERE are compelling reasons for the existence of an auto-
matic vehicle occupant counting system in the HOV lane.

In particular, such a system will be useful in the following re-
spects.

1) It will facilitate the gathering of statistical data for road
construction planning. The gathering of usage statistics in
the HOV lane is mandated by the U.S. Federal Highway
Administration. Currently, the gathering of data is per-
formed manually. This is obviously laborious, inefficient,
and prone to error.

2) It will facilitate law enforcement in the HOV lane. Cur-
rently, HOV lane enforcement requires substantial com-
mitments of State Highway Patrol personnel and equip-
ment. HOV lane enforcement has other costs as well.
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These include the risks of high-speed pursuit in lanes ad-
jacent to stop-and-go traffic and the deterioration of traffic
flow when tickets are issued during peak commuting pe-
riods.

3) It will enable the state agencies to offer the option to
single drivers to use some HOV lanes for a nominal
monthly fee.

A complete HOV monitoring system suitable for the above
applications will consist of an occupant detector and a license
plate reader. Although substantial work has been reported in the
technical literature regarding license plate readers [1]–[3], work
for automated vehicle occupant detectors and counters is still
in its infancy. There are three major technical challenges in the
development of an automatic vehicle occupant detector/counter.

1) The imaging signal should provide a clear picture of the
interior of the vehicle. The contrast between the human
silhouettes and the background should be sufficient to
provide for reliable image processing.

2) The pattern recognition algorithm that performs the ve-
hicle occupant detection and counting should exhibit high
recognition rates and robust behavior. Of course, its per-
formance depends to a significant degree on the quality of
the imaging signal. Even the best pattern recognition al-
gorithm cannot perform reliably when the imaging signal
is corrupted with noise.

3) The system architecture should be designed in such a way
that will ensure accuracy, real-time operation, and protec-
tion from the weather elements.

In earlier publications [4], [5], we reported preliminary re-
sults regarding only the first technical challenge (sensor phe-
nomenology). In this paper, we address all three technical chal-
lenges. We describe a novel near-infrared fusion system that
provides high-quality imaging signal both during the day and at
night and in certain adverse weather conditions. Various sensor
fusion methods that increase the quality of the imaging signal
and boost system performance have been reported in the litera-
ture [6]–[8]. The novelty of our sensor fusion method lies in the
exploitation of the unique reflectance properties of the human
skin in the near-infrared. In particular, in Section II we give
an overview and justification of our imaging approach. Then,
we describe in detail the theoretical computations that support
our imaging assertions. We also present the experimental val-
idation of our imaging hypotheses. In Section III we outline
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Fig. 1. The electromagnetic (EM) spectrum.

the fuzzy neural network algorithm for occupant detection and
counting and provide test results of its performance on single
band and fused near-infrared imagery as well as on visible band
imagery. In Section IV, we describe the system architecture of
our prototype vehicle occupant counter. Finally, in Section V,
we conclude the paper and briefly mention our ongoing and fu-
ture work.

II. THE IMAGING PROBLEM

Our research for a solution to the imaging aspect of an HOV
system (sensor phenomenology) was guided by the following
questions.

1) Is there a band in the electromagnetic (EM) spectrum that
can penetrate through the vehicle’s window glass, during
day and at night and in adverse weather conditions? Do
the objects of interest (vehicle occupants) have a consis-
tent appearance in this EM band, irrespectively of their
physical characteristics?

2) If there is more than one band, can we fuse the multiple
bands in a meaningful way to increase the detecting power
and reliability of the system?

3) Are there appropriate cameras for these bands that have
the necessary resolution and speed to live up to the re-
quirements of the problem?

Fig. 1 shows the EM spectrum. We have limited our sensor
phenomenology investigation into the infrared and visible spec-
trum regions. Nature constraints our choices below the visible
spectrum, since, gamma rays, X rays, and ultraviolet radiation
are harmful to the human body. Therefore, the typically active
systems in these ranges cannot be employed in the HOV lane.
Technology constrains our choices beyond the infrared region,
since millimeter-wave and radio-wave imaging sensors are very
expensive, bulky, and with insufficient resolution [9]. Still, the
visible plus the infrared range is a huge area of the EM spec-
trum and we had to identify narrow bands within this area that
are appropriate for the task.

We know from experience as humans that the visible spec-
trum has certain disadvantages for the purpose of this particular
application. A visible range sensor (like the human eye) cannot
easily see at night unless it is aided by an artificial illumina-
tion source. Employing a visible range flashlight to illuminate
the passing vehicles is definitely not an option since it will dis-
tract the drivers with probably fatal results. Tinted window glass

Fig. 2. Transmittance of a typical tinted vehicle window. Measurements were
carried out with a Varian Cary 2400 Spectrophotometer.

