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Investigating Cardiovascular Activation of Young
Adults in Routine Driving
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Abstract—We report on a naturalistic study investigating the effects of routine driving on cardiovascular activation. We recruited 21
healthy young adults from a broad geographic area in the Southwestern United States. Using the participants’ own smartphones and
smartwatches, we monitored for a week both their driving and non-driving activities. Monitoring included the continuous recording of a)
heart rate throughout the day, b) hand motion during driving as a proxy of persistent texting, and c) contextualized driving data,
complete with traffic and weather information. These high temporal resolution variables were complemented with the drivers’
biographic and psychometric profiles. Our analysis suggests that anxiety predisposition and high speeds are associated with significant
cardiovascular activation on drivers, likely linked to sympathetic arousal. Surprisingly, these associations hold true under good weather,
normal traffic, and with experienced drivers behind the wheel. The said findings call for attention to insidious effects of apparently
benign drives even for people in their prime. Accordingly, our research contributes to intriguing new discourses on driving affect and
personal health informatics.

Index Terms—cardiovascular activation, heart rate, sympathetic arousal, naturalistic driving studies, trait anxiety, driving speed,
affective computing

✦

1 INTRODUCTION

HUMANS spend increasingly more time using machines
for work, entertainment, and other purposes [1]. There

is emerging evidence that some of these uses are unhealthy,
bearing short- and long-term consequences. As of this writ-
ing, the lion share of human-machine interactions is directed
toward computers and cars. Everyday, U.S. adults spend
nearly eight hours interacting with digital content [2] and
over one hour driving [3]. A great deal of research has been
done on the physiological effects and health implications
of computer use. For instance, several studies investigated
the role of screen time on sleep disturbances [4], [5], [6].
Other studies linked extensive screen time with comorbidity
arousing from the associated sedentary lifestyle [7], [8]. The
research community responded to these sober findings by
proposing orthotic designs that would keep track of users’
screen time, increasing their awareness [9]. They also fielded
imaginative apps intent on luring users away from screens
by enticing them into gamified physical activity [10].

In contrast to the physiological effects of daily computer
use, relatively little research has been done on the physi-
ological effects of daily driving. There are several possible
reasons for that. Until recently, it was challenging to per-
form naturalistic driving studies. Without such studies, it
is difficult to document or even identify the physiological
effects of routine driving. Moreover, driving safety has been
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commanding huge attention in automotive research [11],
leaving little room for investigations on less visible issues.
Here we present work that uncovers physiological effects of
daily driving.

Naturalistic driving studies (NDS) collect vehicle perfor-
mance and driver behavior data during normal, impaired,
and safety-critical situations. The original aim of such stud-
ies was through understanding of driver behaviors to craft
preventive crash measures, including enforcement policies,
infrastructure, and the design of intelligent vehicle systems.
NDS research has been converging to the following conclu-
sions: 1) Driver behavior is the major cause of car crashes.
2) Drivers tend to reduce speed and increase headway, as
a workload alleviating measure during distracting activity
and adverse weather conditions. 3) Smartphones have great
potential as data collection devices. 4) Driver behaviors
can be improved through feedback. Such feedback can be
operationalized with pay as you drive (PAYD), pay how
you drive (PHYD), and manage how you drive (MHYD)
insurance schemes [12].

Conventionally, naturalistic driving studies were carried
out in instrumented vehicles, featuring special data acquisi-
tion systems (DAS). A well-known example is the Strategic
Highway Research Program 2 (SHRP-2) naturalistic driving
study; it is associated with a high frequency and high resolu-
tion set that was collected by installing to participants’ cars
DAS and multiple sensors, such as radars and cameras [13].
The SHRP-2 study design enabled continuous monitoring
of driver performance, driver behavior, speed, acceleration,
lateral and longitudinal positions, as well as eye glancing
behavior. SHRP-2 and other similar studies, however, were
lacking physiological channels. Participants included 3,247
drivers from six different states including New York, Wash-
ington, Pennsylvania, North Carolina, Indiana, and Florida.
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SHRP-2 features n “ 673 crashes. Of the said crashes, 8.92%
(n “ 60), 13.22% (n “ 89), 37.59% (n “ 253), and 40.27%
(n “ 271) were severe, police-reportable, minor, and low-
risk tire strike crashes, respectively. Data analysis revealed
that human errors and violations contributed to 93% of the
crashes, roadway factors contributed to 17%, vehicle factors
contributed in 1%, and 4% of crashes contained unknown
factors [14].

In recent years, the idea of using smartphones as data
collection devices, instead of costly in-vehicle DAS, has been
gaining ground in the NDS community. Smartphone-based
NDS are more economical and unobtrusive than conven-
tional NDS, but are not without problems. For instance, due
to intensive sensor use during naturalistic driving studies,
smartphone batteries tend to drain, resulting in loss of data
and upset drivers, who are left with dead phones in the
middle of the day. Such problems, however, can be managed
and things get better all the time, as smartphone technology
continues to improve [15].

Zhang et al. performed one of the first smartphone-
based NDS [16]. They used data from the smartphones’
GPS, gyro, and accelerometer sensors to classify driving
behaviors through support vector machine modeling. To
carry out their study, Zhang and colleagues recruited a
convenience sample of 14 participants from their lab, and
asked them to drive specific cars in pre-defined routes. In
another early smartphone-based NDS, Hong et al. tried to
understand and model aggressive driving style [17]. Amass-
ing a naturalistic data collection from 22 drivers for 3 weeks,
the authors constructed a model that classified aggressive
and non-aggressive drivers with an accuracy of 90.5% and
81%, respectively. Importantly, the study concluded that
although smartphones are promising data collection de-
vices, they have their limitations. Specifically, the authors
found that smartphone GPS signals cannot reliably measure
car speed, suggesting that in naturalistic driving studies,
smartphones should be paired with on-board diagnostic
II devices (OBD2), for acquiring reliable measurements of
speed and other vehicle variables.

Early smartphone-based NDS have evolved nowadays
into ubiquitous and multimodal NDS, through the addition
of smartwatches and freely available information channels,
like weather. This latest generation of NDS is exemplified
by HARMONY [18], where drivers’ behaviors and states
are monitored through the following channels: (1) outside
and in-cabin video streams that include facial data; (2)
physiological signals that include the drivers’ heart rate; (3)
observational signals that include the drivers’ hand motion
data; (4) ambient noise, light, and the vehicle’s GPS location;
and (5) music logs, including song features such as tempo.

The inclusion of smartwatches in ubiquitous NDS en-
abled the acquisition of heart rate (HR) and heart rate
variability (HRV), which can serve as proxies of arousal [19],
[20] and potentially stress estimators [21]. This newfound
capability, directed the focus of naturalistic driving studies
in understanding and mitigating drivers’ negative emotions,
stress levels, and anxiety. The new thinking is that drivers’
psychophysiology is linked to error-prone driving behav-
iors; thus, psychophysiological indicators can potentially
explain car crashes. Tavakoli et al., analyzing the HAR-
MONY dataset, reported that different road objects might

be associated with varying levels of increase in drivers’
heart rate as well as different proportions of negative facial
emotions detected through computer vision. Larger vehi-
cles on the road, such as trucks, are associated with the
highest amount of increase in drivers’ heart rate as well
as negative emotions. Additionally, shorter distances and
higher standard deviation in the distance to the lead vehicle
are associated with a higher number of abrupt increases in
drivers’ heart rate, indicating a possible stress increase [22].

Besides multimodal naturalistic studies, more special-
ized driving studies have also been flourishing in recent
years. Such studies are usually focused on driver distrac-
tions and rely primarily on video recordings and computer
vision methods. The 100-driver study by Wang et al. [23]
is a representative example of this genre. Other computer-
vision studies on distractions include MDAD [24] and the
driver posture study by Abouelnaga et al. [25].

In a parallel line of inquiry, researchers have been in-
vestigating poor health outcomes associated with driving.
Unlike all the other work we mentioned earlier, research on
health effects of driving has been largely based on surveys
and spearheaded by scholars outside the computing and
engineering communities. In this context, several studies
have shown that lengthy car commuting perpetuates condi-
tions that compromise individuals’ health. Identified factors
included stress caused by traffic congestion, searching for
parking, interacting with other drivers, and safety concerns
[26]. In fact, some studies showed that commuting has a
particularly detrimental effect on the psychological health
of women, and this result was robust to numerous different
specifications [27].

Recently, health effects of driving have been attract-
ing increased attention among researchers. Meseguer et al.
designed an Android application able to monitor in real-
time drivers’ physiological data and vehicles’ diagnostic
data. They focused on fourteen different routes accounting
for a total driving time of 6 hours and 2 minutes. Their
experiments showed that the differences in terms of heart
rate between quiet and aggressive driving ranged between
2.5% and 3% beats per minute higher for the latter behavior
compared to the former [28]. The implication of this finding
is that aggressive driving is not only a negative predictor
of safety, but potentially a negative predictor of long-term
health. In another health outcomes study, Huynh et al.
demonstrated that a significant minority of drivers exhibit
hyperarousal in mundane acceleration events, such as stop
and go traffic [29]. The authors arrived at this conclusion by
conducting a naturalistic driving study, where participants
drove the same city itinerary under similar conditions. The
observed hyperarousal, termed accelarousal, was measured
to be nearly 46% above the participants’ baseline, and thus
a significant stressor. The authors expressed concerns about
the long-term effects of such stressors, if they are experi-
enced daily over the course of many years (e.g., see the
case of delivery drivers). In this direction, our overriding
concern is that repeat driving patterns, like daily commutes,
could hide insidious sympathetic activators. Little work,
however, has been done to identify such activators through
their cardiovascular or other manifestations.

