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Grand challenges and emergent modes of
convergence science
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To address complex problems, scholars are increasingly faced with challenges of integrating
diverse domains. We analyzed the evolution of this convergence paradigm in the ecosystem
of brain science, a research frontier that provides a contemporary testbed for evaluating two
modes of cross-domain integration: (a) cross-disciplinary collaboration among experts from
academic departments associated with disparate disciplines; and (b) cross-topic knowledge
recombination across distinct subject areas. We show that research involving both modes
features a 16% citation premium relative to a mono-domain baseline. We further show that
the cross-disciplinary mode is essential for integrating across large epistemic distances. Yet
we find research utilizing cross-topic exploration alone—a convergence shortcut—to be
growing in prevalence at roughly 3% per year, significantly outpacing the more essential
cross-disciplinary convergence mode. By measuring shifts in the prevalence and impact of
different convergence modes in the 5-year intervals up to and after 2013, we find that
shortcut patterns may relate to competitive pressures associated with Human Brain funding
initiatives launched that year. Without policy adjustments, flagship funding programs may
unintentionally incentivize suboptimal integration patterns, thereby undercutting con-
vergence science's potential in tackling grand challenges.
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Introduction

he history of scientific development is characterized by a

pattern of convergence-divergence cycles (Roco, 2013). In

divergence, conflicting social forces can induce fragmen-
tation (Balietti et al., 2015), and disciplinary spin-offs occur as
new techniques, tools, applications, and specialized sub-theories
spawn from efforts to understand emergent complexity
(Bonaccorsi, 2008). In classically construed convergence, origin-
ally distinct disciplines synergistically interact to accelerate
breakthrough discovery in complex problems (National Research
Council, 2014), thereby representing an intrepid form of inter-
disciplinarity in terms of the number, distance, and novelty of the
disciplinary configurations entailed (Nissani, 1995).

Consequently, the cognitive and social dimensions of inter-
disciplinarity (Wagner, 2011) are also augmented in classic con-
vergence. In addition to the cognitive challenges arising from
integrating distinct knowledge domains and overcoming their
different communication styles and ontologies, there are also
bureaucratic and socio-political burdens associated with assem-
bling and harnessing the expertise of scholars from different
disciplines (Barry et al., 2008). Altogether, the widely documented
tensions underlying interdisciplinarity are compounded in con-
vergence science, owing to the intellectual and organizational
challenges associated with the number of and distance between
the disciplines being integrated (Bromham et al., 2016, Fealing,
2011, National Research Council, 2005). At the extreme, con-
temporary convergence meets large team science (Bérner, 2010,
Milojevic, 2014, Pavlidis et al., 2014, Wuchty et al., 2007), where
collaboration on a grand scale across distinct academic cultures
and units faces unique behavioral (Van Rijnsoever and Hessels,
2011), institutional, and cross-sectoral barriers (National
Research Council, 2014).

Two early successful examples of classic convergence are worth
mentioning to draw a comparative baseline. First, the Manhattan
Project (MP), where physicists, chemists, and engineers success-
fully worked in the 1940s to control nuclear fission and produce
the first atomic bomb, under a tightly run government program
(Hughes and Hughes, 2003). A half-century later (the
1990s-2000s), the Human Genome Project (HGP) forged a
multi-institutional bond integrating biologists and computer
scientists, under an organizational model known as consortium
science. In this model, teams of teams organize around a well-
posed grand challenge (Helbing, 2012), with a common goal to
share benefits equitably within and beyond institutional bound-
aries (Petersen, 2018). Within 10 years, the HGP led to the
mapping and sequencing of the human genome, ushering civili-
zation into the genomics era, with numerous other "omics”
initiatives quickly following.

Brain science is presently supported by major funding pro-
grams that span the world over (Grillner, 2016). In late 2013, the
United States launched the BRAIN Initiative” (Brain Research
through Advancing Innovative Neurotechnologies), a public-
private effort aimed at developing new experimental tools that
will unlock the inner workings of brain circuits (Jorgenson, 2015).
At the same time, the European Union launched the Human
Brain Project (HBP), a 10-year funding program based on exas-
cale computing approaches, which aims to build a collaborative
infrastructure for advancing knowledge in the fields of neu-
roscience, brain medicine, and computing (Amunts, 2016). In
2014, Japan launched Brain Mapping by Integrated Neuro-
technologies for Disease Studies (Brain/MINDS), a program to
develop innovative technologies for elucidating primate neural
circuit functions (Okano et al., 2015). China followed in 2016
with the China Brain Project (CBP), a 15-year program targeting
the neural basis of human cognition (Poo, 2016). Canada
(Jabalpurwala, 2016), South Korea (Jeong, 2016), and Australia
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(Australian Brain Alliance Steering Committee, 2016) followed
suit, launching their own brain programs in the late 2010s.

By nature and historical precedence, convergence tends to
operate on the frontier of science. In the 2010s, brain science was
declared the new research frontier (Quaglio, 2017) promising
health and behavioral applications (Eyre, 2017). Intensification of
brain research has been taking place against a backdrop of an
increasingly globalized, interconnected, and online scientific
commons. This stands in sharp contrast to the nationally uni-
polar and offline backdrop of the MP and even the HGP.
Moreover, the brain funding programs were designed to act as
behavioral incentives in a scientific marketplace aimed at effi-
ciently matching funding, scholars, knowledge, and target pro-
blems (Stephan, 2012). However, despite being oriented around
the compelling structure-function brain problem, there were few
guidelines on how to configure scholarly expertise to address the
brain challenge. As such, these characteristics render brain
research a "live experiment” in the international evolution of the
convergence paradigm.

Accordingly, here we apply data-driven methods to reconstruct
the brain science ecosystem and to thereby capture the con-
temporary "pulse” of convergence, explored through a progressive
series of research questions regarding its prevalence, anatomy,
and scientific impact. Given the wave of human brain science
(HBS) funding programs, we further analyze how the trajectory of
HBS convergence has been impacted by the ramp-up of funding
initiatives around the world. Our approach accounts for both the
cognitive and social dimensions of cross-domain integration by
measuring both the topical diversity of the article’s core knowl-
edge and the disciplinary diversity of its research team. We
leverage two comprehensive taxonomies to distinguish and
quantify mono-domain versus cross-domain activity: (a) To
classify research topics, we use the Medical Subject Heading
(MeSH) ontology developed by the US National Library of
Medicine (2021). MeSH imposes content standardization that
facilitates our cross-temporal analysis in the PubMed” database.
Specifically, MeSH features a high degree of concept orthogon-
ality thanks to its tree structure, and its terms being assigned to
articles by experts. MeSH’s relative orthogonality and objectivity
offer significant classification advantages with respect to taxo-
nomies based on author keywords, which suffer from extensive
redundancies and bias. (b) To classify departmental affiliations,
we use the Classification of Instructional Programs (CIP) scheme
developed by the National Center for Education Statistics (2021).
CIP was devised to serve accreditation and historical tracking of
degree-granting programs in North America, and thus it is well-
suited to our purpose. Accordingly, we classify HBS research into
four types defined by the {mono—, cross—} x {topic, discipline}
domain combinatorics.