(now common in certain vehicle types) prohibits a clear view of
the vehicle’s interior to visible range sensors (see Fig. 2). Also,
visible range sensors are incapacitated during foul weather con-
ditions. Finally, vehicle occupants produce variable patterns in
the visible range, depending on their physical characteristics,
time of day, and illumination conditions. This variability makes
the machine vision task much more difficult.

From the above discussion, it is apparent that only the infrared
range holds promise for a solution to the problem. Within the in-
frared range two bands of particular interest are the reflected-in-
frared (0.7–3.0 m) and the thermal-infrared (3.0–5.0m and
8.0–14.0 m) bands. The reflected infrared band on one hand is
associated with reflected solar radiation that contains no infor-
mation about the thermal properties of materials. This radiation
is for the most part invisible to the human eye. The thermal in-
frared band, on the other hand, is associated with the thermal
properties of materials. The opacity of far-infrared (8.0–14.0

m) is well documented in the literature [10]. We soon found
that the mid-infrared (3.0–5.0m) was also difficult to be ex-
ploited for HOV purposes because vehicle glass severely atten-
uates EM radiation beyond 2.4m (see Figs. 2 and 3).

Fortunately, a major portion of the reflected-infrared range,
the so-called near-infrared range (0.7–2.4m), appeared very
suitable for the application at hand. In particular, we found the
following.
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Fig. 3. Transmittance of a typical nontinted vehicle window. Measurements
were carried out with a Varian Cary 2400 Spectrophotometer.

1) A camera in this range can safely operate in the HOV
lane both during day and at night. In low-light conditions
(nighttime, overcast skies) we would need a matching
near-infrared illumination source to enhance the scene.
Provided that the spectral signature of the illumination
source is deep into the near-infrared range, the light will
be invisible to the human eye. Therefore, no danger to dis-
tract the attention of the driver exists.

2) A camera in this range can “see through” the vehicle’s
windows. The transmittance of typical vehicle windows
in the near-infrared spectrum is at least 40% (see Figs. 2
and 3). Transmittance remains high across the near-in-
frared band and, therefore, only a portion of the band
could provide sufficient energy for the operation of an
HOV system. There is an exotic category of vehicle
windows, however, the so-called EZKOOL class that
attenuates near-infrared illumination unevenly and more
severely (see Fig. 4). Currently, only a very small number
of luxury cars, like the Oldsmobile Aurora, feature
EZKOOL windows. To image effectively the interior
of these vehicles the full length of the near-infrared
spectrum should be employed.

3) A camera in this range can operate in certain adverse
weather conditions. For example, it has been established
that the near-infrared spectrum is particularly good in
penetrating haze (see Fig. 5). The explanation for this
phenomenon lies in the size of the droplets in haze, which
is smaller than the near-infrared wavelengths. This prop-
erty is particularly useful in metropolitan areas where
haze conditions are endemic (e.g., San Francisco).

4) If the near-infrared range is split into two bands around
the threshold point of 1.4 m, the lower band(0.7–1.4

m) and theupper band(1.4–2.4 m), then vehicle occu-
pants will produce consistent signatures in the respective
imagery. In the upper band imagery, humans will appear
consistently dark irrespectively of their physical char-
acteristics and the illumination conditions. In the lower
band imagery, humans will appear comparatively lighter.
This is because human skin appears to have very high

Fig. 4. Transmittance of an EZKOOL class of vehicle window. Measurements
were carried out with a Varian Cary 2400 Spectrophotometer.

(a)

(b)

Fig. 5. Natural scene bathed in haze. (a) Image captured with a visible band
camera. (b) Image captured with a near-infrared camera (Sensors Unlimited
SU-320).



PAVLIDIS et al.: A VEHICLE OCCUPANT COUNTING SYSTEM 75

Fig. 6. Reflectance of dark skin versus light skin. Measurements were carried
out with a Varian Cary 2400 Spectrophotometer.

Fig. 7. Reflectance of distilled water. Measurements were carried out with a
Varian Cary 2400 Spectrophotometer.

reflectance just before 1.4m but very low reflectance
just after 1.4 m (see Fig. 6) [11], [12].

We found that the intriguing phenomenon of the abrupt
change in the reflectance of human skin around 1.4m is
due to the water content of the human body. Water absorbs
heavily near-infrared radiation above 1.4m (see Fig. 7) and
thus appears as black body in the respective imagery. Humans
consist 70% of water and therefore they exhibit spectral be-
havior very similar to the water. Interestingly, other inanimate
objects in the vehicle scene maintain their reflectance levels
almost unchanged, below and above the threshold point 1.4m
[13]–[15]. For example, see Fig. 8 for the reflectance diagrams
of some fabric materials commonly found in the interior of
vehicles. Fig. 9 is especially interesting because it depicts the
reflectance diagram of a special material: leather upholstery.
The reflectance of leather upholstery also remains stable in
the near-infrared despite its superficial affinity to animal skin.
It is not the skin per se that produces the singular reflectance
behavior but what is hidden below the skin, that is, the water
content of the human body. This observation provoked the
following line of thought: Ideally, everything but the human
skin signature should appear proportionally the same in the
HOV imagery from the two bands. Therefore, by subtracting

Fig. 8. Reflectance of different fabric materials. Measurements were carried
out with a Varian Carry 2400 Spectrophotometer.