Indeed, such concerns have medical basis. Chronic im-
balance of the autonomic nervous system is a prevalent
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and potent risk factor for adverse cardiovascular events,
including mortality. Any factor that leads to inappropriate
activation of the sympathetic nervous system (e.g., aggres-
sive driving) can be expected to have an adverse effect,
while any factor that augments vagal tone tends to improve
outcomes. Chronic sympathetic hyperactivity increases the
cardiovascular workload and predisposes to endothelial
dysfunction, coronary spasm, left ventricular (LV) hyper-
trophy, and serious dysrhythmias [30]. Moreover, ‘wear and
tear’ from frequent allostatic loading, has been shown to
trigger the onset or progression of mental health issues to
which individuals are susceptible [31].

1.1 Research Aim
The name of our project is NUBI Drive, which stands for
Naturalistic UBIquitous driving study. Using ubiquitous
means, NUBI Drive investigates physiological arousal in
apparently benign daily commutes. Millions of people
drive daily for most of their lives. Next to computers
and smartphones, cars are the machines people most
frequently use. Much like there has been a significant
interest in computer and smartphone use patterns that are
physiologically unsettling, such as long screen times, we
argue for an increased scrutiny on car use patterns that
may do the same. For the latter, we do not refer to harmful
but rare events, like crashes. We rather refer to insidious
daily physiological activators, which people are not even
consciously aware of. For instance, Huynh et al. showed that
trivial acceleration events provoke hyperarousal responses
in certain drivers [29]. The potential long-term effect of such
repeated daily arousals is concerning. Accordingly, the key
aim of our exploratory research is:

AIM: Identify physiologically unsettling car use patterns
and measure their effects. The focus would be on car-
diovascular activation, due to the nature of the available
ubiquitous physiological sensors.

1.2 Contributions
Our NUBI Drive research makes the following important
contributions in terms of insights, methods, and data:

1) It documents the association between anxiety predis-
position and cardiovascular activation while driving. It
also brings to the fore the association of higher speeds
with higher heart rates. These insightful results stand
to inform the management of driving patterns.

2) It operationalizes a ubiquitous computing methodol-
ogy to efficiently carry out naturalistic driving studies
with geographically dispersed participants. By unob-
trusively capturing human, machine, and environmen-
tal variables, our method lives up to the multi-factorial
challenges of such studies.

3) It facilitates research on physiologically unsettling ef-
fects of driving by making publicly available the data
and code associated with this paper [https://github.
com/UH-CPL/NUBI-DRIVE-1].

1.3 Comparison to Related Work
Among other state-of-the-art ubiquitous NDS, such as HAR-
MONY [18], our study adds to the literature thanks to the
following distinct characteristics:

Physiology vs. Safety. The focus of our research is not on
safety issues but rather on insidious physiological effects
of widespread driving patterns. This is a novel, potentially
consequential, and understudied topic in driving studies.
More Ubiquitous vs. Less Ubiquitous. We operational-
ize ubiquitous NDS in a progressive way. While in other
cases, researchers send to participants separate smartphones
and smartwatches to use during the course of the study
[18], we leverage the participants’ own smartphones and
smartwatches for data collection. This adds to the realism,
naturalness, and scalability of our study.
Data Collection Targeting Behavioral Cycles. We view
driving behaviors as human behaviors, embedded in a
broader context and characterized by diurnal and weekly
cycles [32]. For this reason, we collect data from participants
for an entire week, not only during the times they drive,
but also during the times they do not drive. We lock on
a week as a monitoring period, because we consider it
as standard cycle of human behavior. In other naturalistic
driving studies, researchers do not collect non-driving data
from participants; even their driving data are collected
opportunistically, that is, driving data do not come from
consecutive days of a specific week [22]
Analysis of Sustained vs. Event Based Behaviors. We
do not focus on event-based behaviors (e.g., passing an-
other vehicle), but rather on general behavioral patterns
affected by weather conditions, traffic patterns, situational
circumstances, and personal predispositions. This is a much
needed complementary picture to specific instantaneous
behaviors that have been the mainstay of NDS thus far [36].
Our focus also serves well our objective, which is to find
insidious physiological effects of driving behaviors. Such
effects are more likely to come from behaviors that have
significant duration and frequency, such as daily commutes
[37]; they are less likely to come from behaviors associated
with rare and short-lived events, such as critical braking
[38].
Ubiquitous, Multimodal, & Privacy-Preserving. Our de-
sign features broad multi-modality, encompassing physio-
logical, machine, observational, traffic, weather, and psycho-
metric data. This cornucopia of synchronized data channels
brings together arousal, behavioral, situational, and disposi-
tional information, facilitating disambiguation of confound-
ing factors during analysis. Some variables, like traffic and
weather signals, are absent in most NDS, thus denying im-
portant environmental context from their analysis. The only
major data channel our study lacks is video data, but this is
by design. The inclusion of video data renders a ubiquitous
NDS, less ubiquitous, because most people do not have
cameras installed in their cars. We also consider the video
channel very intrusive and privacy-compromising, without
bringing unique and essential information for our phys-
iological outcomes study. In naturalistic driving studies,
dual video, from cameras looking inside and outside, brings
three pieces of information by the way of computer vision
methods [18], [22]: a) drivers’ apparent emotional valence
through recognition of facial expressions; b) assessment of
distractions (e.g., texting) through activity recognition; and,
c) a measure of outside traffic through vehicle detection in
the dash camera’s field of view. We do not have access to
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TABLE 1: Comparative list of naturalistic driving studies. Characteristic study variables are grouped into four categories:
a) General study attributes, such as data size; b) instantaneous car driving and environmental variables, such as traffic
density expressed through Jam Factor; c) instantaneous human physiology and behavior variables, such as heart rate (HR)
and hand motion; and d) dispositional and situational psychometric indicators, such as perceived loading from driving
expressed via NASA-TLX.

STUDY VARIABLES NUBI Drive HARMONY [18] 100-Driver Study [23] SHRP-2 [13]

Study Aim Routine drive effects Predict driver states Driver distractions Crashes

Study Year 2022-23 2019-21 2021-22 2006-15

Study Location Texas Virginia China Eastern US

# Participants 21 21 100 3,247

G
en

er
al

Dataset Size 76.70 driving hrs and
914.53 non-driving hrs 1 month driving 79.34 driving hrs 43,000 driving hrs

Car Speed ✓ ✓ – ✓

Car Accel ✓ – – ✓

GPS ✓ ✓ – ✓

Jam Factor ✓ – – ✓

En
vi

ro
nm

en
t

–
C

ar

Weather ✓ ✓ – ✓

Driving HR ✓ ✓ – –
Non-driving HR ✓ – – –
Hand Accel ✓ ✓ – –
Hand Gyro ✓ ✓ – –

H
um

an
Se

ns
in

g

Computer Vision – ✓ ✓ –

Morning Anxiety [33] ✓ – – –
NASA-TLX [34] ✓ – – –
Trait Anxiety [33] ✓ – – –

Ps
yc

ho
m

et
ri

cs

Big-Five [35] ✓ – – –

the first, but we acquire the other two pieces of information
with alternative means. In more detail, apparent emotional
valence is difficult to capture without video, but is not
very important for our physiological outcomes study. Basic
distractions, that is, hands not on the wheel, are tracked in
our case through the accelerometer and gyroscope in the
drivers’ smartwatch [39]. And, information about encoun-
tered traffic is captured through application programming
interfaces (API), using the GPS coordinates from the drivers’
smartwatch.

Table 1 shows a comparative summary of the charac-
teristics of NUBI Drive against three other representative
driving studies - HARMONY [18], 100-Driver Study [23],
and SHRP-2 [13]. The size of NUBI Drive is similar to the
size of HARMONY, which also features physiological in-
formation. By contrast, however, NUBI Drive features some
additional variables that carry significant behavioral value.
These variables include non-driving physiology and several
psychometric indicators, such as the Big-Five personality
traits [35]. The 100-Driver study represents a specialized
effort focused on distractions. It features extensive computer
vision information but little else. The SHRP-2 study has

impressive size, but carries only car and environmental
information; it lacks human sensing and psychometrics. No-
tably, the focus of SHRP-2 on crashes is in contradistinction
to the focus of NUBI Drive on uneventful driving routines.

2 STUDY DESIGN

We conducted a naturalistic driving study by recruiting
drivers from the state of Texas in the United States. Texas
was chosen as the recruiting ground because it boasts a
renowned car culture [40], where nearly everybody drives
on a daily basis. Furthermore, the state features a good
mix of major metropolitan centers and rural areas, featuring
a highly diverse population [41]. Recruitment was carried
out through Facebook ads. The study procedures were
approved by the Institutional Review Boards (IRB) of the
participating institutions. We performed these procedures
in accordance with the approved guidelines, obtaining in-
formed consent from each participant. Prior to conducting
the formal study, we extensively tested the protocol in pilot
runs to identify and address any practical issues.

We collected biographic, psychometric, vehicle, observa-
tional, and environmental variables as predictive factors of
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sympathetic activation expressed by heart rate - the study’s
response variable. Factor selection was based on literature
support, attesting to their influence on driving behaviors
associated with sympathetic activation.

