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Abstract— Both distracted and aggressive driving are habit-
ual in nature, constituting an insurance risk, which has been
difficult to quantify. Here, in this paper, we propose a method
that produces short term predictions for these two dangerous
driving behaviors. The method feeds an Extreme Gradient
Boosting (XGB) algorithm with the most informative features of a
set of physiological and vehicular variables. The XGB algorithm
operates on a learning window covering the last 30 seconds to
make fast track predictions (FT) for the next 10 seconds. For
aggressive driving, FT predictions are final, while for distracted
driving, FT predictions are weighted over one minute, to form a
meta-prediction. This more deliberative process for predicting
distractions fits their intermittent manifestation. The method
has been tested on SIM 1, a publicly available dataset from
a distracted driving experiment. In this dataset, the drivers
(n = 59) are labeled as distracted based on the presence of
mental activity or physical interactions antagonistic to the driving
task; their driving style is defined by steering and acceleration,
and is classified as aggressive or normal. The method attains
classification performance that exceeds 87%. Alerting drivers
when distractions and aggressiveness have taken hold on them
can provide sobering awareness, given that people drift into
these states subconsciously. The behavioral modification effects of
such awareness mechanisms are rooted in Cognitive Behavioral
Theory. The proposed method can also be used in future vehicles
with advanced automation, weighing in the computer’s decision
to wrest vehicular control from an unrepentant driver.

Index Terms— Affective computing, distracted driving, aggres-
sive driving, machine learning, extreme gradient boosting,
thermal imaging.

I. INTRODUCTION

DRIVING is one of the most common and most dangerous
daily human activities. Nearly 1.25 million people die

and 20-50 million are injured in vehicle crashes each year
worldwide [1]. Several measures to address this problem are
implemented from governments and auto manufacturers. The
former improve the transportation network, impose stricter
penalties, and add further regulations, while the latter equip
vehicles with increasingly sophisticated driver assistance sys-
tems. Such systems are typically based on cameras and radars
to monitor the vehicle surroundings and intervene when an
incident happens. Some examples include alerting the driver
when departing from lanes, activating the vehicle’s breaks on
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an imminent collision, or warning the driver when the vehicle
ahead or behind is too close. These systems have generally
made positive contributions to transportation safety. By design,
however, they are activated when a serious error has already
occurred or is about to occur. Since they solely focus on sens-
ing the position of the vehicle with respect to its surroundings,
their ability to foresee drivers’ error-prone behaviors, which
account approximately for 90% of crashes [2], is limited.
Hence, the character of existing driver assistance systems is
more remedial than preventive.

This puts beyond the reach of driver assistance systems
distracted and aggressive driving, two widespread behaviors
of habitual nature, carrying insurance risk that is difficult
to document, quantify, and fix. Indeed, there is no good
method to sense these two behaviors, and even if there were
one, current driver assistance systems cannot take control
of the vehicle; thus, remedial actions would solely depend
on driver’s self-correction. As automation levels advance [3],
the role of driving assistance systems is expected to expand
from their current ‘firefighting’ mission to more synergistic
actions between the driver and the machine. For example,
in vehicles with conditional (Level 3) or high (Level 4)
automation, the machine may request or wrest control of the
vehicle, if it determines the driver’s risky behavior persists
despite repeated alerts. For the moment, with vehicles on the
road featuring only partial automation (Level 2), a method
detecting dangerous behaviors can merely provide sobering
warnings to the driver. This warning function should not
be underestimated, however, because Cognitive Behavioral
Theory suggests it can lead to behavioral modification [4].

Here we present a method that determines when distracted
or aggressive driving take hold, issuing alerts. The aim is
to improve behaviors by raising driver awareness in Level 2
vehicles. The same method could support preventive actions
in Level 3 and Level 4 vehicles. There is a real need for such
a development - in 2016 in the United States alone, distracted
driving accounted for 3450 human lives [5] while aggressive
driving, in the form of oversteering, took 1967 lives [6].