Fig. 9. Reflectance of typical leather upholstery. Measurements were carried
out with a Varian Carry 2400 Spectrophotometer.

an image from the lower band from its matching coregistered
image in the upper band we can produce a fused image where:

1) the silhouettes of the vehicle occupants’ faces will be re-
inforced (big difference) and more clearly stand out;

2) the background will dim away (small difference).
This increased contrast will facilitate a clean-cut segmentation
of the fused image. The thresholded result will be an image
where only the face blobs of the vehicle occupants remain and
everything else is eliminated. A good classifier will always clas-
sify fast and accurately such a simple binary pattern, ensuring
the reliable real-time operation of the HOV system.

The near-infrared camera we found most appropriate to
use for testing our ideas was the Sensors UnlimitedSU-320
($25 000 at 1999 prices). In terms of spectral response it was
less than perfect because it did not cover the entire spectral
band we were interested in (0.7–2.4m). Instead, it covered
the subband 1.1–1.4m for the lower band and 1.4–1.7m
for the upper band. These subbands are sufficient for all but
the EZKOOL class of vehicle windows. An alternative camera
solution, theSYS256RMby Santa Barbara Focalplane, that
covers the entire near-infrared band costs three times as much
($75 000 at 1999 prices). Because the current number of



76 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 1, NO. 2, JUNE 2000

vehicles featuring EZKOOL glass is very small, we opted for a
significantly more economical solution at the expense of some
accuracy. Our choice was influenced by practical budgetary
constrains of Transportation Departments for this kind of
applications. The imaging question we had to address, given
our hypotheses and the particular camera model available, was
if the signal-to-noise ( ) ratio and the speed of the camera
would live up to the task. The complete set of calculations
and the interpretation of their results are described in the next
subsection.

A. Theoretical Computations

Our hypotheses, as described in the previous section, held
great promise. Nevertheless, before we could proceed with any
experimentation we had to determine if given the particular
SU-320camera specifications

1) we would have had an imaging signal with sufficient
ratio;

2) the speed of the camera would have been sufficient to cap-
ture the vehicle passengers moving at an average speed of
65 mi/h (freeway speed).

As we stated earlier, we consider two spectral bands, one
above the 1.4-m threshold point and one below it. We as-
sume that twoSU-320cameras would film simultaneously the
same scene. One camera would be equipped with an upper band
filter and one with a lower band filter. Both cameras would be
equipped with a polarizer during daytime to reduce solar glare.
They would also be equipped with a tele-photo lens. Because of
constrains due to the quantum efficiency of theSU-320camera
we limit the upped band to the range 1.4–1.7m and the lower
band to the range 1.1–1.4m. As we will prove, these trun-
cated near-infrared ranges allow the acquisition of usable im-
agery for vehicle windshields that feature at least 40% transmit-
tance (dirty, non-EZKOOL windows). We will demonstrate our

computation for the lower band only, since very similar
results also apply to the upper band.

We assume that the camera is pointed at the vehicle’s wind-
shield, not at the side-window. For all practical purposes, the
Department of Transportation is primarily interested if passing
vehicles carry at least one more person (“the passenger”) in ad-
dition to the driver. The passenger usually sits in the front of the
vehicle. The radiant power on the camera pixel is given from the
following relation:

W (1)

where is the area of theSU-320Focal Plane Array (FPA)
and is the irradiance at the camera’s FPA. The value of

can be computed from the radiometric factors listed in
Table I. The factor values were chosen to reflect a typical worst
case scenario.

The camera’s detectivity is cm Hz/W. The
Noise Equivalent Power NEP is related to detectivity, pixel
area , and electronic bandwidth by the following equation:

NEP (2)

TABLE I
RELEVANT RADIOMETRIC FACTORS

We already know the values of and . In order to compute
the NEP we need to also know the value of . The bandwidth

is determined by the exposure time (speed) of the camera.
In turn, the exposure time depends on the vehicle speed (), the
camera’s Instantaneous Field Of View (IFOV), the range,
and the footprint of the horizontal translation . Based on
the parameters , IFOV, , and we compute the required
exposure time (speed) of the camera such that the image smear is
less than 1 pixel. Then, we check if the exposure time value falls
within the operational range of theSU-320camera. If it does, the
SU-320camera is adequate for the HOV task in terms of speed.
We can substitute the corresponding value for the bandwidth
in (2) and continue the process of computing the ratio.