2.1 Participants
We monitored participants with no known health problems
for one week. After consenting but before embarking on
the study, the participants were trained in the relevant
procedures. These procedures involved installing sensors,
handling data collection apps, and sending the collected
data to the project cloud. Following their training, the par-
ticipants had to perform one test drive, to ensure everything
goes smoothly, and we are receiving their data in good
order. The monitoring period for all participants started on
Monday mornings and ended on Sunday evenings. All com-
munication between study administrators and participants
took place via TEAMS.

Upon enrollment, the participants received via courier
an on-board-diagnostics II (OBD2) device to record driving
data during the study. They also received a $20 Amazon e-
gift card as compensation for any expenses associated with
the acquisition of the needed apps. Upon successful com-
pletion of the study, the participants received an additional
$100 Amazon e-gift card and were free to keep the OBD2
device. The participants had to have an iPhone X or later
model and an Apple Watch 5 or later model loaded with
the latest versions of the iOS and watchOS, respectively. We
did not allow drivers with Android phones and other types
of smartwatches to enroll, to minimize the administrative
burden associated with the management of a multi-platform
study. In the case of the United States, where our study
was conducted, this admission criterion did not materially
bias our sample, as the great majority of U.S. residents have
iPhones and Apple Watches (60% [42] and 91% [43] market
share, respectively). Choosing the Apple ecosystem made
also sense for interoperability reasons. The data acquisition
in our study depended on smooth interoperability between
the participant’s smartwatch and smartphone, as data from
the smartwatch moved to the smartphone before being
transferred to the project’s cloud.

The participants had to have a car, which they were
driving daily. Regular commuters as well as people
with more flexible schedules were welcome in the study,
provided they were making substantial use of their cars.
To qualify for enrollment, interested participants had to
drive at least 20 miles per week. Participants also had to be
healthy, have at least four years of driving experience, and
be between 20 and 30 years old. The age criterion was put
for two reasons: First, restricting the age range to young
adults homogenized our sample from the physiological
point of view [44], obviating the need for a large multi-
group cohort. Second, because the study’s main instruments
were the participants’ own ubiquitous devices, ease with
these devices and their apps were crucial to the success
of the project. In this regard, selecting young drivers for
participants was a sound bet [45].

2.1.1 Participant Attrition and Data Loss
The main objective of this driving study was to analyze be-
havioral and physiological patterns during a typical week.

As the observation horizon was a single week, there was
little room for data loss within each participant. To be
responsive to the study’s objectives, the participants had to
provide good data for at least four out of the five weekdays
and at least one out of the two weekend days. This is
more challenging than it sounds, given the whimsical nature
of some of the technologies involved (especially, OBD2).
We enrolled 34 participants, out of whom 21 produced
usable data for analysis. We describe below the reasons for
participant attrition and data loss:

1) Participants P10, P31, P43, and P51 quit the study after
a couple of days and their data were struck from the
record. This is not an uncommon occurrence in longitu-
dinal studies [46].

2) Participants P11, P13, P26, P28, P34, and P41 completed
the study but had a small and inadequate amount of
data for the key variables of speed, throttle, and heart
rate. This was due to bad luck or occasional inatten-
tiveness, and thus of random rather than systematic
nature. For instance, sometimes the OBD2 Bluetooth
connection was not working and thus the speed and
throttle values were lost for some trips. Or the partic-
ipant’s Apple watch was running out of battery and
the heart rate recording from the app was lost before
saved and transferred to the iPhone. If such mishaps
were taking place over the weekend, compromising the
weekend data, this participant could not be included
in the set, because we knew nothing about his/her
weekend behaviors – a fundamental objective of our
study.

3) For participants P15, P17, and P19, all the values of
the hand acceleration and gyroscope signals were miss-
ing. We traced the problem to incompatibility of these
participants’ Apple Watch 4 and the recording app; we
made the possession of Apple Watch 5 or later model
a hard requirement after these incidents. During model
optimization (see section 3.2), these three participants
could not partake in the selection of variables for which
they suffered total data loss. Hence, they had to be
dropped from the dataset, as no equitable optimization
was possible in their presence.

2.2 Study Variables

NUBI Drive investigates physiological arousal in daily
itineraries. Physiological arousal usually leads to stress, and
we ask the question if seeds of stress are lurking in un-
suspected routine activities. In affective computing, arousal
is usually measured through one of the following physio-
logical channels [47]: heart function, breathing function, or
electrodermal activity (EDA). Because this study was ubiq-
uitous by design, physiological signal collection depended
on the drivers’ own Apple Watches and no special wearable
sensors were allowed. The Apple Watch and other popular
smartwatches frequently measure heart function only; they
infrequently measure breathing function, while they cannot
measure EDA at all. Hence, we had little choice but to use
heart function as a proxy of physiological arousal, since
the other two options were either not available or severely
limited. Ideally, in terms of heart function, we would need
both heart rate and heart rate variability (HRV) for a solid
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fix on sympathetically driven physiological arousal. Here
again, while Apple Watch measures heart rate every few
seconds, it measures heart rate variability only a couple of
times per day. This left us with heart rate - an index of
cardiovascular activation - as the only viable physiological
channel in our study.

Since driving entails physical inactivity, any
cardiovascular activation while driving is likely to
originate from sympathetic arousal or, possibly, from
parasympathetic reduction. Accordingly, we included
vehicular, environmental, observational, and psychometric
variables (Table 2), which prior research links to sympathetic
responses. These variables must account for a significant
part of the drivers’ sympathetic activation, which in turn,
must explain a good part of the measured cardiovascular
activation. We also included indicators of circadian rhythms,
such as morning and afternoon periods, to account
for cardiovascular activation due to parasympathetic
reduction [48]. Aspects of sympathetic activation and
parasympathetic reduction that are not unique to driving
can be identified through complementary models, focused
on the participants’ non-driving life.

2.2.1 Environment - Car Variables
Car Signals. The participants were sent an OBD2 device to
collect car signals during their drives. We chose BlueDriver
[49], as it was the most highly rated OBD2 at the time of the
study. The participants had to plug the BlueDriver device
to the OBD2 port of their car. Every time they were driving
during the monitoring period, the participants had to record
their car signals through the BlueDriver OBD2 Scan Tool
app. These recordings were sent to the project’s server
upon completion of each drive or shortly thereafter. The
BlueDriver collects data for several car variables, but in this
study we used only two: a) instantaneous speed in mph and
b) throttle in degrees, taking values in the range r0˝ ´ 90˝s;
0˝ corresponds to no throttle while 90˝ corresponds to full
throttle. In well-maintained cars, throttle correlates with
the car’s acceleration. Speed and acceleration are the most
fundamental perceptible effects the machine has on the
driver, and because sympathetic activation works in concert
with the senses [50], speed and throttle are integral to this
investigation.

Geolocation (GPS) Signals. The participants were asked
to record their geolocation during their drives - a piece of
information necessary for obtaining matching traffic and
weather information from open sources. GPS recording was
effected via the SensorLog app, that is, the same app that
was also used to acquire observational signals.

Environment Signals. There is support in the literature that
traffic and weather conditions contribute significantly to
driving stress [51], [52], and thus likely to cardiovascular
activation. Accordingly, we used the GPS signals from
the participants’ drives to extract the corresponding
traffic and weather conditions. To collect matching traffic
data, we employed the đ here application programming
interface (API) [53]. The đ here API provides traffic data for
approximately every mile of road in US, updated every 10
minutes. One can extract several traffic related measures
from the API’s databank, but the key measure we used in

this study is the Jam Factor. The Jam Factor takes values in
the range r0 ´ 10s; values in the subrange r0 ´ 4q indicate
free flowing traffic; values in the subrange r4 ´ 8q indicate
sluggish flow of traffic; values in the subrange r8 ´ 10q

indicate slow flow of traffic; Jam Factor = 10 indicates that
traffic stopped flowing or the road is closed. To collect
matching weather data, we employed the OpenWeather
API [54]. The OpenWeather API provides weather data
for every GPS point, updated every 15 min. The reported
information is a categorical variable featuring the following
levels: tThunderstorm, Drizzle, Rain, Snow, Haze, Smoke,
Clear, Cloudsu.

2.2.2 Human Sensing Variables
Physiological Signals. Heart rate served as a measure of
drivers’ cardiovascular activation, which for sitting subjects
is often associated with sympathetic activation [55]. The par-
ticipants were asked to record their heart rate via their Ap-
ple Watch throughout the day, that is, during both driving
and non-driving periods. They used the HeartMonitor app
[56] - a simple but robust app for long heart rate recording
sessions. The app records heart rate values approximately
every 5 seconds, which tends to drain the watch’s battery.
Accordingly, the participants were instructed to recharge
their Apple Watch during lunch time, to last them until the
end of the day.