In a highly competitive and open science system with multiple
degrees of freedom, our motivating hypothesis is that more than
one operational cross-domain integration mode is likely to
emerge among scholars. With this in mind, we identify five
research questions (RQ) addressed in each figure of the manu-
script. The first (RQ1) regards how to define convergence, which
we address by developing a typological framework, one that is
generalizable to other frontiers of biomedical science and is also
relevant to the evaluation of HBS funding projects around the
world. The second (RQ2) regards the status and impact of brain
science convergence: have HBS interfaces have developed to the
point of sustaining fruitful cross-disciplinary knowledge
exchange? Does the increasing prevalence of teams adopting
convergent approaches correlate with higher scientific impact
research? RQ3 addresses whether convergence is evenly dis-
tributed across HBS subdomains? Furthermore, what empirical
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combinations of distinct subject areas (knowledge) and dis-
ciplinary expertise (people) are overrepresented in convergent
research? RQ4 follows by seeking to identify whether convergence
is evenly distributed over time and geographic region? Finally,
RQ5 asks: Does the propensity and/or citation impact of con-
vergence science, depend on the convergence mode? To address
this question, we implement hierarchical regression models that
differentiate between three convergence modes: research invol-
ving cross-subject-area exploration, cross-disciplinary collabora-
tion, or both. Given the trend-setting role of major funding
initiatives, we hypothesize that the ramp-up of HBS flagship
programs correlates with shifts in the prevalence and relative
impact of research adopting these different convergence modes.

Our results bear timely science policy implications. Given the
contemporary emphasis on accelerating breakthrough discovery
(Helbing, 2012) through strategic team configurations (Borner,
2010), convergence science originators called for cross-
disciplinary approaches integrating distant disciplines (National
Research Council, 2014). In what follows, we test if this vision has
been realized by counting the prevalence and impact of research
articles belonging to any of four {mono—, cross—} x {topic, dis-
cipline} integration types. Among the said types, classic or full
convergence corresponds to research endeavors featuring both
cross-topic integration and cross-disciplinary collaboration; it
stands in contrast to the other three types: mono-topic/mono-
discipline; mono-topic/cross-discipline; and cross-topic/mono-
discipline. Our analysis reveals that recently HBS teams tend to
integrate diverse topics without necessarily integrating appro-
priate disciplinary expertise—we identify this cross-topic/mono-
discipline approach as a convergence shortcut.

Theoretical background

To locate convergence science within the spectrum of inter-
disciplinarity (Barry et al, 2008), we draw upon the classic
descriptions by Nissani (1995), whereby interdisciplinary
knowledge captures the "distinctive components of two or more
disciplines”; and interdisciplinary research is "combining dis-
tinctive components of two or more disciplines while searching or
creating new knowledge”. Scholars can thus explore intermediate
or hybrid subject areas by way of two modes: by autodidactic
expansive learning outside of their original domain (Engestrom
and Sannino, 2010); and/or by collaboration with scholars with
expertise in a different discipline (i.e., cross-disciplinary colla-
boration). Such interdisciplinary activities take on the char-
acteristics of full-fledged convergence science when the integrated
domains have evolved from distant epistemic origins. For
example, brain science features the convergence of physiology,
medicine, and neuroscience, catalyzed by techno-informatics and
computing capabilities (Yang et al., 2021). Another example is the
integration of disciplines characterized by either "soft” or "hard”
methodologies (Pedersen, 2016).

For a review of the rationale and socio-politics propelling
interdisciplinary studies and the recasting of the issue as a spec-
trum rather than a single form, see Barry et al. (2008); whereas for
a review of the metrics for measuring interdisciplinarity see
Wagner (2011), which also documents the cavalier use of inter-
disciplinary terminology. Here, we distinguish between two
modes of interdisciplinarity—one cognitive and the other social—
and in each case, we make use of well-established ontologies in
order to avoid operational ambiguity. In the cognitive mode, we
use the MeSH keyword system to classify topics comprising the
biomedical knowledge network (Yang et al., 2021). In the social
mode, we tabulate cross-disciplinary collaborations per an insti-
tutional perspective, identifying disciplines according to the pri-
mary departmental affiliation of each team member.

This work contributes to several other literature streams,
including the quantitative analysis of recombinant search and
innovation (Fleming, 2001, Fleming and Sorenson, 2004, Youn,
2015); cross-domain integration of expertise (Fleming, 2004,
Leahey and Moody, 2014, Petersen, 2018, Petersen et al., 2019);
cross-disciplinarity as a strategic team configuration (Cummings
and Kiesler, 2005, Petersen, 2018) facilitated by division of labor
across teams of specialists and generalists (Haeussler and
Sauermann, 2020, Melero and Palomeras, 2015, Rotolo and
Messeni Petruzzelli, 2013, Teodoridis, 2018); and science of sci-
ence Fortunato (2018) and science policy (Fealing, 2011) eva-
luation of convergence science (National Research Council,
2005, 2014, Roco, 2013).

Efficient long-range epistemic exploration facilitated by multi-
disciplinary teams is a defining value proposition of classic con-
vergence (National Research Council, 2014) and increases the
likelihood of large team science producing high-impact research
(Wuchty et al., 2007). Hence, the emergence and densification of
cross-domain interfaces are likely to increase the potential for
breakthrough discovery by catalyzing recombinant innovation
(Fleming, 2001). Following the triple-helix model of medical
innovation (Petersen et al., 2016), recombinant innovation
manifests from integrating expertise around the three dimensions
of supply, demand, and technological capabilities, which for HBS
are: (i) the biology domain that supplies a theoretical under-
standing of the anatomical structure-physiological function rela-
tion, (ii) the health domain that demands effective science-based
solutions, and (iii) the techno-informatics domain which devel-
ops scalable products, processes, and services to facilitate
matching supply from (i) with demand from (ii) (Yang et al,
2021).

In order to overcome the challenges of selecting new strategies
from the vast number of possible combinations, prior research
finds that innovators are more likely to succeed by way of
exploiting their own local expertise (Fleming, 2001) rather than
individually exploring distant configurations by way of internal
expansive learning (Engestrom and Sannino, 2010). Extending
this argument, exploration at unchartered multidisciplinary
interfaces is likely to be more successful when integrating
knowledge across a team of experts from different domains,
thereby hedging against recombinant uncertainty underlying the
exploration process (Fleming, 2004).

A complementary argument for classic convergence derives
from the advantage of diversity to harness collective intelligence
for identifying successful hybrid strategies (Page, 2008), while also
avoiding misinterpretations and incomplete ontologies (Barry
et al,, 2008, Linkov et al., 2014). Recent work also provides sup-
port for the competitive advantage of diversity stemming from
cross-border mobility (Petersen, 2018).

Methods

Data collection and notation. We integrated publication and
author data from Scopus, PubMed, and the Scholar Plot web app
(Majeti, 2020) (see Fig. 1 and Supplementary Information (SI)
Appendix S1 for detailed description). In total, our data sample
spans 1945-2018 and consists of 655,386 publications derived
from 9,121 distinct Scopus Author profiles, to which we apply the
following variable definitions and subscript conventions to cap-
ture both article-level and scholar-level information. At the article
level, subscript p indicates publication-level information such as
publication year, y,; the number of coauthors, k,; and the number
of keywords, w,. Regarding the temporal dimension, a super-
script, > (respectively, <) indicates data belonging to the 5-year
"post” period 2014-2018 (5-year "pre” period 2009-2013), while
N(t) represents the total number of articles published in year t.
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Fig. 1 Data collection and classification schemes. The upper part of the figure shows the data generation mechanism along with the resulting topical (SA)
and disciplinary (CIP) clusters. The middle part of the figure shows on the world map regional clusters pertaining to three large HBS funding initiatives—
North America (NA), Europe (EU), and Australasia (AA). The lower part of the figure shows an example of how all three categorizations are
operationalized for analytic purposes. Circles represent four research articles with authorship from distinct regions. The articles feature different keyword
(SA) or disciplinary (CIP) category mixtures assigned one of two diversity measures: mono-domain (M) and cross-domain (X).

Regarding proxies for scientific impact, we obtained the number
of citations c, ; from Scopus, which are counted through late 2019.
Since nominal citation counts suffer from systematic temporal
bias, we use a normalized citation measure, denoted by z,.
Regarding author-level information, we use the index a—e.g., we
denote the academic age measured in years since a scholar’s first
publication by 7.