Fig. 10 shows the configuration of theSU-320camera relative
to the oncoming traffic. The camera is located 3.6 m
above the ground, 7.5 m off the edge of the freeway,
and at a distance of 40 m from the oncoming traffic. This
arrangement ensures that the camera is located in a safe place
and has the appropriate field of view. We assume that the camera
focuses at the centerline of the incoming vehicle, at the level of
the occupants’ faces 1.2 m). The half width of a
standard freeway lane is 1.8 m. We assume that the
vehicle travels in the middle of the freeway lane. Therefore, the
lateral distance of the vehicle’s centerline from the camera is

7.5 1.8 9.3 m (3)

Finally, we assume that, for a typical vehicle’s windshield, the
average width and height are 1.5 m and 0.9 m,
respectively.

The IFOV is the camera’s field of view with respect to a single
pixel (see Fig. 11). We assume that the distanceis approxi-
mately equal to the camera’s range( 40 m). Then,
the IFOV can be computed from the following equation:

IFOV

0.0001 rad (4)

where 240 pixels is the vertical dimension of the
SU-320Focal Plane Array (FPA).

At time , the camera’s IFOV sees a small portion of the occu-
pant’s face of diameter . This small face area is what is imaged
into a single pixel. We can determine the value offrom the
following equation:

IFOV

(5)

The angle in Fig. 11 is the angle between a horizontal plane
and the optical axis of the camera. Because we have assumed
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Fig. 10. Configuration of the camera set.

Fig. 11. Geometry for the computation of the footprint of a single pixel in a
horizontal plane.

that the camera is focused at the level of the occupants’ faces
(see the geometry in Fig. 10), the angleis

3.43 (6)

Since we know the values for and , from the geometry of
Fig. 11 we can compute the footprint of a single pixel’s
horizontal translation

0.067 m (7)

We assume that the vehicle occupants travel at the nominal
freeway speed of 65 mi/h or 29.3 m/s. At this freeway
speed the footprint is covered during time

2.28 ms. (8)

Therefore, the exposure time of the camera should be
2.28 ms if we would like to have image smear of not

more than 1 pixel. The operational range of theSU-320camera
in terms of exposure time is 127s–16.3 ms. Therefore, the
required exposure time of 2.28 ms is within the
camera’s operational range or, in other words, the speed of the
SU-320is up to the HOV task. We choose to set the exposure
time of the camera to 1 ms ( 1 ms 2.28 ms) which
corresponds to a bandwidth of 1 kHz.

Now, that we have addressed the speed question and we know
the value of , we can substitute the values for, , and
in (2) and calculate the NEP

NEP W. (9)

Therefore, the camera signal-to-noise ratio will be

NEP (10)

In conclusion, assuming a typical worst case scenario
(overcast day, dirty windshield) we determined that theSU-320
camera, equipped with anf/2 lens, a 1.1–1.4-m filter, and a
polarizer, if it is positioned at a distance of 40 m from the
incoming vehicle and at a height of 3.6 m above the
ground, will achieve the following.

1) An acceptable smear of less than one pixel because the
required exposure time of 1 ms is within the camera’s
speed capabilities.

2) A poor signal-to-noise ratio . To boost the
ratio to a higher value on overcast days we need to
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TABLE II
S=N RATIOS FORDIFFERENTDAY CONDITIONS AND SPECTRALBANDS

employ an illumination source. This illumination source
will also be useful during nighttime. If we operated in the
visible spectrum the use of illuminator in the HOV lane
would be prohibitive. Fortunately, in our case, the spec-
tral signature of the illuminator should match the range
1.1–1.7 m. Since this range is deep into the near-in-
frared spectrum there is no danger of distracting the driver
and the illuminator can be safely employed in the HOV
lane. Contrary to the overcast sky scenario, the ratio
is exceptionally good in the case of a clear day in both
bands (see Table II). Therefore, in clear day conditions
the system can work passively without any use of artifi-
cial light source.

B. Experimental Validation

Based on the above theoretical scenario we designed and im-
plemented a prototype HOV counting system in one of the De-
partment of Transportation’s traffic monitoring and research fa-
cilities (Mn/Road) in Minneapolis. During experimentation we
found that lighting conditions change continuously even in rela-
tively stable weather conditions. Consequently, ratios fluc-
tuate between the extreme values listed in Table II all the time.
We also found that ratios above 250 are essential to the
flawless operation of the system. We addressed this problem
by outfitting the HOV counter with a sophisticated light man-
agement system that senses the near-infrared light levels in the
scene and automatically adjusts the power levels of the artifi-
cial illumination sources, so that a minimum is
maintained at all times. Establishing the minimum acceptable
illumination levels is very important. It allows us not to over-
power the scene with excessive illumination and either thwart
the image or cause harm to the eyes of people that for some
strange reason look toward the illuminator for prolonged pe-
riods of time. Although, near-infrared light is not sensed by the
human eye, it still enters the retina and its raw energy should
be regulated. Also, maintaining relatively steady scene illumi-
nation levels by continuously adjusting
the illumination source, simplifies the image processing task in
general.