Observational Signals. It was documented in other works
that texting while driving is often habitual [57] and results
into hyperarousal [58]; thus, it is of interest to the present
study. Prior research showed that accelerometric and gy-
roscopic signal features from wrist-worn sensors can be
used to detect distracted driving - mainly texting while
driving [59]. When compared to computer vision [23], [24],
[25], this is a less comprehensive method to quantify driv-
ing distractions, but a reasonable compromise in our case,
where we use only ubiquitous car and wearable sensors.
Accordingly, we asked participants to wear the Apple Watch
on their ‘texting hand’, recording its tri-axle acceleration and
gyroscope signals while driving. This recording was effected
via the SensorLog app [60] at 36 Hz. We used signal energy
- a fundamental signal feature - to operationalize detection
of persistent distractions in a trip. Per standard practice in
the literature [61], we consolidated the three-dimensional
acceleration and gyroscope variables into two integrated
energy measures - acceleration energy Ea and gyroscopic
energy Er :

Ea “
1

T

ż t0`T

t0

p|ax| ` |ay| ` |az|qdt,

Er “
1

T

ż t0`T

t0

p|rx| ` |ry| ` |rz|qdt,

(1)

where ax, ay , and az are instantaneous accelerometer
values, while rx, ry , and rz are instantaneous gyroscope
values corresponding to the x, y, and z axes; the interval of
integration T was set to 1 s.

2.2.3 Psychometric Variables
In the course of their study involvement, participants had to
complete trait psychometric questionnaires delivered once
and state psychometric questionnaires delivered daily. All
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TABLE 2: List of main variables used in NUBI Drive research. The table includes the sampling frequency, the source, the
value range, the relevance, and the mathematical symbols of the trip-level features associated with the variables.

STUDY VARIABLES Symbol Relevance Values Source Frequency

Car Speed SP Cardio loading from driving style [0-100] mph OBD2 1 Hz

Car Accel TH Cardio loading from driving style [0-90]˝ OBD2 1 Hz

GPS Insta-position to link context Lat P r0,˘90˝s / Lon P r0,˘180˝s Apple Watch 36 Hz

Jam Factor JF Cardio loading from traffic [0-10] đ here API minute level

En
vi

ro
nm

en
t

–
C

ar

Weather WE Cardio loading from nature [Good, Adverse] OpenWeather API minute level

Driving HR DHR Response variable [40-160] BPM Apple Watch per 5 sec

Non-driving HR NHR Response variable [40-200] BPM Apple Watch per 5 sec

Hand Accel Ea Cardio loading from distractions r0,˘2gs Apple Watch 36 Hz

H
um

an
Se

ns
in

g

Hand Gyro Er Cardio loading from distractions r0,˘250˝{secs Apple Watch 36 Hz

Morning Anxiety [33] MA Situational cardio loading [20-80] Qualtrics via iPhone once a day

NASA TLX [34] TLX Situational cardio loading [1-7] Qualtrics via iPhone twice a day

Trait Anxiety [33] TA Dispositional cardio loading [20-80] Qualtrics via iPhone once

Ps
yc

ho
m

et
ri

cs

Big-Five [35] B5 Personality cardio loading [2-10] Qualtrics via iPhone once

questionnaires were implemented in Qualtrics [62], and
their links were texted to the participants’ phones at the ap-
propriate times. In more detail, participant monitoring was
commencing on Mondays. The day before (i.e., Sunday),
the participants had to complete three trait questionnaires:
a biographic survey, the State and Trait Anxiety Inventory
(STAI) Form Y-2 [33], and the Big Five Personality Test (Big-
Five) [35].
Biographic Questionnaire. The biographic questionnaire in-
quired information about gender and age. Age was found
to be an important predictor of sympathetic arousal during
driving [58]. As our study recruited only young adults, our
sample exhibited age homogeneity, and thus age informa-
tion meant to play a confirmatory rather than modeling role.
The gender information, however, meant to be included in
the model, as prior research found women to be more likely
to engage in self-regulation during driving [63], with all
the implications this might have on sympathetic activation.
The biographic questionnaire also inquired about the par-
ticipants’ driving experience, attitude towards driving, and
commuting profile.
State and Trait Anxiety Inventory (STAI) Form Y-2. STAI
Form Y-2 measures anxiety predisposition. Anxiety is in-
timately linked to sympathetic activation [64]. Moreover,
drivers who have anxiety predisposition found to be more
likely to engage in aberrant behaviors [65], [66], with all
the implications this might have on sympathetic activation.
STAI scores take values in the range [20, 80], with higher
scores indicating greater anxiety [33]. Scores greater than 40
indicate anxious individuals [67].
Big Five Inventory (Big-Five). Big-Five is related to the
participants’ key personality traits [35]. Big-Five was found
to predict aggressive and risky driving [68], behaviors typi-
cally associated with sympathetic activation. In the present
study, we used the short 10-item version of Big-Five featur-
ing the following sub-scales: [69].

‚ Agreeableness ´ B5A: The level of participant’s
friendliness with score range [2–10].

‚ Conscientiousness ´ B5C : The level of participant’s
organized nature with score range [2–10].

‚ Extraversion ´ B5E: The level of participant’s out-
going nature with score range [2–10].

‚ Neuroticism ´ B5N : The level of participant’s ner-
vousness with score range [2–10].

‚ Openness ´ B5O: The level of participant’s curiosity
with score range [2–10].

State and Trait Anxiety Inventory (STAI) Form Y-1. Each
day of the monitoring period, the participants had to com-
plete in the morning the STAI Form Y-1 questionnaire [33],
measuring their level of anxiety at the start of the day.
Morning anxiety, owing to anticipation of stressful events
later in the day, was shown to affect working memory
[70], which plays an important role on hazard perception
in driving [71], with obvious implications to sympathetic
activation. For this reason, we decided to consider a measure
of morning anxiety in our modeling.

NASA Task Load Index (NASA-TLX). NASA-TLX is a mul-
tidimensional assessment tool that rates perceived work-
load [34]. In our study, it meant to measure the perceived
driving workload. It has been documented in the literature
that NASA-TLX scores correlate with arousal levels during
driving [58]. Hence, they can be used to rank the arousing
nature of the drives under investigation, affirming also the
corresponding physiological results. As our design consid-
ers two phases in the day cycle - morning and afternoon,
the participants had to complete each day two NASA-TLX
questionnaires, respectively. The first NASA-TLX meant to
assess the loading incurred by the participants’ morning
trips. It was delivered to the participants’ phones at noon,
and they had to complete it shortly thereafter. The second
NASA-TLX meant to assess the loading incurred by the
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participants’ afternoon trips. It was delivered to the par-
ticipants’ phones at 6:30 pm, and they had to complete it
shortly thereafter or when they returned home. NASA TLX
features six sub-scales with common rating [1 = Strongly
disagree, 2 = Disagree, 3 = Somewhat disagree, 4 = Neither
agree nor disagree, 5 = Somewhat agree, 6 = Agree, 7 =
Strongly agree]:

‚ Mental Demand ´ TLXMD : Perceived mental load
induced by morning|afternoon drive(s).

‚ Physical Demand ´ TLXPD: Perceived physical
activity induced by morning|afternoon drive(s).

‚ Temporal Demand ´ TLXTD: Perceived time pres-
sure induced by morning|afternoon drive(s).

‚ Performance ´ TLXP : Perceived success in execut-
ing morning|afternoon drive(s).

‚ Effort ´ TLXE : Perceived amount of work
expended to achieve said performance in
morning|afternoon drive(s).

‚ Frustration ´ TLXF : Perceived level of irritation in
performing morning|afternoon drive(s).

Conventionally, NASA-TLX is applied to single tasks
and thus should have been administered after every drive.
In pilot trials, however, we found that this was logistically
difficult, as it was interfering with the integrity of sensor
data acquisition, and it was fast expending the good will
of participants. Per the study protocol, when participants
were arriving at their destination, they had to spend a
few minutes prior to exiting the car to close the relevant
recording apps and beam the data to the cloud. Filling out a
questionnaire atop of all these was too much for some pilot
volunteers, as they were typically under time pressure. In
their haste to do everything, they were often compromising
the handling of the sensor data. Sometimes they also had
to drive to another place shortly thereafter for a special
meeting or other occasion, which made the whole process
even more onerous. Thankfully, recent research has docu-
mented that NASA-TLX can be applied not only to single
tasks but also to task sequences without loss of validity [72].
Accordingly, and taking advantage of the natural divide
offered by the lunch break, we opted to apply one NASA-
TLX for all morning trips and one for all afternoon/evening
trips, something that dovetailed with our behavioral pattern
design. The concordance of the NASA-TLX scores with the
physiological measurements (see section 3.5), confirmed the
soundness of our design.

3 RESULTS

3.1 Descriptive Statistics
The nP “ 21 study participants resided in 15 different cities
across the state of Texas (Fig. 1) and undertook a total of
nT “ 256 trips during the monitoring period. From these
trips, 200 took place in weekdays and 56 in weekends.
The weekday trip duration was 18.7 ˘ 14.1 min, while the
weekend trip duration was 15.2 ˘ 9.6 min. Summing up all
trips, the total driving time in the dataset amounts to 76.7
hours. The dataset also includes 914.53 hours of non-driving
data. Altogether the momentary driving and non-driving
data constitute 3,703,774 rows of multimodal information.
Trip level analysis in all subsequent modeling was applied
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Fig. 1: Itineraries of participants in the NUBI-1 dataset.
The sample includes a mix of major metropolitan areas, like
Houston and smaller cities, like Bryan.

to this dataset, which we will refer to as NUBI-1 - short for
Naturalistic UBIquitous driving study dataset 1.