To address RQ1, we first classified research according to three
category systems indicative of topical, disciplinary, and regional
clusters.

Topical classification using MeSH. The first category system
captures research topic clusters grouped into Subject Areas (SAs).
To operationalize SA categories we leverage the system of roughly
30,000 Medical Subject Heading (MeSH) article-level "keywords”
that are organized in a comprehensive and standardized hier-
archical ontology maintained by the US National Library of
Medicine (2021). Each MeSH descriptor has a tree number that

4

identifies its location within one of 16 broad categorical branches
within a prescribed knowledge network. Here we merged 9 of the
science-oriented MeSH branches (A,B,C,E,F,G,J,L.N) into 6
Subject Area (SA) clusters (see Fig. 1). Figure S1 shows the 50
most prominent MeSH descriptors for each SA cluster. See Yang
et al. (2021) for a complementary analysis of the entire PubMed
database, in particular regarding the utility of MeSH for quanti-
fying cross-SA convergence. .
Hence, we take the set of MeSH for each p denoted by W, and
map these MeSH, using the generic operator Os,, into their
corresponding MeSH branch, thereby yielding a count vector

with six elements: OSA(WP) = ﬁp. Each SA component

corresponds to one or two top-level MeSH categories that are
defined by PubMed (indicated by the letters in brackets): (1)
Psychiatry and Psychology [F], (2) Anatomy and Organisms [A,
B], (3) Phenomena and Processes [G], (4) Health [C,N], (5)
Techniques and Equipment [E], and (6) Technology and
Information Science [J,L]. Notably, regarding the structure-
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function problem that is a fundamental focus in much of
biomedical science, SA category (2) represents the domain of
structure while (3) represents function. The variable Ng, , counts
the total number of SA categories present in a given article, with
min value 1 and max value 6; 72% of articles have two or more
SA; the mean (median) SA, is 2.1 (2), with standard
deviation 0.97.

Disciplinary classification using CIP. The second taxonomy
identifies disciplinary clusters determined by author departmental
affiliation, which we categorized according to Classification of
Instructional Programs (CIP) codes maintained by the National
Center for Education Statistics (2021). Article-level CIP category

counts are represented by C_II)’P, and comprised of the following 9
elements: (1) Neurosciences, (2) Biology, (3) Psychology, (4)
Biotech and Genetics, (5) Medical Specialty, (6) Health Sciences,
(7) Pathology and Pharmacology, (8) Engineering and Infor-
matics, and (9) Chemistry, Physics and Math. The variable N¢ip,,
counts the total number of CIP categories present in a given
article, with min value 1 and max value 9; see SI Appendix S1
offers more details.

We obtained host department information from each scholar’s
Scopus Profile. Based upon this information provided in the
profile description, and in some cases using additional web search
and data contained in the Scholar Plot web app (Majeti, 2020), we
manually annotated each scholar’s home department name with
its CIP code (National Center for Education Statistics, 2021). We
then merged these CIP codes into 9 broad clusters and three
super-clusters (Neuro/Biology, Health, and Science and Engineer-
ing, as indicated in Fig. 1); for a list of constituent CIP codes for
each cluster see Fig. SIC. Analogous to the notation for assigning

g)p, we take the set of authors for each p denoted by ;lp, and
map their individual departmental affiliations to the correspond-
ing CIP cluster (represented by the operator Ocpp), yielding a

count vector with nine elements: OCIP(AP) = CIP,.

Regional classification. The third taxonomy captures the broad
geographic scope of each publication’s research team determined
by each Scopus author’s affiliation location. We represent regions

%
using a count vector R ,, which has 4 elements representing
North America, Europe, Australasia, and the Rest of the World.

Interdisciplinary classification of articles as mono-domain or
cross-domain. We distinguish between the cognitive and social
interdisciplinary dimensions (Wagner, 2011) in the combined

o — =
feature vector F,= {SA p CIPP}. As indicated in Fig. 1, based
upon the distribution of types tabulated as counts across vector
elements, an article is either cross-domain, representing a diverse
mixture of types denoted by X; or in the case that there is just a
single type, the article is mono-domain, denoted by M. We use a
generic operator notation to specify how articles are classified as
X or M. The objective criteria of the feature operator O is spe-
cified by its subscript: for example OSA(ﬁp) yields one of two

values: Xga or M; similarly, OCIP(ﬁP) = X¢p or M. Note that all
scholars map onto a single CIP, hence solo-authored research
articles are by definition classified by Ocp as M. While we
acknowledge that is possible for a scholar to have significant
expertise in two or more domains, we do not account for this
duplicity, as it is likely to occur at the margins; hence, the home
department CIP represents the scholar’s principle domain of
expertise. We also classify articles featuring both Xs4 and Xcp as
Osagcp(Fp) = Xgagcrp (and otherwise M).

See Fig. S1 for the composition of SA and CIP clusters, and SI
Appendix S1 for additional description on how these classifica-
tion systems are constructed. Figure S2 (Fig. S3) shows the
frequency of each SA (CIP) category and the pairwise frequency
of all {SA, SA}({CIP, CIP}) combinations over the 10-year period
centered on 2013, along with their relative changes after 2013; see
SI Appendix S2-S3 for discussion of the relevant changes in SA
and CIP categories after 2013.

Measuring cross-domain diversity. To complement these cate-
gorical measures, we also developed a scalar measure of an arti-
cle’s cross-domain diversity. By way of example, consider the

vector SA p (or C—II)’P) which tallies the SA (or CIP counts) for a
given article p published in year t. We apply the outer tensor

— = — .
product SA , ® SA , (or CIP, ® CIP,) to represent all pairwise

co-occurrences in a weighted matrix D,(¥,) (where ¥, represents

a generic category vector; see SI Appendix S4 for examples of the
outer tensor product). The sum of elements in this co-occurrence
matrix is normalized to unity so that each DP(VP) contributes
equally to averages computed across all articles from a given year
or period. Since the off-diagonal elements represent cross-domain
combinations, their relative weight given by f, , = 1 — Tr(D,) €
[0,1) is a straightforward Blau-like measure of variation and
disparity (Harrison and Klein, 2007).

In more detail, this measure of cross-domain diversity is
defined according to categorical co-occurrence within individual

research articles. Each article p has a count vector v,: for

. . . . — == . .
discipline ~ categories v, = CIP, and for topic categories

— < .
v, = SA ,. We then measure article co-occurrence levels by
way of the normalized outer-product

U@, ®7,)

ECIALR W

DP(VP) =

where ® is the outer tensor product, U(G) is an operator yielding
the upper-diagonal elements of the matrix G (i.e., representing
the undirected co-occurrence network among the categorical
elements). In essence, DP(VP) captures a weighted combination of
all category pairs. The resulting matrix represents dyadic
combinations of categories as opposed to permutations (ie.,
capturing the subtle difference between an undirected and
directed network). While we did not explore it further, this
matrix formulation may also give rise to higher-order measures of
diversity associated with the eigenvalues of the outer-product
matrix. The notation ||...]| indicates the matrix normalization is
implemented by summing all matrix elements. The objective of
this normalization scheme is to control for the variation in ¥, in a
systematic way. As such, this co-occurrence is an article-level
measure of diversity that controls for variations in the total
number of categories and fundamentally different count statistics
for the CIP and SA category systems. Consequently, totaling
D, (¥,) across articles from a given publication year yields the
total number of articles published in a
Ep\ypet”Dp,t” = N(t)