An additional implementation challenge was presented by the
theoretical requirement for perfect coregistration between the
lower and upper band cameras. This coregistration is essential
for the performance of the image fusion (weighted subtraction).
We solved this problem by providing an optical signal splitter
between the two cameras. The optical splitter functions simul-
taneously as a bandpass optical filter funneling the lower band
light signal of the scene into one camera and the upper band
into the other. More details about the architecture of the HOV
counter are provided in Section IV.

The prototype HOV counting system became fully functional
in February 2000 and it has undergne regular testing since then.

Fig. 12(a) and (b) shows the images from a particular scene in
the upper and lower bands. The scene is quite interesting be-
cause it features as a passenger a mannequin and not a real
human. One can observe the significant brightness difference
on the face of the driver between the two images. In contrast,
the face of the mannequin and all the other inanimate objects
in the scene maintain about the same brightness levels in both
bands.

The image in the upper band is subtracted (fused) from the
image in the lower band and produces the image in Fig. 12(c).
The weighting factor (coefficient) of the subtraction is deter-
mined on-line based on the relative readings of the HOV pho-
tometers in the upper and lower band. Because the illumina-
tion source of the HOV system continuously adjusts its power
to maintain relatively steady and even illumination levels in the
scene, the subtraction coefficient is usually close toand rarely
takes values above. The fused image is cropped to the approx-
imate area of the windshield only. This area is computed based
on the camera geometry and the information provided by a radar
sensor regarding the position and speed of the incoming vehicle.
The cropping ensures that the image subtraction operation ap-
plies only to objects found in the interior of vehicles (such as
upholstery, faces, and clothes). We have studied the reflectance
properties of such objects well and we anticipate excellent be-
havior for our dual-band imaging method.

The image in Fig. 12(c) demonstrates clearly the increase
of the brightness levels in the face of the driver (real human)
and the diminution of the mannequin’s head and the rest of the
background. This allows for nearly perfect segmentation of the
driver’s face in Fig. 12(d). The thresholded image has been nor-
malized in terms of position (face blob is aligned to top row) and
size to facilitate subsequent processing by a pattern recognition
algorithm. The mannequin has been eliminated altogether since
it is an inanimate object with no water content in its body sim-
ilar to that of a human being. Therefore, like the other inanimate
objects in the image the mannequin does not change abruptly its
reflectivity around 1.4 m. One should also notice the glimpse
of the driver’s hands in the final thresholded image. In general,
in this final stage, live, uncovered human skin is the only object
that appears in the image. Fig. 12(d) demonstrates the primary
advantage that our imaging method provides. It seals away the
tremendous variability that would otherwise be introduced be-
cause of light changes and skin color. Instead, it provides the
pattern recognition algorithm with a simple and consistent bi-
nary pattern featuring a face blob for each vehicle occupant.

The images in Fig. 13 show typical scenes in the visible
band during day- and nighttime. Although, the image quality
is rather fair during daytime (provided the vehicle’s window is
not tinted), it is unacceptable during nighttime where the
ratio is almost zero. The worst is that this deficiency cannot be
rectified since the employment of a visible illuminator would
cause safety hazards.

III. V EHICLE OCCUPANT DETECTION AND COUNTING

ALGORITHM

After having solved the imaging problem we concentrated
our attention to the algorithmic aspect of the HOV system. We
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(a) (b)

(c) (d)

Fig. 12. Scene with a driver and a mannequin. (a) Lower band image. (b) Upper band image. (c) Weighted difference (fusion) between images (a) and (b).
(d) Thresholded outcome of image (c).

chose to perform the counting of vehicle occupants with a neural
network. During neural network operation, output neurons (see
Fig. 14) are assigned symbolic meaning by encoding classes
of images. In our case, each class corresponds to a different
number of vehicle occupants. In particular, we opted for a fuzzy
neural network that implements the Adaptive Resonance Theory
(ART). This type of neural network features a series of ap-
pealing properties for the application at hand.

1) Self-Organization.This is a property that characterizes
the operation of the neural network. In self-organized
networks there areno distinct training and performance
phases. Instead, a certain metric (i.e., fuzzy metric for
Fuzzy ART networks) is used for measuring similarity of
inputs in the feature space and a learning procedure en-
ables the clustering of inputs into classes. Therefore, in
contrast to supervised learning networks (i.e., back-prop-
agation), Fuzzy ART networks do not need external guid-
ance for training on specific input sets. This translates into

easier and less expensive ground-truthing, an important
factor in a cost-critical endeavor such as ours.