NUBI-1 consists of 14 males and 7 females. By design,
the study was restricted to young adults, which is reflected
in the sample’s age statistics: 27.5 ˘ 6.8 years of age. All
participants acquired their driving license when 16, and
were driving ever since. Given that the mean age of the
sample was 27.5, the typical participant had over 10 years of
driving experience. Furthermore, 90.5% of participants had
a regular commuting schedule, while 66.7% of participants
drove well over 50 miles per week; no participant drove less
than 20 miles per week.

Figure 2 shows descriptive plots of key NUBI-1 variables
at the trip level, reflecting the values used in our modeling
process. In more detail, Fig. 2a shows the physiological,
vehicular, and observational variable box-plots. The distri-
bution of mean trip heart rates (86.5 ˘ 10.3 BPM) features a
good range; it extends all the way down to values typically
associated with relaxed states (ă „ 70 BPM) [73], and all
the way up to values typically associated with hyperaroused
states (ą „ 90 BPM) [74] for healthy sitting subjects. The dis-
tribution of mean trip speeds (26.2 ˘ 12.7 mph) is centered
on values indicative of city street itineraries („ 30 mph),
but extends all the way to values indicative of highway
itineraries („ 60 mph). The distribution of accelerometer
energy (1.3 ˘ 0.4) stands higher than the distribution of gy-
roscopic energy (0.7 ˘ 0.4q, reflecting the limited rotational
patterns associated with typical driving and texting.

Figure 2b shows descriptive plots of the environmen-
tal variables. The distribution of mean trip Jam Factors
(1.4˘0.8) does not exceed 4, which indicates that the overall
traffic flow in the dataset’s trips was relatively unhindered.
The weather bar-plots indicate that the prevailing weather
in the great majority of trips was either fair (26.6%) or
cloudy (68.8%), thus posing no driving problems.

Figure 2c shows descriptive plots of the NUBI-1 par-
ticipants’ state psychometrics. The participants had a near
Normal morning anxiety distribution (32.1 ˘ 10.1) with its
mean 32.1 near the center of the non-pathological subrange
[20, 40]. The NASA-TLX distributions for the subscales
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Fig. 2: Descriptive plots of key modeling variables. a. Box-
plots of mean trip values for driving heart rate DHR, speed
SP , throttle TH , hand acceleration energy Ea, and hand
gyroscopic energy Er . b. Box-plot of mean trip Jam Factor
JF and bar-plots of prevailing weather pattern per trip,
where Rain consolidates rain, thunderstorm, and drizzle cat-
egories, while OT consolidates haze and smoke categories.
The Jam Factor distribution suggests relatively unhindered
traffic flow in the dataset’s trips, while the weather plots
indicate perfect driving weather in the great majority of
cases. c. Box-plots of participants’ morning anxiety MA
and NASA-TLX scores TLXMD , TLXPD, TLXTD, TLXP ,
TLXE , and TLXF for perceived Mental Demand, Physi-
cal Demand, Temporal Demand, Performance, Effort, and
Frustration, respectively. The high scores of the Performance
subscale TLXP stand out, indicating the largely uneventful
character of the dataset’s trips. d. Box-plots of participants’
trait anxiety TA and Big-Five subscales B5E , B5A, B5C ,
B5N , and B5O for Extraversion, Agreeableness, Conscien-
tiousness, Neuroticism, and Openness, respectively. Partic-
ipants exhibit good ranges across all variables, suggesting
healthy phenotypical diversity.

Mental Demand (1.9 ˘ 1.1), Physical Demand (1.6 ˘ 0.8),
Temporal Demand (2.1˘1.3), Effort (1.9˘1.0), and Frustra-
tion (2.1 ˘ 1.4) feature low to moderate values. The NASA-
TLX distribution for Performance (5.5 ˘ 1.3), is the only
one that features high values, indicating the satisfaction of
the drivers with the trip execution. This reflects the largely
uneventful character of these trips, where no crashes and
tickets were recorded.

Figure 2d shows descriptive plots of the NUBI-1 partic-
ipants’ phenotypical characteristics. The participants had a
nearly Normal trait anxiety distribution (39.2 ˘ 9.5), with
its mean 39.2 being on the high end of the non-pathological
subrange [20, 40]. The agreeableness and conscientiousness
distributions of the participants were centered on the high
end of the Big-Five range with 7.3 ˘ 1.9 and 7.6 ˘ 1.4,
respectively. The participants’ extraversion and openness
distributions were centered just above the middle of the Big-
Five range with 6.0˘ 2.1 and 6.3˘ 1.9, respectively. Finally,
the participants’ neuroticism distribution was centered near
the middle of the Big-Five range with 5.0 ˘ 1.9.

While Fig. 2 shows the mean trip statistics upon which
subsequent models operate, Fig. 3 gives a glimpse of the
underlying instantaneous data for participant P27. The par-
ticipant is a typical commuter, as can be seen from the clus-
tering of his trip signals. His morning commute takes place
just before 7:00 o’clock, while his afternoon commute just
before 17:00 o’clock. Occasionally, the participant ventures
out between 11:00 and 13:00 o’clock for his lunch break. He
ventures out late in the evening only on Friday, likely for a
night out. In his daily trips, the participant is blessed with
good driving weather (clear or overcast). He encounters rain
in just one occasion. There is unhindered traffic flow in the
great majority of the participant’s driving (Jam Factor ă 4).
He briefly encounters serious traffic only towards the end of
his morning commute (Jam Factor between 4 and 8).
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Fig. 3: Weekday signals of key model variables for par-
ticipant P27. Trips (n “ 14) from different weekdays are
represented by different colors. The signals visualize the
instantaneous values of HR, Speed, Jam Factor, and Weather
during the trips. Out of these instantaneous values, the
mean/mode trip statistics are computed, which are used in
the plots of Fig. 2 and the models.
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3.2 Driving Heart Rate Model
We first report on the predictors of participants’ driving
heart rate. For that, we construct a multiple linear regression
model, where the response variable is DHRpi, j, k, lq, that
is, participant’s Pi mean heart rate in trip k of day j, with
the trip having taken place in l “ Morning or Afternoon.
The predictors include participant’s Pi traits, state psycho-
metrics, driving behaviors, and environmental context. The
full model is in Eq. (2).

DHRpi, j, k, lq „ β0 ` β1GENpiq `

β2TApiq ` β3B5Apiq ` β4B5Cpiq `

β5B5Epiq ` β6B5Npiq ` β7B5Opiq `

β8MApi, jq ` β9TLXpi, j, lq `

β10DIpi, jq ` β11PIpi, j, lq `

β12SP pi, j, kq ` β13THpi, j, kq `

β14Eapi, j, kq ` β15Erpi, j, kq `

β16JF pi, j, kq ` β17MopWEqpi, j, kq ` 1|S.

(2)

The first three lines of Eq. (2) - underlined in blue -
hold the participant’s biographic and trait psychometric
predictors. Specifically, GENpiq stands for the gender of
participant Pi, taking one of two values: Male or Female.
TApiq stands for the STAI Form Y-2 score of participant Pi.
B5Apiq, B5Cpiq, B5Epiq, B5Npiq and B5Opiq stand for the
agreeableness, conscientiousness, extraversion, neuroticism,
and openness scores of participant Pi.

The next two lines of Eq. (2) - underlined in cyan - hold
the participant’s subjective assessments, as well as the trip’s
temporal context. In more detail, MApi, jq stands for the
STAI Form Y-1 score of participant Pi, indicating his/her
level of morning anxiety in day j. TLXpi, j, lq stands for
the total NASA-TLX score of participant Pi in day j, ex-
pressing his/her perceived loading due to driving in period
l (Morning or Afternoon). DIpi, jq ” j is the day indicator.
PIpi, j, lq ” l is the period of day indicator (Morning or
Afternoon), in day j, of participant Pi.

The next two lines of Eq. (2) - underlined in red - hold
the participant’s driving behaviors in the form of vehicular
and observational predictors. Specifically, SP pi, j, kq is the
mean speed of participant Pi in trip k of day j. THpi, j, kq is
the mean absolute throttle position of participant Pi in trip
k of day j. Eapi, j, kq and Erpi, j, kq are the mean accelera-
tion and gyroscopic energy, respectively, of participant’s Pi

‘texting’ hand while driving in trip k of day j.
The last line of Eq. (2) holds the environmental pre-

dictors. In more detail, JF pi, j, kq stands for the mean
jam factor participant Pi encountered in trip k of day
j. MopWEqpi, j, kq stands for the mode of the weather
pattern that participant Pi encountered during trip k of
day j. The term 1|S indicates that we take into account
participant-centered random effects. Accounting of random
effects considers, among other things, the inter-individual
variability of heart rate. This is important, because we do
not know the baseline heart rate of participants to perform
direct normalization. We are further protected in this respect
by the similar young age of all participants, as age is an
important contributor to differences in baseline heart rate.

Prior to solving the model, we construct the cross-
correlation matrix for all variables listed in Eq. (2) to check
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Fig. 4: Cross-correlation matrix of all predictors in Eq. (2).
There are some significant correlations, such as between
mean trip speed SP and throttle TH , which are to be
expected. No correlation coefficient in the table, however,
exceeds ˘0.6.

for collinearities - Fig. 4. Some correlations rise above others.
As expected, mean trip speed SP correlates with mean trip
throttle TH (r “ 0.4), while trait anxiety TA correlates with
morning anxiety MA (r “ 0.6). No correlation, however,
is stronger than r “ ˘0.6. Due to the absence of exces-
sive cross-correlations, no variable removal in the model
is necessary. Subsequently, we run the following model
optimization process, based on the Akaike information cri-
terion (AIC), which unlike p-value optimization provides
protection from Type I errors:

STEP 1 Starting from the full model in Eq. (2), we sculpt
a leaner model through backward elimination:

DHRBpi, j, k, lq „ βB0 ` βB1GENpiq`

βB2TApiq ` βB3B5Cpiq `

βB4DIpi, jq ` βB5PIpi, j, lq `

βB6SP pi, j, kq ` 1|S.