Following this standardization, fp,, is bounded in the range [0, 1)
and so the characteristic article diversity is well-defined and
calculated as the average annual value (fp(f)). In simple terms,
articles featuring a single category have fp,, = 0, whereas articles
featuring multiple categories have fp,, > 0. While the result of this
approach is nearly identical to the Blau index (corresponding to 1-

ﬁ) % ﬁ) » / |SAp|2, also referred to as the Gini-Simpson index),

given year,
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Fig. 2 Trends in cross-domain scholarship in Human Brain Science. A Fraction f4(t|z) of articles published each year t that feature a particular number (#)
of categories. Articles are split into an above-average citation subset (z, > 0) and below-average citation subset (z, < 0). Upper panel: Articles categorized
by SA. Middle panel: Articles categorized by CIP; subpanel shows data on the logarithmic y-axis; Lower panel: Articles categorized by both SA and CIP.
Distinguishing frequencies by citation group indicates higher levels of cross-domain combinations among research articles with higher scientific impact—
for both SA and CIP. However, cross-domain activity levels are visibly higher for SA than for CIP, indicating higher barriers to boundary-crossing arising
from mixing different scholar expertise. B Snapshots of the collaboration network at 10-year intervals indicating researcher population sizes by region, and
the densification of convergence science at cross-disciplinary interfaces. Nodes (researchers) are sized according to the number of collaborators (link

degree) within each time window.

fp,p is motivated by way of dyadic co-occurrence rather than the
standard formulation motivated around repeated sampling.

Results
Descriptive analysis
Increasing prevalence of cross-domain science. With the continu-
ing shift towards large team science (Milojevic, 2014, Pavlidis
et al,, 2014, Petersen et al., 2014, Wuchty et al., 2007), one might
expect a similar shift in the multiplicity of domains spanned by
modern research teams—but to what degree? Figure 2A addresses
RQ2 by showing the frequencies of mono-domain (M) research
articles versus cross-domain articles (X) in our HBS sample.
Articles were separated into above-average and below-average
citation impact (z) for each year (), and within each of these two
subsets, we calculated the fraction fu(t|z) of articles containing
combinations across #= 1,2, 3, and 4categories. The fraction of
mono-domain articles are trending downward, which we observe
for both research topics (SA) and authors’ disciplinary affiliations
(CIP). The decline is much steeper for SA than for CIP. Corre-
spondingly, cross-domain articles have become increasingly pre-
valent, in particular for SA. For both SA and CIP the two-
category mixtures dominate the three-category and four-category
mixtures in frequency. Accordingly, in the sections that follow we
do not distinguish between cross-domain articles with different #.
As a first indication of the comparative advantage associated
with X, we observe a robust inequality f.(t{z>0) > f.(t|z < 0) for

6

cross-domain research (#2=2), meaning a higher frequency of
cross-domain combinations is observed among articles with
higher impact. Contrariwise, in the case of mono-domain
research the opposite inequality persists, fi(t|z>0) <fi(t|z<0).
Taking into consideration temporal trends, these robust patterns
indicate a faster depletion of impactful mono-domain articles,
coincident with an increased prevalence of impactful research
drawing upon integrative recombinant innovation.

Recombinant innovation at the convergence nexus. Comprehen-
sive analysis of biomedical science indicates that convergence has
largely been mediated around the integration of modern techno-
informatics capabilities (Yang et al., 2021). Classic convergence is
typified by a high degree of diversity fostered through multi-party
cognitive and institutional complementarity—two characteristics
of the Bonaccorsi (2008) model of "New Science”. Yet within any
frontier domain, in particular HBS, the question remains as to the
development of a functional nexus that sustains and possibly even
accelerates high-impact discovery through the rich cross-
disciplinary exchange of new knowledge and best practices. The
robust inequality f,(t|z>0) > f,(t|z<0) provides support at the
aggregate level but does not lend any structural evidence.

To further address RQ2, Fig. 2B illustrates the composition of
the HBS convergence nexus, showing the integration of cross-
disciplinary expertise manifesting in collaborations across
three broad yet distinct biomedical domains. Shown are the
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populations of HBS researchers by region, represented as
collaboration networks compared over two non-overlapping 10-
year intervals to indicate dynamics. Each node represents a
researcher, colored according to three disciplinary CIP super-
clusters: (i) neuro-biological sciences (corresponding to CIP 1-4),
(ii) health sciences (CIP 5-7), and (iii) engineering and
information sciences (CIP 8-9). Node locations are fixed to
facilitate visual representation of network densification. Inter-
regional and cross-regional comparison alludes to the emergence
and densification of cross-domain interfaces (see also Fig. S4).
Because the network layout is determined by the underlying
structure, there is a high degree of clustering by node color,
emphasizing both the relative sizes of the subpopulations that are
well-balanced across region and time and also the convergent
interfaces where cross-disciplinary collaboration and knowledge
exchange are likely to catalyze. As such, these communities of
expertise conjure the image of a Pélya urn, whereby successful
configurations reinforce the adoption of similar future
configurations.

The links that span disciplinary boundaries are fundamental
conduits across which scientists’ strategic affinity for exploration
(Foster et al.,, 2015, Rotolo and Messeni Petruzzelli, 2013) is
effected via cross-disciplinary collaboration that brings "together
distinctive components of two or more disciplines” (Nissani,
1995, Petersen, 2018). Our analysis of cross-disciplinary colla-
boration indicates that the fraction of articles featuring
convergent collaboration has continued to grow over the last
two decades (see Fig. S4). In what follows we further distinguish
between integration across neighboring (Leahey and Moody,
2014) and distant domains, with the latter appropriately
representing classic convergence (National Research Council,
2005, 2014, Roco, 2013).

Cross-domain convergence of expertise (CIP) and knowledge (SA).
In an institutional context, team assembly should be optimized by
strategically matching scholarly expertise and research topics to
address the demands of a particular challenge. The role of
expertise is increasingly important (Petersen et al., 2019) when
the phenomena are complex and the underlying problems cannot
be represented as a well-posed or closed-form problem, e.g., those
involving human behavior (Oreskes, 2021) or climate change
(Arroyave, 2021, Bonaccorsi, 2008). Hence, with 9 different dis-
ciplinary (CIP) domains historically faced with a variety of
challenges, RQ3 addresses to what degree these domains differ in
terms of their composition of targeted SA. Fig. 3A illustrates the
evolution of topical diversity within and across each CIP cluster,
revealing several common patterns. First, nearly all domains show
a reduction in research pertaining to structure (SA 2), with the
exception of Biotechnology and Genetics, which had a balanced
structure-function composition from the outset. As such, this
domain features a steady mix among SA 2-5, while being an early
adopter of techno-informatics concepts and methods (SA 6). This
stable mirroring of the innovation triple-helix (Petersen et al.,
2016) may explain to some degree the longstanding success of the
genomics revolution, where the core disciplines of biology and
computing were primed for a fruitful union (Petersen, 2018).
Other HBS disciplinary clusters are also integrating techno-
informatic capabilities, reflecting a widespread pattern observed
across all of biomedical science (Yang et al,, 2021).

Which CIP-SA combinations are overrepresented in boundary-
crossing HBS research? Inasmuch as mono-domain articles
identify the topical boundary closely associated with individual
disciplines, cross-domain articles are useful for identifying
otherwise obscured boundaries that call for both Xcp and Xgpa
in combination. We identified these novels CIP-SA relations by
collecting articles that are purely mono-domain for both CIP and

SA (ie., those with OCIP(FP) = OSA(ﬁp) = M) and a comple-
mentary non-overlapping subset of articles that are simulta-
neously cross-domain for both CIP and SA (ie,
Osagcp(Fp) = Xsagcrp)-

Starting with mono-domain articles, we identified the SA that
is most frequently associated with each CIP category. Formally,
this amounts to calculating the bi-partite network between CIP
and SA, denoted by Mcp @ Mga. These CIP-SA associations are

—
calculated by averaging the SA , for mono-domain articles from

each CIP category, given by <S'A))cn>- Figure 3B highlights the
most prominent CIP-SA links (see SI Appendix S5 for more
details). Likewise, we also calculated the bi-partite network Xcip
2 Xsa using the subset of Xgagcrp articles.