2) Stable Categorization.This property is related to the de-
gree that a neural network forgets categories (patterns)
which it had encountered in the past. This is the so-called
stability–plasticitydilemma. The ART network features a
feedback mechanism between the layers that helps solve
the stability–plasticity problem. This feedback mecha-
nism facilitates the learning of new information without
destroying old information. Most important, stable cate-
gorization is maintained even at a fast learning pace.

3) Broad and Narrow Classification.ART networks have an
explicit parameter calledvigilancethat controls their gen-
eralization capability. In other words, vigilance controls
the formation of broad and narrow classifications. This
control is very useful in the presence of highly variable
patterns of vehicle occupants.

4) Fuzzy Classification.The incorporation of fuzzy set
theory into the operation of ART networks addresses the
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(a)

(b)

Fig. 13. Visible band images. (a) Daytime. (b) Nighttime.

Fig. 14. ART networks are two-layer neural modules. There exists a complete
set of bottom up weights from the input layer (dark box) neurons to the output
layer (light box) neurons. The size of the adaptive weights, which change
through learning, is graphically denoted by the different size of the blobs that
surround the output neurons. The light colored output neuronJ is the category
selected for the present input.

problem of disambiguating overlapping categories with
minimum risk.

A. The Fuzzy Neural Network Algorithm

Fuzzy ART neural networks are comprised of an input layer
and an output layer [16]. The typical structure of an

ART neural module is shown in Fig. 14. The input layer con-
sists of nodes (neurons) which encode the input vector

. In our application each input node represents
the gray level intensity of a pixel

(11)

Specifically, and represents the number of
pixels in a standard subimage we are extracting from each
frame. The subimage is centered on the window area of the
incoming vehicle. The vehicle window is located based on the
camera geometry, information regarding the speed and position
of the incoming vehicle provided by the HOV radar, and the
Hough transformation. The input vector is augmented to
achieve input normalization through a process that is called
complement coding. The complement coded input vector
becomes a -dimensional vector

(12)

where . One may observe that the complement-coded
input is normalized since

(13)

The nodes in the output layer represent the classification
categories. In our application we have two image classes: the
one-occupant class (single driver) and the two-occupant class
(driver and front passenger). To have these classes established
we initially present to the network one representative image
of each class. The presentation order is importantonly for the
assignment of symbolic meanings to the output neurons. The
first image we present depicts a single occupant and for that
reason the leftmost output neuron symbolizes the single-occu-
pant class. The second image we present depicts two occupants
and, consequently, the next output neuron symbolizes the two-
occupant class. If the initial presentation order was reversed so
would the meaning of the output neurons. If during network op-
eration, output neurons besides the first two are activated, that
means that the neural network mistakenly did not classify the
incoming image as one of the only two possible cases. Instead,
it started forming new unknown categories (clusters) where it
assigns the misclassified patterns.

Each output neuron is associated with a vector
of adaptive weights that represent

the knowledge that the neural network retains at the current
time. The values of the elements of this vector change during
the neural network operation. Initially, they all have unit values.

For a typical input , a choice function is computed for
every output neuron as

(14)

where the fuzzy AND operator is defined by
and represents the Hamming distance norm.

The choice function measures the degree to which the weight
vector is a fuzzy subset of the input . There is only one
neuron that is activated for a particular input ( image)
that is presented in the input layer. In other words, fuzzy
ART networks belong to the class winner-take-all networks.
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The output node is the chosen candidate for classifying the
current input for which

(15)

Then, as a final step, the chosen candidate neuronclassifies
correctly the present input if it meets thevigilancecriterion. The
vigilance criterion is mathematically described by the following
equation:

(16)

where is the vigilance parameter. If (16) is met we say that
resonanceoccurs. Hence, resonance occurs when the degree to
which the input is a fuzzy subset of exceeds the vigilance
parameter , which takes values in the interval . The vig-
ilance parameter defines the lower bound of the degree of dis-
similarity of disparate inputs that are classified under the same
category. If the vigilance criterion is not met, the choice function
associated with the chosen neuron is reset to
until the presentation of a new input. The same process for
choosing a different neuronis then repeated until one is found
that meets the vigilance criterion. When such a categoryhas
been found we say that it is a fuzzy subset choice for input.
For this selected output neuronlearning occurs as follows:

(17)

where the learning parametercan take values in the interval
.

B. Geometric Representation of the Fuzzy Neural Network
Classification

There is an interesting geometric interpretation of the cat-
egory formation process when fuzzy-ART networks are em-
ployed at the fast learning mode ( ). In order to make our
point clear, we will assume that our inputs represent two–dimen-
sional (2-D) vectors instead of the -dimensional pixel
vectors that were used in our application. The results from the
2-D case can easily be generalized to the-dimensional case.