(3)

STEP 2 Starting from an empty model, we build an
optimal model through forward selection of the
best variables included in Eq. (2), until the model
no longer improves:

DHRF pi, j, k, lq „ βF0 ` βF1GENpiq`

βF2TApiq ` βF3B5Cpiq `

βF4B5Npiq ` βF5B5Opiq `

βF6DIpi, jq ` βF7PIpi, j, lq `

βF8SP pi, j, kq ` 1|S.

(4)

STEP 3 Starting with the forward model in Eq. (4),
which is a superset of the backward model in
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Eq. (3), we manually add and remove items (like
interactions), just in case the automated meth-
ods missed something. At the end, we remove
insignificant terms that do not materially affect
the AIC, arriving at the optimized model of Eq.
(5). The AIC of the optimized model in Eq. (5) is
1806.3 - a significant improvement from 1839.6
of the full model in Eq. (2).

DHR
1
pi, j, k, lq „ β1

0 ` β1
1GENpiq`

β1
2TApiq ` β1

3B5Cpiq ` β1
4DIpi, jq `

β1
5PIpi, j, lq ` β1

6SP pi, j, kq ` 1|S.

(5)

Table 3 provides a comprehensive list of the optimized
driving model’s parameter estimates, while Fig. 5 shows
the plots of the model’s results. The results suggest that
gender, trait anxiety, conscientiousness, weekly/diurnal cy-
cles, and speed are significant predictors of heart rate while
driving. To give a clear idea of the factor effects, we report
comparative results with respect to the model’s Baseline
Driver (BD) - a useful yardstick. This baseline driver does
not exist in the dataset as such. It is a model construct
that is defined by the baseline levels of categorical pre-
dictors and the mean values of quantitative predictors in
Eq. (5). Accordingly, BD is conceptualized as female, with
TA score 39.23, conscientiousness score 7.77, who drives
in the morning of weekdays, and at an average speed of
26.24 mph; conveniently, the latter happens to be typical
city street speed. Substituting these values in Eq. (5), we
find that BD has a mean driving heart rate of DHRBD “

38.037`0.471ˆ39.23`2.438ˆ7.77`0.114ˆ26.23 “ 78.5
bpm.

Keeping this context in mind, and varying only one
factor at a time, while keeping all other factors constant, the
coefficients in Table 3 suggest the following: Male drivers
exceed the heart rate of BD by about 10 bpm. For every
10 points above the TA score of BD, drivers’ heart rate is
loaded with additional 10ˆ 0.471 « 5 bpm. For every point
above the conscientiousness score of BD, drivers’ heart rate
is loaded with additional „ 2.5 bpm. Drivers who drive in
the weekends have lower heart rate with respect to BD by
about 3 bpm. Drivers who drive in the afternoons exceed
the heart rate of BD by about 4.5 bpm. Finally, for every
10 mph of additional speed, drivers’ heart rate is loaded
with additional 10 ˆ 0.114 « 1 bpm. Hence, at the typical
highway speed of 65 mph, which is about 40 mph higher
than the speed of BD, the heart rate premium is 4 bpm.

The time complexity of a multi-regression model - such
as the one we use here - is Opp2n ` p3q, where n is the
number of data rows and p is the number of features [75].
Consequently, as far as the number of features is relatively
small, the complexity of the model is near linear to the
number of data rows. In our case, the maximum number
of predictive features is 17 - see the full model in Eq. (2).
This is a reasonable size feature set, and our model runs
instantly on a typical MacBook Pro with 32 GB of memory.

3.3 Non-driving Heart Rate Model
To examine if the effects of participants’ traits and morning
anxiety are unique to driving heart rate (see Eq. (2)) or also

TABLE 3: Results of the optimized mixed effects driving
model described by Eq. (5). β1

¨ stands for the coefficient
estimates, SE for Standard Error, and df for degrees of
freedom. The baselines of the categorical variables gender
GEN , day indicator DI , and period of day indicator PI are
Female, Weekday, and Morning, respectively. Significance
levels have been set as follows: *: p ă 0.05, **: p ă 0.01, ***:
p ă 0.001.

Predictor β1
¨ SE df t value Pr(ą |t|)

Intercept 38.037 9.737 16.227 3.907 0.001 ˚˚

GENrMales 9.701 2.574 14.392 3.769 0.002 ˚˚

TA 0.471 0.129 13.971 3.660 0.003 ˚˚

B5C 2.438 0.806 14.509 3.024 0.009 ˚˚

DIrWeekends ´2.689 1.228 241.485 ´2.190 0.029 ˚

PIrAfternoons 4.549 1.048 238.266 4.341 ă0.001 ˚˚˚

SP 0.114 0.050 210.632 2.299 0.023 ˚
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Fig. 5: Main effects of the optimized mixed-effects driving
model expressed in Eq. (5). a. Categorical associations of
demographic and temporal predictors with mean driving
heart rate DHR. Gray error bars are related to the pre-
dictors’ baseline levels. Color error bars suggest significant
differences from the respective baseline levels, as the figure’s
legend in the middle indicates. b. Quantitative associa-
tions of psychometric predictors and driving behaviors with
mean driving heart rate DHR. Hyphenated lines mark the
mean values of the corresponding predictors. Color curves
suggest significant associations, as the figure’s legend in
the middle indicates. Significance levels have been set as
follows: *: p ă 0.05, **: p ă 0.01, ***: p ă 0.001.

extend into their non-driving heart rate, we construct the
multiple linear regression model shown in Eq. (6).

NHRpi, jq „ γ1GENpiq ` γ2TApiq ` γ3B5Apiq `

γ4B5Cpiq ` γ5B5Epiq ` γ6B5Npiq ` γ7B5Opiq `

γ7B5Opiq ` γ8MApi, jq ` 1|S.

(6)

The response variable is NHRpi, jq, that is, participant’s
Pi mean non-driving heart rate in day j. The predictors
include all the biographic and trait psychometric factors
plus the morning anxiety assessments we encountered in
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the full driving model expressed in Eq. (2). Specifically,
GENpiq stands for the gender of participant Pi. TApiq
stands for the STAI Form Y-2 score of participant Pi.
B5Apiq, B5Cpiq, B5Epiq, B5Npiq and B5Opiq stand for the
agreeableness, conscientiousness, extraversion, neuroticism,
and openness scores of participant Pi. MApi, jq stands for
the STAI Form Y-1 score of participant Pi, indicating his/her
morning anxiety in day j.

TABLE 4: Results of the mixed effects non-driving model
described by Eq. (6). γ¨ stands for the coefficient estimates,
SE for Standard Error, and df for degrees of freedom. The
baseline of the categorical variable gender GEN is Female.
Significance levels have been set as follows: *: p ă 0.05, **:
p ă 0.01, ***: p ă 0.001.

Predictor γ¨ SE df t value Pr(ą |t|)

Intercept 28.254 21.482 12.239 1.315 0.213

GENrMales 14.449 3.591 11.631 4.023 0.002 ˚˚

TA 0.475 0.276 12.517 1.722 0.110

B5A ´0.071 1.038 12.113 ´0.068 0.947

B5C 2.855 1.136 11.933 2.513 0.027 ˚

B5E ´0.381 0.739 11.199 ´0.516 0.616

B5N 0.220 1.235 12.546 0.178 0.861

B5O 1.284 1.068 12.737 1.202 0.251

MA 0.091 0.084 161.382 1.084 0.280
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Fig. 6: Significant main effects of the mixed-effects models
expressed in Eqs. (6) & (7). a. Associations of gender and
conscientiousness with mean non-driving heart rate NHR.
b. Association of period of day with general mean heart rate
HR. Gray error bars in the categorical predictors gender
and period of day are related to the corresponding baseline
levels. The hyphenated line marks the mean value of the
quantitative predictor conscientiousness. Per the figure’s
legend, color error bars suggest significant differences from
the respective baseline levels and color curves suggest sig-
nificant associations. Significance levels have been set as
follows: *: p ă 0.05, **: p ă 0.01, ***: p ă 0.001.

Table 4 provides a comprehensive list of the non-driving
model’s parameter estimates, while Fig. 6a shows the plots
of the model’s significant results. The results suggest that
gender and conscientiousness are significant predictors of
non-driving heart rate. To give a clear idea of the factor
effects, we report comparative results with respect to the

Baseline Non-driving Participant (BND). This baseline non-
driving participant is again a conceptual yardstick, defined
by the baseline levels of categorical predictors and the mean
values of quantitative predictors in Eq. (6). Accordingly,
BND is conceptualized as female, with TA score 39.23,
agreeableness score 7.41, conscientiousness score 7.63, ex-
traversion score 5.89, neuroticism score 5.09, openness score
6.24, and morning anxiety score 32.17. Substituting these
values in Eq. (6), we find that BND has a mean non-driving
heart rate of NHRBND “ 28.254 ` 0.475 ˆ 39.23 ´ 0.071 ˆ

7.41 ` 2.855 ˆ 7.63 ´ 0.381 ˆ 5.89 ` 0.22 ˆ 5.1 ` 1.284 ˆ

6.24 ` 0.091 ˆ 32.17 “ 78.0 bpm.
Keeping this context in mind, and varying only one

factor at a time, while keeping all other factors constant,
the coefficients in Table 4 suggest the following: Male par-
ticipants when do not drive exceed the heart rate of BND by
about 14.5 bpm. For every point above the conscientiousness
score of BND, participants’ non-driving heart rate is loaded
with additional „ 3 bpm. Comparing these results with the
results of the driving model in Table 3, we observe that
gender and conscientiousness have associations of nearly
the same order with both driving and non-driving heart
rate. Trait anxiety, however, is significantly associated only
with driving heart rate.