To identify the cross-domain frontier, we calculate the network
difference Axy = (Xcp 2 Xsa) — (Mcp 2 Msa) and plot the
links with positive values—i.e., CIP-SA links that are over-
represented in Xcp 2 Xsa relative to Mcp @ Msa. Results
identify SA that is reached by way of cross-disciplinary teams.
SA 3 (Phenomena and Processes), representing the brain function
problem, stands out as a potent convergence nexus attainable by
highly convergent teams combining disciplines 1, 2, 4, and 9.

A related key insight concerns the relative increase in SA
integration achieved by increased CIP diversity. Figure S5
compares the average number of SA integrated by teams with
varying numbers of distinct CIP, N¢pp,. On average, mono-
disciplinary teams (Ncp, = 1) span 2.2 SA, whereas teams with
Nerp,p = 3 spans 19% more SA, confirming that cross-disciplinary
configurations are more effective in achieving research breadth.

Trends in cross-domain activity. To address the temporal and
geographic parity associated with RQ4, we define three types of
cross-domain configurations—Broad, Neighboring, and Distant—
defined according to a particular combination of SA and CIP
categories featured by a given article. Based upon stated mission
and vision statements, the BRAIN initiative (NA) aligns with
Neighboring and the Human Brain Project (EU) aligns more
closely with Distant configurations.

Broad is the most generic cross-domain configuration, based
upon combinations of any two or more SA (or CIP) categories,
and represented by our operator notation as OSA(ﬁp) = Xgp (or
OCIP(ﬁp) = Xcp> respectively). Neighboring is the X configura-
tion that captures the neuro-psychological <> bio-medical inter-
face representing articles that contain MeSH from SA (1) and
also from SA (2, 3, or 4), represented summarily as [1] x [2 —
4]); and for CIP, combinations containing CIP (1 or 3) and (2, 4,
5, 6, or 7), represented as [1,3] x[2,4 — 7]. Articles featuring
these configurations are represented using our operator notation
a8 Oxcighboring, SA(ﬁp) = X\eighboring, $A> ONeighboring, CIP(ﬁp) = XNeighboring, c1p> OF

OnNeighboring, sa&Ctp(Fp) = Xneighboring, sac-cips alternatively, articles
not containing the specific category combinations are repre-
sented by M.

Distant is the X configuration that captures the neuro-psycho-
medical & techno-informatic interface. The specific set of cate-
gory combinations representing this configuration are SA [1-4] x
[5,6]; and for CIP, [1,3,5] x [4,8]; as above, articles featuring (or
not featuring) these categorical combinations are represented by
XDistant,SA (OtherWise> M)) XDistant,CIP (OtherWise) M)r XDistant,
sascip (otherwise, M). By way of example, the bottom of Figure 1
illustrates an article combining SA 1 and 4, which is thereby
classified as both Xsa and Xneighboringsas and, an article featuring
CIP 1, 3, 5, 8, which is thereby both XCIP and XDistant,CIP~

To complement these categorical variables, we also developed a
Blau-like measure of cross-domain diversity, given by fp, (see
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Fig. 3 Evolution of SA boundary-crossing within and across disciplinary clusters. A SA composition of HBS research within disciplinary (CIP) clusters.
Each subpanel represents articles published by researchers from a given CIP cluster, showing the fraction of article-level MeSH belonging to each SA,
shown over 5-year intervals across the period 1970-2018. The increasing prominence of SA 5 and 6 in nearly all disciplines, indicates the critical role of
informatics capabilities in facilitating biomedical convergence (Yang et al., 2021). B Empirical CIP-SA association networks were calculated for non-
overlapping sets of mono-domain (Mcjp 2 Msa) and cross-domain (Xcp 2 Xsa) articles and based upon the Broad configuration. The difference between
these two bi-partite networks (Axy) indicates the emergent research channels that are facilitated by simultaneous Xcjp and Xsa boundary crossing—in
particular integrating SA 2 with 3 (i.e., the structure-function nexus) facilitated by teams combining disciplines 1, 2, 4, and 9.

“Measuring cross-domain diversity”). Figure 4 shows the trends
in mean diversity (fp(t)) for the Broad, Neighboring, and Distant
configurations. For each configuration, we provide a schematic

motif illustrating the combinations measured by DP(_V)P), with

diagonal components representing mono-domain articles (indi-
cated by 1 on the matrix diagonal) and upper-diagonal elements
capturing cross-domain combinations (indicated by X). Compar-
ing SA and CIP, there are higher diversity levels for SA, in
addition to a prominent upward trend. In terms of CIP, Fig. 4A
indicates a decline in Broad diversity in recent years, with North
America (NA) showing higher levels than Europe (EU) and
Australasia (AA); these general patterns are also evident for
Neighboring diversity—see Fig. 4B. Distant CIP diversity, shown
in Fig. 4C, indicates a recent decline for AA and NA, with NA
peaking around 2009; contrariwise, EU shows a steady increase
consistent with the computational framing of the HBP.

In contradistinction, all three regions show a steady increase
irrespective of configuration in the case of SA diversity, consistent
with scholars integrating topics without integrating scholarly
expertise. For both Broad and Neighboring configurations, NA
and EU show remarkably similar levels of SA diversity above AA;
however, in the case of Neighboring, AA appears to be catching

up quickly since 2010-see Fig. 4D, E. In the case of Distant, all
regions show a steady increase that appears to be in lockstep for
the entire period—see Fig. 4F. See Figs. S6-S7 and SI Appendix
Text S6 for trends in SA and CIP diversity across additional
configurations.

Quantitative model

Regression model—propensity for and impact of X. To address
RQ5, we construct article-level and author-level panel data to
facilitate measuring factors relating to SA and CIP diversity, as
well as shifts related to the ramp-up of HBS flagship projects circa
2013 around the globe. To address these two outcomes, we
modeled two dependent variables separately; Fig. S8 shows the
distribution, and Fig. S9 shows the covariation matrix among the
principal variables of interest. In the first model, the dependent
variable is the propensity for cross-domain research (indicated by
X; depending on the focus around topics, disciplines, or both,
then X is specified by Xsa, Xcip, Or Xsagcip). We use a Logit
specification to model the likelihood P(X). In the second model,
the dependent variable is the article’s scientific impact, proxied by
¢,- Building on previous efforts (Petersen, 2018, Petersen et al.,
2018), we apply a logarithmic transform to c, that facilitates
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removing the time-dependent trend in the location and scale of
the underlying log-normal citation distribution (Radicchi et al.,
2008), as elaborated in what follows.

Normalization of citation impact. We normalized each Scopus
citation count, c,; by leveraging the well-known log-normal
properties of citation distributions (Radicchi et al., 2008). To be
specific, we grouped articles by publication year y,, and removed
the time-dependent trend in the location and scale of the
underlying log-normal citation distribution. The normalized
citation value is given by

z, = (In (Cp,t +1) —u)/o;, (2

where g, = (In(c, + 1)) is the mean and o, = ofIn (¢, + 1)] is the
standard deviation of the citation distribution for a given t; we
add 1 to ¢, to avoid the divergence of In 0 associated with uncited
publications—a common method which does not alter the
interpretation of results.