The formation of classification categories is shown in the
space of input vectors (see Fig. 15). When an output node is
chosen for the first time we say that the neuron commits to a
new class. For example, by presenting to the network an image
of one occupant as the very first image, the leftmost output node
is committed to the “one occupant” class. Since this input is the
only point in the class, this point represents the respective class.
The second time this committed output neuron is selected to rep-
resent another input different from the previous one, the smallest
rectangle that will contain those two points will be formed. This
is the rectangle that will represent the class from now on. The
same process will be repeated for new inputs throughout classi-
fication. The maximum size of the rectangles (represented by its
perimeter) is determined by the vigilance parameter. In a similar
fashion other classes beyond the initial two are formed during
classification if the hyperspace points fall outside the greatest
hyperrectanagle determined by the vigilance parameter. One can
see that classes (grey-level-coded rectangles) may overlap due

Fig. 15. Classes in fuzzy-ART networks are represented as color-coded
rectangles. Inputs that fall within a particular rectangle are classified by the
output neuron associated with the respective class.

to the fact that fuzzy concepts are incorporated into the neural
network.

C. Performance of the Algorithm

The neural network described above was tested compara-
tively in four different experiments. Each experiment included
imagery from a particular EM band or processed category, that
is:

1) experiment with visible spectrum imagery;
2) experiment with lower band near-infrared imagery;
3) experiment with upper band near-infrared imagery;
4) experiment with thresholded imagery.

For each experiment we used 100 images. The corresponding
images of the three EM bands (visible, upper near-infrared, and
lower near-infrared) were captured simultaneously by our pro-
totype HOV system installed in the Mn/Road experimental fa-
cility. The images of the visible band were acquired with a pro-
fessional grade digital camera (SONY DSR-200), which is part
of the HOV prototype system. The visible band camera is used
for comparative evaluation purposes only and is not a critical
part of the HOV system. The upper and lower band near-infrared
images were captured with the dual-bandSU-320camera appa-
ratus. The images are accurately coregistered since they were
acquired through an optical signal splitter/filter that splits the
same scene information into two bands and funnels it to the
corresponding camera FPAs. The thresholded images were pro-
duced from the corresponding lower and upper band images
after fusion and thresholding. The fusion (subtraction) coeffi-
cient was determined on-line at each case based on the instan-
taneous readings from the upper and lower band photometers in
the scene.

The 100 -tuple image sets (upper band, lower band, fused,
and thresholded) were selected randomly among thousands of
archived sets. They represent typical scenes during day and
night over a period of four months (February–May 2000).
They also represent various weather conditions ranging from
overcast skies to clear days. Some scenes were shot during
light rain. No scenes exist with heavy rain or snow due to the
surprisingly mild winter and spring of 2000 in Minnesota.
Nevertheless, our theoretical prediction is that the performance
of the system will degrade in downpour conditions.
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TABLE III
CONFUSIONMATRIX FOR THE VISIBLE BAND EXPERIMENT

TABLE IV
CONFUSIONMATRIX FOR THE LOWER NEAR-INFRAREDEXPERIMENT

TABLE V
CONFUSIONMATRIX FOR THE UPPERNEAR-INFRAREDEXPERIMENT

TABLE VI
CONFUSIONMATRIX FOR THE THRESHOLDEDEXPERIMENT

For each experiment, we selected one image with a single
vehicle occupant and one with two occupants as the initial input
set. The classification results for the four experiments are shown
in the respective confusion matrices (see Tables III–VI). In all
these tables stands for a single vehicle occupant and
stands for two vehicle occupants.

The lowest correct classification performance (20%) is scored
in the case of the visible band imagery. This is rather expected
since the network cannot classify all the nighttime images in this
band, which account for almost half of the total image popula-
tion. This fact also reflects to the large number of images (60%)
classified in the inconclusive category “Other.”

The second worst performance (30% correct classification) is
scored in the case of the lower band experiment. The relatively
improved performance in comparison with the visible band case
owes to the employment of near-infrared illumination. Never-
theless, variability is still high, which keeps the overall recogni-
tion score in low levels.

In the case of the upper band experiment the correct classifi-
cation score is improved even further (40%). The reflectance of
the human skin in the upper band is more stable comparatively
to the lower band. Also, there is a sharper and more consistent
contrast between the human skin that reflects almost nothing
and the other objects in the scene that usually feature signifi-
cant reflectance.

Fig. 16. Architecture of the prototype HOV counting system.

Finally, in the experiment with the thresholded images that
were produced through dual-band fusion and thresholding, the
score is perfect (100%). This is the experimental confirmation
for the superiority of our proposed method. It seals away all
the variability that affects the performance of the other three
methods. Instead, it provides the neural network with simple and
consistent binary patterns day or night, with or without clouds.