To test the goodness of our method we use SIM 1, an open
dataset1 from a well-known experiment [7] meant to investi-
gate the role of sympathetic arousal in various types of driving
distractions [8]. The periods during which the drivers were
distracted, are annotated in the dataset at the one second
resolution level. The SIM 1 dataset has no annotation for
aggressive driving. Hence, we had to develop an annotation
scheme based on the definition of aggressive driving, as a
combination of excessive steering and acceleration.

1https://osf.io/c42cn/
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The dataset includes recordings of four different physiolog-
ical signals for the drivers: Perinasal perspiration, heart rate,
breathing rate, and electrodermal activity in the palm. These
signals are standard indicators of sympathetic arousal, enabling
the detection of overarousal bouts related to cognitive, emo-
tional, or physical overloading of drivers; such overloading
increases the risk of accidents [9]. The dataset features also
recordings of driving signals from the vehicle’s computer;
these include acceleration and steering angle signals, serving
as indicators of driving style.

We segment the physiological and driving recordings into
10 second windows, within which we perform feature engi-
neering. Subsequently, we use feature selection techniques to
arrive at an effective representation of all signals, which feeds
a machine learning algorithm - Extreme Gradient Boosting.
Both the distraction and aggressiveness models use 30 seconds
of recordings to predict whether there will be ‘misbehav-
ior’ the next 10 seconds. Prediction here is a classification
function - the machine learning algorithm gives its classifica-
tion verdict for the immediate future, having seen the pattern in
the recent past. This approach is fitting for persistent behaviors
of habitual nature, such as distracted and aggressive driving.
Positive classification means that these behaviors have taken
hold on the driver and are likely to continue for some time -
thus, it is time for an alert.

We call this 30/10 second classification operation, fast
track (FT) prediction scale. For aggressiveness, it is the only
scale we use. For distractions, however, we treat FT predictions
as intermediate results, feeding to a more deliberative scale
that averages them over the course of one minute before it
issues a meta prediction. This multiscale approach addresses
the intermittent nature of distractions, which at the FT level
can lead to annoying on/off alert switching. The combination
of single scale for aggressiveness and multiscale for distrac-
tions yield Area Under the Curve (AUC) in excess of 87%.

The remainder of the paper is organized as follows: In
section II we provide a literature review related to this
research. In section III we present the methods, which include
the dataset, the feature engineering, and the machine learning
algorithm. Section IV describes the tests and the results.
We conclude in section V with discussion and future work.

II. RELATED WORK

Our work is connected with two different literature sets
in driving safety: The first set includes affective monitor-
ing of drivers, while the second set includes classification
of instantaneous driving distractions. The goal of affective
monitoring during driving is to detect psychophysiological
states that lead to dangerous driving behaviors. Most affective
driving studies focus on stress and fatigue. Consequently,
the definition of stress is a crucial question in these studies.
An early research effort categorized driving stress into three
classes: no driving, city driving, and highway driving [10];
for validation, the researchers used questionnaires. Along the
same lines, another research effort defined stress based on the
surroundings [11], with levels corresponding to city, highway,
or campus driving. In [12] the subjects drove on a simulated

circular driveway for neutral stress, a snowy mountain track for
elevated stress, and competed with four artificial intelligence
contestants, programmed to induce anger. Stress, however,
may be caused by factors other than traffic conditions or the
surroundings - a conceptual limitation of early studies.

A more nuanced stress categorization method was used
in [13], where stress levels were inferred from driving events
- for example, overtakes were associated with elevated stress.
In later work from the same group, stress annotations were
performed by psychologists, who examined the driving ses-
sions’ videos [14]. This approach is feasible in small datasets,
featuring few subjects and short driving sessions. It becomes
impractical at the scale of the SIM 1 dataset used in the
current research. Moreover, even experienced psychologists
occasionally fail in assessing people’s psychological states
by merely looking at their facial videos. To address this
issue, researchers resorted to self-annotations from subjects,
who were asked to indicate the times they felt frustrated
in [15] or tired in [16]. Self-reporting methods, however, have
their own set of problems with self-bias being the biggest
problem.