Figure S8G shows the probability distribution P(z,) calculated
across all p within five-year non-overlapping time periods. The
resulting normalized citation measure is well-fit by the Normal N
(0,1) distribution, independent of f, and thus is a stationary
measure across time. Publications with z, >0 are thus above the
average log citation impact y,, and since they are measured in
units of standard deviation o,, standard intuition and statistics of
z-scores apply. The annual o; value is rather stable across time,
with average and standard deviation (o) + SD = 1.24 + 0.09 over
the 49-year period 1970-2018.

Model A: Quantifying the propensity for X and the role of funding
initiatives. As defined, O(F,) = X or M is a two-state outcome

variable with complementary likelihoods, P(X) + P(M) = 1. Thus,
=
suring the propensity to adopt cross-domain configurations. We
then estimate the annual growth in P(X) by modeling the odds as
log(Q,) =By + By, + E - X, where X represents the additional
controls for confounding sources of variation, in particular
increasing k, associated with the growth of team science
(Milojevic, 2014, Wuchty et al.,, 2007). See SI Appendix Text S7,
in particular Eqns. (S2)-(54), for the full model specification; and,
Tables S1-S3 for parameter estimates.

Summary results shown in Fig. 5A indicate a roughly 3%
annual growth in P(Xsa), consistent with descriptive trends
shown in Fig. 2. In contradistinction, growth rates for P(Xcyp) are
generally smaller, indicative of the additional barriers to
integrating individual expertise as opposed to just combining
different research topics. In the case of P(Xsagcip)> the growth
rate is higher for Distant, where the need for cross-disciplinary
expertise cannot be short-circuited as easily as in Neighboring.

A component of RQ5 is how HBS projects have altered the
propensity for X. Hence, we add an indicator variable I,y 4, that
takes the value 1 for articles with y,>2014 and 0 otherwise.
Figure 5B indicates a significant decline in P(X) for Xcrp and
Xsascip for each configuration on the order of —30%; this result
is consistent with the recent increase in f;(t|z) visible in Fig. 2B.

we apply logistic regression to model the odds Q mea-

Model B: Quantifying the citation premium associated with X
and funding initiatives. We model the normalized citation impact
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2p = +x, Ing,, + VxgpIxen, T B - X, where X represents the
additional control variables and «, represents an author fixed-

effect to account for unobserved time-invariant factors specific to
each researcher. The primary test variables are Iy and Iy ,
SAp cIpp

=1 if Og5(F,) = Xg4 and 0
if Os5(F,) = M, defined similarly for CIP. To distinguish esti-
mates by configuration, for Neighboring we specify I Xnaghboringsa

two binary factor variables with Iy

and T with similar notation for Distant. Full model

XXeighboring,CIP
estimates are shown in Tables S4-S5.

Figure 5C summarizes the model estimates—yy ., yx
o N quantifying the citation premium attributable to 5( To
translate the effect on z, into the associated citation premium in
¢y, we calculate the percent change 100Ac,/c, associated with a
shift in Iy, from 0 to 1. Observing that o,=(0) =124 is
approximately constant over the period 1970-2018 and due to the
property of logs, the citation percent change is given by 100Ac,/
¢, =~ 100{0)yx, (see SI Appendix S7B).

Our results indicate a robust statistically significant positive
relationship between cross-disciplinarity (Xcp) and citation
impact, consistent with the effect size in a different case study
of the genomics revolution (Petersen, 2018), which supports the
generalizability of our findings to other convergence frontiers. To
be specific, we calculate an 8.6% citation premium for the Broad
configuration (yy_ = 0.07; p <0.001), meaning that the average
cross-disciplinary publication is more highly cited than the
average mono-disciplinary publication. We calculate a smaller
5.9% citation premium associated with Xsa (yy = 0.05 p<
0.001). Yet the effect associated with articles featuring
Xcrp and Xsu simultaneously is considerably larger (16% citation
premium; yy = 0.13; p<0.001), suggesting an additive
effect.

10

Comparing results for the Neighboring configuration to the
baseline estimates for Broad, the citation premium is relatively
larger for Xss (11% citation premium; yy = 0.088; p<

cighboring

0.001) and roughly the same for Xc;p and Xgagcrp. This result
reinforces our findings regarding the convergence short-cut (when
Xcip is absent), indicating that this approach is more successful
when integrating domain knowledge across shorter distances,
consistent with innovation theory (Fleming, 2001).

The configuration most representative of classically construed
convergence is Distant, which compared to Broad and Neighbor-
ing features smaller effect size for Xgagcrp (5.2% citation
premium; py oo =004 p< 0.001). The reduction in

YXpuumeneey  Felative to values for Broad and Neighboring

configurations likely reflects the challenges bridging communica-
tion, methodological and theoretical gaps across the Distant
neuro-psycho-medical < techno-informatic  interface. =~ More
interestingly, this configuration is distinguished by a negative
Xsa estimate, indicating that the convergence shortcut yields less
impactful research than mono-domain research. Nevertheless, it
is notable that for this convergent configuration, there is a clear
hierarchy indicating the superiority of cross-disciplinary colla-
boration approaches to integrating research across distant
domains.

As in the Article-level model, we also tested for shifts in the
citation premium attributable to the advent of Flagship HBS
project funding using a similar difference-in-difference (DiD)
approach. Figure 5D shows the citation premium yy = for
articles published prior to 2014, and the difference Jx,
corresponding to the added effect for articles published after
2013. For Broad and Distant we observe dyx <0, indicating a
reduced citation premium for post-2013 research. By way of
example for the Broad configuration: whereas cross-domain
articles published prior to 2014 show a 19% citation premium
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(Pxg\oe = 0-15; p <0.001), those published after 2013 have just a
19-11% = 8% citation premium (dx, . = —0.09; p<0.001).
The reduction of the citation premium is even larger for
Neighboring  (Sxeighboring Xgyoop+ = —0-165 p<0.001). Yet for
Distant, we observe a different trend—research combining both
Xsa and Xcpp simultaneously has an advantage over those with
just Xcrp or Xsa, in that order (Opigant xg, p+ = 0-04 p=0.016;
95% CI = [.01, .08]).

We briefly summarize coefficient estimates for the other
control variables. Consistent with prior research on cross-
disciplinarity (Petersen, 2018), we observe a positive relationship
between team-size and citation impact (f;=0.415; p <0.001),
which translates to a (0)f; = 0.5% increase in citations associated
with a 1% increase in team size (since k, enters in log in our
specification). We also observe a positive relationship for topical
breadth (8, = 0.03; p < 0.001), which translates to a much smaller
(0)B,, = 0.04% increase in citations associated with a 1% increase
in the number of major MeSH headings. And finally, regarding
the career life-cycle, we observe a negative relationship with
increasing career age (f,= —0.011; p<0.001) consistent with
prior studies (Petersen, 2018), translating to a 100{0)f, = —1.3%
decrease in ¢, associated with every additional career year. See
Tables S4-S5 for the full set of model parameter estimates.

Behind the numbers. Qualitative inspection of prominent
research articles in the Xpistantsajagcrp configuration identifies
four key convergence themes associated with past or developing
breakthroughs:

Magnetic resonance imaging (MRI). MRI technology has been
instrumental in identifying structure-function relations in brain
networks and has reshaped brain research since the 1990s. As a
method that involves both sophisticated technology and core
brain expertise, MRI has been a focal point for Xpisantsasctp
scholarship. For example, ref. (Van Dijk et al., 2012) addresses the
problem of motion, a pernicious confounding factor that can
invalidate MR brain results. Hence, this research article exem-
plifies how a fundamental problem threatening an entire line of
research acts as an attractor of distant cross-disciplinary colla-
borations with an all-encompassing theme, including authors
from CIP 5 (medical specialists) and CIP 8 (engineers and
computer scientists), while thematically spans four topical
domains: SA 2 (Anatomy and Organisms), SA 3 (Phenomena and
Processes), SA 5 (Techniques and Equipment), and SA 6
(Technology and Information Science).