A live demonstration for all four experiments can be found in
the HOV project web site [17].

IV. A RCHITECTURE OF APRACTICAL HOV COUNTING SYSTEM

Based on the results of our sensor phenomenology and algo-
rithmic study, a prototype HOV counting system was designed
and built by February 2000. The system employs two near-in-
frared cameras, one in the lower band and one in the upper
band. The cameras are coregistered and operate in sync (gen-
locked). Coregistration is achieved through an optical signal
splitter/filter. Since vehicles are passing by the system only oc-
casionally and not continuously we have the cameras working in
a discrete mode. The cameras take snapshots of the road scene
only when they are triggered by a radar device (see Fig. 16).
The radar device issues a trigger signal when it senses the pres-
ence of an incoming vehicle. The radar also communicates to the
computer that controls the HOV system the position and speed
information of the incoming vehicle. There are certain advan-
tages to having the cameras operate in discrete mode, including
savings in computational power as well as reduced storage for
image archival.

The dual-band camera system rests upon a computer-con-
trolled pan-tilt device, so that accurate aiming is feasible
through remote operations. The camera system is accompanied
by an artificial near-infrared light source. The light source is
powered by a computer-controlled power supply. The computer
automatically adjusts the illumination level of the light source
to an optimum value based on the readings of two external
near-infrared photometers (upper and lower band). The goal is
to maintain at all times ratios above 250, the minimum
requirement for a clear imaging signal.
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Fig. 17. Image of a Caucasian male outdoors in (a1) the upper band and (a2) the lower band of the near infrared. The vehicle’s window is open and is not a factor.
(c) The result of fusion between (a1) and (a2). (d) The final thresholded result. (e) The Visionics FaceIt alignment operation fails to locate the faceof the subject
as evidenced by the location of the white crosses. FaceIt is a state-of-the-art face recognition system marketed by the Visionics Corporation [20].

The subtraction of the upper band image from the lower band
image is performed with a weighting factor that is determined
by the readings of the photometers. Thresholding and neural
processing follow in the computational pipeline. The original
images along with the processing results are stored locally for
archival purposes. Every incoming piece of data contributes to-
ward the update of a global statistical measure (vehicle occu-
pancy on the HOV lane). Future HOV systems may even pro-

vide the capability for law enforcement if they are bundled with
a license plate reader. Locally, the computing and digital storage
equipment is encased in a weather-proof cabinet. The local HOV
system communicates with our lab through a slower web link
(see Fig. 16). The web link provides the means to control re-
motely the equipment, to get up-to-date global statistics from the
system, and to download at a relaxed pace the locally archived
data for permanent storage purposes.
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V. CONCLUSIONS ANDFUTURE WORK

We have described an innovative method and system for per-
forming automatic counting of vehicle occupants in the freeway
(HOV system). We identified three aspects to the problem: a) the
imaging aspect, b) the algorithmic aspect, and c) the engineering
aspect. Accordingly, we first invented a method to provide high-
quality imaging signals to the HOV system. The method calls
for two coregistered near-infrared cameras with spectral sensi-
tivity above (upper band) and below (lower band) the 1.4-m
threshold point, respectively. The quality of the signal remains
high even during overcast days and nighttime, because we can
safely illuminate the scene with an eye-safe near-infrared illu-
minator [18]. The near-infrared cameras can also provide clear
imaging signals even in certain foul weather situations, such as
in hazy conditions. This is very important for HOV purposes
because haze is endemic in certain metropolitan areas (e.g., San
Francisco).

The hallmark of the method is the fusion of the coregistered
imaging signals from the lower and upper band cameras. Be-
cause of an abrupt change in the reflectance of the human skin
around 1.4 m, the fusion has as a result the intensification of
the occupant face silhouettes and the diminution of the back-
ground. This increased contrast allows for perfect segmentation
that leaves in the final processed image only the face blobs of
the vehicle occupants.

Second, we designed and tested a fuzzy neural classifier to
perform the vehicle occupant detection in the near-infrared im-
agery. The classifier scored perfectly on a random sample of
100 thresholded images. The same classifier scored below 50%
in classification experiments with corresponding images from
the lower and upper near-infrared band, and the visible band.

Third, we designed and implemented a prototype HOV
counting system based on the previous two results of our
research. We are currently in the process of designing and
implementing a license plate reader to work in tandem with the
baseline HOV prototype. We have also expanded our research
in the face detection area. Face detection is a crucial part of a
face recognition system. There are no reliable face detectors
for outdoor environments and this is one of the primary reasons
that keep face recognition technology restricted to indoor
applications at the time being. Our dual-band method promises
to change that. Preliminary comparative experiments are
extremely encouraging (see Fig. 17).
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