3.4 Nondescript Model - Association of Temporal Con-
text With Driving and Non-driving Heart Rate

To examine whether temporal context affects the heart rate
of participants not only when they drive but also in non-
driving activities, we construct the multiple linear regres-
sion model shown in Eq. (7).

HRpi, jq „ζ1ACT pi, jq ` ζ2DIpi, jq ` ζ3PIpi, j, lq`

ζ4ACT pi, jq ˆ DIpi, jq`

ζ5ACT pi, jq ˆ PIpi, j, lq ` 1|S.

(7)

The response variable is HRpi, jq, that is, participant’s Pi

mean heart rate in day j. The predictors include the type
of activity that produces HRpi, jq, the associated tempo-
ral context, and interactions thereof. Specifically, ACT pi, jq

stands for the activity of participant Pi in day j, be that a
Driving activity (i.e., trip) or a Non-driving one. DIpi, jq is
the day indicator, which maps to two values: Weekday and
Weekend. PIpi, j, lq is the period of day indicator, which
maps to two values: l “ Morning or Afternoon.

Table 5 provides a comprehensive list of the nondescript
model’s parameter estimates, while Fig. 6b shows the plot
of the model’s significant result. The result suggests that
people have significantly higher heart rate in the afternoon
relative to the morning. As the insignificant interactions
indicate, this is a general result, irrespective of the activity
the participants are engaged in, be that driving or non-
driving. Altogether this result and the results from the driv-
ing and non-driving models in Tables 3 and 4, respectively,
lead to the conclusion that only propensity for anxiety and
driving speed bear unique associations to driving heart rate.
Gender, conscientiousness, and temporal context associate
with heart rate across driving and non-driving activities.
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TABLE 5: Results of the mixed effects nondescript model
described by Eq. (7). ζ¨ stands for the coefficient estimates,
SE for Standard Error, and df for degrees of freedom. The
baselines of the categorical variables activity ACT , day
indicator DI , and period of day indicator PI are Non-
Driving, Weekday, and Morning. Significance levels have
been set as follows: *: p ă 0.05, **: p ă 0.01, ***: p ă 0.001.

Predictor ζ¨ SE df t value Pr(ą |t|)

Intercept 85.396 1.850 28.027 46.169 ă0.001 ˚˚˚

ACT rDrivings ´1.122 1.161 330.001 ´0.967 0.334

DIrWeekends ´0.914 1.510 334.227 ´0.606 0.545

PIrAfternoons 4.508 1.112 330.729 4.054 ă0.001 ˚˚˚

ACT rDrivings ˆ DIrWeekends ´0.826 1.984 330.185 ´0.417 0.677

ACT rDrivings ˆ PIrAfternoons 0.657 1.543 330.115 0.425 0.671

3.5 NASA-TLX Model - Linking Drivers’ Subjective Per-
spectives w/ Physiological Processes

The driving model expressed in Eq. (5) indicates that the
heart rate of drivers is significantly higher in the afternoons
vs. mornings and in the weekdays vs. weekends. This
cardiovascular activation may be partly due to increased
sympathetic activity and partly due to decreased parasym-
pathetic activity. To shed more light into the phenomenon,
we perform temporal analysis of the participants’ perceived
driving workload. Accordingly, we construct the multiple
regression model shown in Eq. (8).

TLXspi, j, lq „ λ0 ` λ1DIpi, jq ` λ2PIpi, j, lq `

λ3DIpi, jq ˆ PIpi, j, lq ` 1|S.
(8)

The response variable is TLXspi, j, lq, which stands for
the NASA-TLX subscale score s, of participant i, for the
driving he/she performed during period l (morning or
afternoon) of day j. On the predictor side of Eq (8), we use
the two temporal predictors we have been using throughout
this study, and their interaction. These are: the day indicator
DIpi, jq P tWeekday,Weekendu, and the period of day
indicator PIpi, j, lq P tMorning,Afternoonu.

Participants submitted scores for all six subscales of
NASA-TLX, that is, s P tMD,PD, TD,P,E, F u, twice
per day. In doing so, they quantified their perceptions
about how mentally (MD) and physically (PD) demanding
the drives were during the morning or afternoon period.
They also expressed the time pressure (TD) they felt while
driving during that period. Finally, participants estimated
the quality of their driving (P ), how much effort (E) they
put to achieve this level of performance, and their level of
frustration (F ) during the said driving.

In all, we run six versions of Eq. (8), one for each NASA-
TLX subscale. The versions corresponding to the temporal
demand (TD) and effort subscale (E) give significant results;
the rest, do not. In more detail, Table 6a shows the results
for the TLXTD version of Eq. (8), while Fig. 7a shows the
associated plot. Table 6b shows the results for the TLXE

version of Eq. (8), while Fig. 7b shows the associated plots.
It is clear that participants feel significantly more time
pressure during their weekday drives with respect to their
weekend drives. The nature of this feeling points to likely

TABLE 6: Significant results for the family of mixed effects
models expressed by Eq. (8). (a) Model estimates when the
response variable is TLXTD. (b) Model estimates when the
response variable is TLXE . The baselines of the categorical
variables day indicator DI , and period of day indicator PI
are Weekday, and Morning. Significance levels have been set
as follows: *: p ă 0.05, **: p ă 0.01, ***: p ă 0.001.

(a) TLXTD

Predictor λ¨ SE df t value Pr(ą |t|)

Intercept 2.221 0.177 232 12.571 ă0.001 ˚˚˚

DIrWeekends ´0.887 0.361 232 ´2.454 0.015 ˚

PIrAfternoons ´0.126 0.179 232 ´0.703 0.483

DIrWeekends ˆ PIrAfternoons 0.557 0.419 232 1.330 0.185

(b) TLXE

Predictor λ¨ SE df t value Pr(ą |t|)

Intercept 1.809 0.168 232 10.748 ă0.001 ˚˚˚

DIrWeekends 0.291 0.218 232 1.336 0.183

PIrAfternoons 0.298 0.107 232 2.777 0.006 ˚˚

DIrWeekends ˆ PIrAfternoons ´0.586 0.251 232 ´2.333 0.021 ˚
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Fig. 7: Significant main effects and interactions of the
NASA-TLX model expressed by Eq. (8) a. Association of
day indicator with perceived time pressure TLXTD during
driving. b. Association of period of day indicator with
perceived driving effort TLXE , as well as interaction ef-
fects. Gray error bars are associated with the baseline levels
Weekday and Morning. Color error bars indicate significant
effects per the figure’s legend. Significance levels have been
set as follows: *: p ă 0.05, **: p ă 0.01, ***: p ă 0.001.

sympathetic activation [76]. It is also clear that participants
feel they expend significantly more effort to carry out their
afternoon drives with respect to their morning drives. The
context of this feeling points to likely parasympathetic re-
duction, linked to circadian rhythm [48]. The two results
provide insights into the likely underlying processes that
contribute to higher driving heart rates in the weekdays and
afternoons, correspondingly.

4 DISCUSSION

Although long-term effects of daily driving might be con-
cerning, it is difficult to be aware of the problem in the
first place. This is because short-term effects of daily driving
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are not immediately obvious, due to their moderate impact
and the existence of confounding factors [29]. Even when
suspicions arise, it is not easy to measure and validate short-
term effects of daily driving, because that involves con-
tinuous and unobtrusive monitoring of people. The latter
is associated with challenges in the design, execution, and
analysis of naturalistic studies [77], [78]. These challenges,
however, are negotiated with increased success, thanks to
transformative developments in affective computing [79].

In this context, we undertook a naturalistic driving
study, focused on the identification and estimation of cardio-
vascular activation in commutes and other routine drives.
A key motivation was to use this as a starting point for
unearthing any sympathetic activation lurking in ubiquitous
machine usage. There are two practical questions underly-
ing our research: 1) how to measure cardiovascular acti-
vation and 2) what factors to track to identify any likely
linkages to sympathetic activation.

With respect to the first question, we adopted heart
rate as the key measure of cardiovascular activation for
the following reasons: a) heart rate correlates with arousal
[55]; b) heart rate is an important health indicator [80],
linked to long-term cardiovascular [81] and mental health
[82] problems; and c) heart rate can be reliably measured
with smartwatches [83], a ubiquitous sensor worn by over a
quarter of the U.S. population [84].