Genomics. Following the completion of the Human Genome
Project (HGP) in the early 2000s, genomics, and biotechnology
methods have established a foothold in brain research. This
convergent frontier made headway in solving long-standing
morbidity riddles and formulating novel therapies, e.g., providing
a deeper understanding of the genetic basis of developmental
delay (Cooper, 2011) and developing a treatment for glioblastoma
using a recombinant poliovirus (Desjardins, 2018). Both of these
articles include authors from CIP 4 and 5, while thematically cast
a wide net, with the former spanning SA 1, 3, 4, and 5, whereas
the latter SA 2, SA 4, and SA 5.

Robotics. In the early 2010s, neurally controlled robotic prostheses
reached fruition by way of collaboration between neuroscientists
(CIP 1) and biotechnologists (CIP 4). A prime example of this
emerging bio-mechatronics frontier is research on robotic arms
for tetraplegics (Hochberg, 2012), which thematically covers all
SA 1-6.

Artificial Intelligence (AI) and big data. Following developments
in machine learning capabilities (ML), deep Al methods were
brought to bear on MR data, pushing brain imaging towards
more quantitative, accurate, and automated diagnostic methods.
Research on brain legion segmentation using Convolutional
Neural Networks (CNN) (Kamnitsas, 2017) is an apt example
produced by a collaboration between medical specialists (CIP 5)
and engineers (CIP 8), spanning thematically SA 2-4 and SA 6.
Simultaneously, massive brain datasets combined with powerful
Al engines made their appearance along with methods to control
noise and ensure their validity, as exemplified by ref. (Alfaro-
Almagro, 2018) produced by neuroscientists (CIP 1), health sci-
entists (CIP 6), and engineers (CIP 8), and also featuring a nearly
exhaustive topical scope (SA 2-6).

All together, case analysis indicates Xpjstant,sagcip products are
typically characterized by significant SA integration, typically
including 3-4 non-technical SA plus 1-2 technical SA. This
thematic coverage exceeds the disciplinary bounds implied by the
CIP set of the authors, which typically includes one non-technical
CIP plus one technical CIP.

Discussion

In a highly competitive and open science system with multiple
degrees of freedom, more than one operational mode is likely to
emerge. To assess the different configurations that exist, we
developed an {author discipline x research topic} classification
that enables examination of several operational modes and their
relative scientific impact.

Competing convergence modes. Our key result regards the
identification and assessment of a prevalent convergence shortcut
characterized by research combining different SA (Xss) but not
integrating cross-disciplinary expertise (Mcp). Assuming the
HBS ecosystem to be representative of other competitive science
frontiers, our results suggest that the two operational modes of
convergence evolve as substitutes rather than complements.
Trends from the last five years indicate an increasing tendency for
scholars to shortcut cross-disciplinary approaches, and instead
integrate by way of expansive learning. This appears to be in
tension with the intended mission of flagship HBS programs. In
fact, our analysis provides strong evidence that the rise of expe-
dient convergence tactics may be an unintended consequence of
the race among teams to secure funding.

In order to provide a timely assessment of convergence science,
we addressed RQ1—how to measure convergence?—by develop-
ing a generalizable framework that differentiates between
diversity in team expertise and research topics. While it is true
that a widespread paradigm shift towards increasing team size has
transformed the scientific landscape (Milojevic, 2014, Wuchty
et al,, 2007), this work challenges the prevalent view that larger
teams are innately more adept at performing cross-domain
research. Indeed, convergence does not only depend on team size
but also on its composition. In reality, however, research teams
targeting the class of hard problems calling for convergent
approaches are faced with coordination costs and other
constraints associated with crossing disciplinary and organiza-
tional boundaries (Cummings and Kiesler, 2005, 2008, Van
Rijnsoever and Hessels, 2011). Consequently, teams are likely to
economize in disciplinary expertise, and instead integrate cross-
domain knowledge in part (or in whole) by way of polymathic
generalists comfortable with the expansive learning approach. As
a result, a team’s composite disciplinary pedigree tends to be a
subset of the topical dimensions of the problem under
investigation.
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As a consistency check, we also find this convergence shortcut
to be more widespread in research involving topics that are
epistemically close, as represented by the Neighboring configura-
tion we analyzed. Contrariwise, in the neuro-psycho-medical <
techno-informatic interface, belonging to the Distant configura-
tion, convergent cross-disciplinary collaboration runs strong.
Perhaps not by serendipity, the mixed analysis further indicates
that this is exactly the configuration where transformative science
has long been occurring.

Arguably, a certain degree of expansive learning is needed for
multidisciplinary teams to operate in harmony. For example, in
the case of a psychologist collaborating with a medical specialist,
it would be ideal if each one knew a little bit about the other’s
field so that they establish effective knowledge and communica-
tion bridges. After all, this is what transforms a multidisciplinary
team into a cross-disciplinary team, such that convergence
becomes operative. However, this approach is not the dominant
trend in HBS (see section “Article level Model”), and is possibly a
response to the broad and longstanding promotion of unqualified
interdisciplinarity (Barry et al., 2008, Nissani, 1995). Again using
our simple example, it may be that the medical specialist prefers
not to partner at all with psychologists in the prosecution of bi-
domain research, ie., opting for the streamlined substitutive
strategy of total replacement over the strategy of partial
redundancy, which comes with the risks associated with cross-
disciplinary coordination.

In confronting a rich set of questions we were faced with well-
documented limitations to interdisciplinary studies, namely
inconsistencies in defining and operationalizing metrics for
interdisciplinarity, as exemplified by the inexact yet common
method of assigning a discipline to a research article based upon
the research area classification of the parent journal (Wagner,
2011). In this work, we address these issues by instead assigning
disciplinary categories to researchers based upon their primary
departmental affiliation, and to research topics based upon the
location of the article’s keywords within a comprehensive
biomedical ontology. Moreover, a true multi-domain ecosystem
like HBS provides an ideal testbed for evaluating the prominence,
interactions, and impact of the said constitutional aspects of
convergence (Eyre, 2017, Grillner, 2016, Jorgenson, 2015,
Quaglio, 2017). A persisting limitation, however, is that we do
not specify what task (e.g., analysis, conceptualization, writing) a
given domain expert performed, and hence we do not account for
the division of labor in the teams here analyzed. Indeed, recent
work provides evidence that larger teams tend to have higher
levels of task specialization (Haeussler and Sauermann, 2020),
which thereby provides a promising avenue for future investiga-
tion, i.e., to provide additional clarity on how bureaucratization
(Walsh and Lee, 2015) offsets the recombinant uncertainty
(Fleming, 2001) associated with cross-disciplinary exploration.
Another limitation regards the nuances of HBS programs that we
do not account for, e.g., different grand objectives, funding levels,
and disciplinary framing which varies across flagships.

Our results also provide clarity regarding recent efforts to
evaluate the role of cross-disciplinarity in the domain of genomics
(Petersen, 2018), where we used a similar scholar-oriented
framework that did not incorporate the SA dimensions. One
could argue that the cross-disciplinary citation premium reported
in the genomics revolution arises simply from the genomics
domain being primed for success. Indeed, Fig. 3A shows that HBS
scholars in the domain of Biotech and Genetics discipline
maintained high levels of SA diversity extending back to the
1970s. We do not observe similar patterns for other HBS sub-
disciplines. Yet, our measurement of a ~ 16% citation premium
for research featuring both modes (Xgagcrp) are remarkably
similar in magnitude to the analog measurement of a ~20%
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citation premium reported in (Petersen, 2018). In other recent
work operationalizing STEM disciplines by way of WOS Research
Area (SU) categories, which are journal specific (as opposed to
article-level keywords and author-level CIP affiliations),
(Okamura, 2019) estimates the analog interdisciplinary citation
premium of roughly 20% for a set of 2560 "highly cited papers”.