With respect to the second question, we included driving
behaviors, and extrinsic as well as intrinsic factors associ-
ated with these behaviors. In terms of behaviors, we tracked
the drivers’ speed, acceleration, and habitual texting. In
terms of extrinsic factors, we tracked the traffic and weather
patterns the drivers encountered while driving. In terms
of intrinsic factors, we accounted for the drivers’ gender,
anxiety, and personality traits. All the said factors have
support in the literature, as explained in sections 2.2.1,
2.2.2, and 2.2.3, facilitating a comprehensive and meaningful
investigation.

Our study has three elements that make it stand out from
other naturalistic driving studies [18], [22]. First, we system-
atically capture behavioral cycles at the weekly and daily
levels, by shadowing participants for a full week, day and
night, without any interruption. Human behavior - either
in driving or non-driving contexts - is largely periodic for
practical and other reasons [32]. It is in the repetition of this
periodicity, where the long-term concerning effects of some
physiological responses may lie. Second, we do not only
capture the driving but also the complementary non-driving
physiology of participants. This provides a comparative
control, which helps to delineate heart correlations unique
to driving from heart correlations that apply across driving
and non-driving activities. Third, in our study, participants
go about their daily lives emitting data through their own
smartphones and smartwatches. This is in contradistinction
to ‘given’ phones and watches in other studies, which may
introduce behavioral modifications hard to appreciate.

Analysis of multimodal data from 21 young but experi-
enced drivers provides insightful results that highlight the
virtues of our study design. In more detail, we found that
anxiety predisposition is associated with significantly higher
heart rates in driving. We did not find any such association
in non-driving activities. Our working hypothesis about

this phenomenon is that although driving is a ubiquitous
activity, it has risk. Activities that involve even small risk
tend to trigger hyperarousals to people with naturally high
anxiety levels [85], which manifest as elevated heart rates,
with all other things being equal.

We also found that higher speeds are associated with
higher heart rates. For instance, freeway speeds are ac-
companied by significant heart rate loading with respect
to city speeds, all other things being equal. One possible
explanation for this finding is as follows: When people drive
a car, they are in charge of a multi-ton machine. The higher
the speed of this machine, the higher its momentum and
thus, the danger it poses. It is simple physics, to which
experienced drivers may have consciously adjusted, but it
appears that subconsciously their physiology continues to
produce ‘fight or flight’ responses.

Interestingly, we did not find any association between
traffic or weather and cardiovascular activation while driv-
ing. This result, however, may be an artifact of our dataset;
for example, if we had data from New York both in the
summer and winter, traffic and weather may have emerged
as additional cardiovascular activators. In contradistinction,
our study took place in a Southwestern state in the summer,
where the weather is typically good. Indeed, over 95% of the
trips under investigation took place under clear or cloudy
weather (Fig. 2b), which is perfect for driving. Furthermore,
the great majority of these trips featured mean Jam Factor
between 1 and 4 (Fig. 2b), suggestive of good traffic condi-
tions. There are two main reasons for the preponderance of
relatively unhindered traffic flow in our dataset: First, some
of the participants were coming from mid-size cities, like
College Station, TX (Fig. 1), where traffic is rarely a problem.
Second, even for participants from major Texas cities, like
Houston and Dallas (Fig. 1), traffic conditions are far better
than other major cities in the U.S., like Los Angeles and New
York. Hence, our study can be viewed almost as a natural
experiment, with subdued exogenous factors, which allows
the importance of endogenous factors to come to the fore.

In fact, the endogenous nature of our findings makes
them all more important. If the cardiovascular activators
were exogenous, such as weather and traffic, one could
avoid them with some planning. However, people cannot
avoid their own nature (i.e., being anxious) and cannot
avoid speed when they drive. After all, this is the main
reason for using cars, that is, to move fast from point A
to point B. Hence, speed-related cardiovascular activation
is innate to car usage. The effects suggested by our model
are sizeable. A person with anxious predisposition (TA =
50) who drives at freeway speeds (65 mph) is associated
per our model with 5 BPM and 4 BPM heart rate premiums,
respectively, for a total of 9 BPM. It is not desirable to exhibit
such excessive activation, while sitting, for an hour or more
every day. If people can avoid or minimize relevant driving
activities, they probably should.

A more difficult question is if such daily cardiovascular
activation poses any long-term risk. Our model has been
constructed from data of people who drive 1-2 hours daily
and have been doing so for about 10 years. Driving for our
participants is not a novelty, but they are not professional
drivers. We do not know if the said heart rate premiums
would hold for professional drivers who drive all the time,
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and a separate study would be needed for that. If they
do hold, however, these effects may have long-term health
implications, because they would be on par with risk factors
described in the Framingham Heart Study (FHS) [86]. For
instance, analyzing data from FHS, researchers found that a
sustained increase in daily heart rate by 11 BPM, increases
the risk of cardiovascular disease by 15% [87].

Thanks to our all encompassing study design, we were
also able to establish that highly conscientious people are
associated with higher heart rates not only when they drive
but also in other nondescript activities they engage in. It
is not easy to do the right thing, and presumably this is
what conscientious people tend to do all the time [88]; for
instance, by remaining extra vigilant when they drive to
ensure the safety of all involved, or by taking the ‘extra
mile’ in their office or home duties. We also measured male
participants to have significantly higher heart rate than fe-
male participants across driving and non-driving activities.
For ages below 30, which is the age range of our sample,
this finding is well-supported in the medical literature [89].

With regard to weekdays (vs. weekends) and after-
noons (vs. mornings), we found cardiovascular activation
to persist across both driving and non-driving activities.
For the afternoons, medical researchers documented that
parasympathetic activity in the afternoon undergoes sig-
nificant reduction [48], which explains the higher observed
heart rate in our study. This result poses larger questions
related to work-life balance and flexible work schedules. As
afternoons appear to impose an onerous cardiovascular load
on whatever people do, possible solutions include shorten-
ing workdays, or alternatively interrupting them with a big
break after lunch, only to resume early in the evening. For
the latter, there is precedence in certain cultures centered
around the concept of ‘siesta’ [90].

An important question is if the observed cardiovascular
activation is linked to sympathetic activation (arousal) or
parasympathetic reduction. We believe the likely answer
to this varies depending on the factor. For the associa-
tion of cardiovascular activation with afternoon activities,
parasympathetic reduction is the most likely contributor,
something that as we mentioned is supported by the lit-
erature [48]. However, for the association of cardiovascular
activation with trait anxiety and car speed, the most likely
contributor is sympathetic activation. Anxiety is intimately
linked to sympathetic activation [64]. As for speed, because
it is perceptible through the senses, again sympathetic acti-
vation is the most likely underlying source of cardiovascu-
lar activation [91]. All these parasympathetic/sympathetic
linkages are based on circumstantial evidence and thus,
further research is needed to clarify the origins of the
observed cardiovascular activation. What is far more certain
and remarkable, however, is that straight forward driving,
with little traffic and in good weather, has the potential
to generate significant cardiovascular activation, adding to
the trials and tribulations of daily life. Affective computing
and ubiquitous technologies provide for the first time the
opportunity to track such activation, and the present study
could be viewed as proof of concept.

4.1 Limitations
Our study tracks cardiovascular activation through heart
rate only. This makes us rely on circumstantial evidence for
delineating the relative contribution of sympathetic activa-
tion vs. parasympathetic reduction. The addition of heart
rate variability (HRV) in the set of physiological measures
would contribute to further clarification of the sympathetic
vs. parasympathetic origins of the observed cardiovascular
activation [92]. Unfortunately, current Apple Watches record
heart rate variability very infrequently (i.e., 3-4 times per
day) to be useful in a real-time study such as this.

In this work, we have pursued trip level analysis, which
is sufficient for determining major physiological effects at
the macroscopic level. Nevertheless, analysis at a finer tem-
poral resolution level (for instance, every driving minute)
would likely yield additional insights for transient effects
that have probably been absorbed in the mean trip compu-
tations. For example, heavy traffic conditions during a small
portion of a trip (Fig. 3) most likely affect heart rate, but the
effect may be diluted at the trip level. As we publicly release
the study’s voluminous dataset [https://github.com/UH-
CPL/NUBI-DRIVE-1], affective computing and other re-
searchers will have the opportunity to pursue detailed tem-
poral resolution analysis not covered in the present paper.

Because this study was conducted during the summer
months in a southwestern state, the weather was usually
fair, undercutting the opportunity for a comprehensive esti-
mation of this predictor. The same applies for the traffic pre-
dictor, as traffic flow was relatively unhindered in the great
majority of the recorded trips . Furthermore, by design our
study has been constrained to young adults, to neutralize
age as a group factor and thus reduce the number of needed
participants. The implication of this choice, however, is that
our results may not be applicable to other segments of
the population, such as older adults, and separate studies
would be needed for these groups.

While all these restrictions may appear to reduce the
generality of our study, this is only partly true. The study’s
aim was the investigation of sympathetically induced car-
diovascular activation in daily commutes. Our analysis
demonstrated that even under the most favorable conditions
- i.e., good weather, light traffic, and healthy experienced
young drivers - sympathetic arousal has significant presence
in routine drives. One would expect that this can only get
worse under unfavorable conditions, such as bad weather,
heavy traffic, and inexperienced drivers. Hence, our study
is the most minimalist arousal scenario, providing a broadly
useful baseline. While not harming generality very much,
the study’s design restrictions contribute to reducing bias,
because they ensure a relatively homogeneous sample.
This bias reduction is further served by the inclusion of
participant-centered random effects in the models - see term
1|S in Eq. (2) - where the error associated with random
participant selection is taken into account.
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