Econometric analysis. In order to measure shifts in the pre-
valence and impact of cross-domain integration, in addition to
how they depend on the convergence mode, we employed an
econometric regression specification that leverages author fixed-
effects and accounts for research team size, in addition to a
battery of other CIP and SA controls. Regarding the growth rate
of HBS convergence science, Fig. 5A indicates that research
integrating topics and disciplinary expertise is growing between 2
and 4% annually, relatively to the mono-disciplinary baseline;
however, this upward trend reversed after the ramp-up of HBS
flagships, as indicated in Fig. 5B. Our results also indicate that the
citation impact of publications from polymathic teams (Xneign-
boringSA and XDistant,sA) 18 significantly lower than the impact of
publications from more balanced cross-disciplinary teams
(XNeighboring sa&ctp aNd Xpiseant sascip)» see Fig. 5C. On a positive
note, a DiD strategy provides support that HBS research featuring
the Xpistantsascip configuration has increased in citation impact
following the ramp-up of HBS flagships, see Fig. 5D. There are
various possible explanations to consider, most prominent of
which is that the cognitive and resource demands required to
address grand scientific challenges have outgrown the capacity of
even mono-disciplinary teams, let alone solo genius (Simonton,
2013).

Reflecting upon these results together, it is somewhat troubling
that the polymathic trend proliferates and competes with the gold
standard, that is, configurations featuring a balance of cross-
disciplinary teams and diverse topics (Xsagcrp). Counterproduc-
tively, flagship HBS projects appear to have incentivized
expansive research strategies manifest in a relative shift towards
Xsa since the ramp-up of flagship projects in 2014. This trend
may depend upon the particular flagship’s objective framing.
Take for instance the US BRAIN Initiative, with the expressed
aim to support multi-disciplinary mapping and investigation of
dynamic brain networks. As such, its corresponding research
goals promote the integration of Neighboring topics, where
scientists with polymathic tendencies may feel more emboldened
to short-circuit expertise. In addition, there are practical pressures
associated with proposal calls. Another possible explanation
regarding team formation is that it may be easier and faster for
researchers to find collaborators from their own discipline when
faced with the pressure to meet proposal deadlines. In addition,
funding levels are not unlimited, and bringing additional
reputable specialists into the team comes with great financial
consideration. Hence, a natural avenue for future investigation is
to test whether other convergence-oriented funding initiatives
also unwittingly amplify such suboptimal teaming strategies.

Theoretical insights—autodidactic expansive learning. Indeed,
the polymathic trend described here pre-existed the flagship HBS
projects, and so must have deeper roots. One hypothesis is that
this trend represents an emergent scholarly behavior owing to
efficient 21st century means to pursue new topics by way of
expansive learning (Engestrom and Sannino, 2010) since the
learning costs associated with certain tasks characterized by
explicit knowledge have markedly decreased with the advent of
the Internet and other means of rapid high-fidelity communica-
tion. Indeed, many of the activity signals brought to the fore by
this study bear the hallmarks of expansive learning. Perhaps the
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most telling signal is the propensity towards topically diverse
publications—Fig. 4D-F, which largely stems from horizontal
movements in the research focus of individual scientists rather
than vertical integration among experts from different disciplines
—Fig. 4A-C. The scientific system is increasingly interconnected,
as evident from the densification of collaboration networks and
emergent cross-disciplinary interfaces—Fig. 2B. These interfaces
satisfy the conditions that are conducive to boundary-crossing,
especially with respect to research topics, which can act as
structures facilitating "minimum energy” expansion (Toiviainen,
2007). To this point, we also assessed whether the relationship
between CIP diversity and SA integration depends on whether the
configuration represents neighboring or distant domains. Ana-
lyzing the set of Xsagcrp articles, we find that expansive inte-
gration is consistently most effective in Distant configurations,
e.g., teams with Ncpp, = 3 spans roughly 32% more SA than their
mono-disciplinary counterparts—Fig. S5B.

Policy implications. Consistent also with other studies in
expansive learning, actions taken by participants do not neces-
sarily correspond to the intentions of the interventionists (Ras-
mussen and Ludvigsen, 2009). Here, the participants are brain
scientists, and the interventionists are the funding agencies. While
the latter aim to promote research powered by true multi-
disciplinary teams, the former prefer the shortcut.

Policymakers and other decision-makers within the scientific
commons are faced with the persistent challenge of efficient
resource allocation, especially in the case of grand scientific
challenges that foster aggressive timelines (Stephan, 2012). The
implicit uncertainty and risk associated with such endeavors are
bound to affect reactive scholar strategies, and this interplay
between incentives and behavior is just one source of complexity
among many that underly the scientific system (Fealing, 2011).

To begin to address this issue, policies addressing the
challenges of historical fragmentation in Europe offer guidance.
European Research Council (ERC) funding programs have been
powerful vehicles for integrating national innovation systems by
way of supporting cross-border collaboration, brain-circulation,
and knowledge diffusion—yet with unintended outcomes that
increase the burden of the challenge (Doria Arrieta et al., 2017).
To address this geographic fragmentation, many major ERC
collaborative programs require multi-national partnerships as an
explicit funding criterion. Motivated by the effectiveness of this
straightforward integration strategy, convergence programs could
include analog cross-disciplinary criteria or review assessments to
address the convergence shortcut. Such guidelines could help to
align polymathic versus cross-disciplinary pathways towards
more effective cross-domain integration. This type of alignment
is critical to achieving the explicit objective delineated by the
originators of convergence science (National Research Council,
2014), which is the emergence of "new sciences” characterized by
a deep understanding of causality and complexity associated with
multi-component multi-level systems (Bonaccorsi, 2008). Much
like the vision for brain science—towards a more complete
understanding of the emergent structure-function relation in an
adaptive complex system—a better understanding of cross-
disciplinary team assembly, among other team science considera-
tions (Borner, 2010), will be essential in other challenging
frontiers calling on convergence.

Conclusion

We introduced a new method to quantify convergence that
accounts for both the topical diversity of an article’s content, as
well as the disciplinary diversity of the team that produced it.
The method uniquely captures the tension between the

institutionalized distribution of expertise and the freely evolving
distribution of scientific topics. In this new framework, classic
convergence—defined as both cross-topic and cross-discipline—is
only one among three possibilities; the other two are mono-topic/
cross-discipline and cross-topic/mono-discipline. The latter type
is rather unsettling because it represents a bold bypass of insti-
tutionalized expertise; for this reason, we call it shortcut con-
vergence. Applying our method of analysis to a comprehensive
bibliographic dataset in human brain science, we found that
shortcut convergence is crowding out classic convergence, despite
the latter’s impact. Furthermore, we found that this trend is
unintentionally aided by funding initiatives, partly because there
has been no methodological framework thus far to monitor
convergence nuances.

One might ask if the convergence mechanism we discovered to
be humming under the surface is active in fields other than brain
science? We believe this is likely, because brain science is asso-
ciated with a multi-domain ecosystem primed for convergence,
and this is a highly representative case. Nevertheless, repeating
the type of research we described here in more scientific fields is
the only way to ascertain the universality of the convergence
mechanism we unearthed. In this direction, our general methods
and open code offer a valuable tool to those in the researchers
interested to take up this task.

Data availability

The curated dataset used in the analysis described herein can be
accessed through the Open Science Framework repository https://
osf.io/d97eu. The R code used to produce some of the figures and
tables reported in the paper is accessible through GitHub at
https://github.com/UH-CPL/Emergent-Modes-of-Convergence-
Science.
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