In the dataset we use, distraction annotations stem from
precise application of stressful stimuli during certain phases of
the driving, while controlling or accounting for other factors.
These annotations can be considered more objective, because
they are free of self-bias or oversimplifying assumptions
based on the surroundings. In addition, our dataset includes
different types of stimuli that induce either esoteric or physical
distractions, thus providing a comprehensive set of scenarios.

Another crucial aspect of driving studies is the data ana-
lytic methods. Most driving studies include a limited number
of subjects [11], [16], extracting multiple samples from the
recordings of each subject; for example, in [14] only 10 sub-
jects are used, but a 10 second sliding window over 40 minute
sessions boosts the sampling power. The number of subjects
is of vital importance to the model’s accuracy, because of
the variability found in human beings. Our sample size, with
n = 59 subjects, exceeds the typical sizes featured in the
literature.

Interestingly, while the signals used in driving studies tend
to be similar, the preprocessing and feature extraction methods
vary widely. In [10], the features used included statistical
metrics, power spectral density at different frequencies for
respiration and heart rate, as well as peak detection for skin
conductance. In [17], researchers used the mean normalized
heart rate, the mean absolute first order difference of electro-
dermal activity, and the mean amplitude of respiration, skin
conductance, and facial electromyography. Studies with fewer
signals typically focus either on spectral features [16], or peak
detection [11]. The frequencies employed in spectral feature
engineering differ among studies, and some are not clearly
justified. Overall, there is no consensus as to which of these
features are the most useful. To address this problem in our
study, we start with an extensive set of physiological features
that represents the union of the literature. Then, we perform a
feature evaluation process to determine the most informative
among them. This reduced feature set serves as input to our
model.
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The machine learning algorithms used in driving studies
also play a vital role in modeling effectiveness. With the
exception of [10] that used a Fisher’s linear discriminant
and [11] that experimented with neural networks, the rest of
the literature is dominated by Bayesian networks. Bayesian
networks can be static [15] or dynamic [17]. Sometimes they
are complemented with a first classifier that produces discrete
variables from the input, such as a decision tree [17]. Usually,
the central variable is binary, representing whether the driver
is stressed or not. The rest of the variables can be continuous,
such as the measurements of the sensors [15], or nominal,
such as types of road events [14]. Bayesian Networks are
sound technical choices, because they provide a thorough
and explainable probabilistic framework for the model. More
importantly, they model the distributions of the inputs, which
renders them very robust to overfitting. However, determining
the prior probability is an open problem of Bayesian models.
In addition, training a Bayesian Network with the wealth
of data that our study is based on, can be computationally
demanding. This is why in this study we use Extreme Gradient
Boosting, a model based on ensembling decision trees, which
is not only exceptionally robust to overfitting, but also very
fast to train [18].

Overall, our approach differs from traditional distracted
driving studies with respect to the type of distractions it targets,
the duration of these distractions, and the measurement and
analytic methods it uses. Typically, only physical distractions
of short duration are considered in driving studies, which
are monitored via computer vision systems [19], [20]. These
systems employ one or more cameras to track the driver’s head
pose, mouth movements, and eye blinking, to infer whether
s/he gets drowsy or distracted [21]. Simpler systems with head
tracking sensors and Controller Area Network-Bus have also
been used to classify short distractions [22], such as turning
on the vehicle’s TV, changing the radio station, or interacting
with the navigation system. Instantaneous physical distractions
are also detected in [23] but based solely on vehicle signals.
The classification method, however, relies on within-subject
models to counter inter-subject variance.

In contrast, our approach tackles both physical and mental
distractions that persist for some time, following a within-
and between-subject design. Such distractions leave a footprint
in the subjects’ physiological signals and driving behaviors.
Our model tries to make sense of this mixed physiologi-
cal/behavioral footprint, issuing a short term prediction. The
aim is to alert the driver in near real-time about behaviors
persistent enough to qualify as predictable bad habits. Such a
system could serve as the basis of Cognitive Behavioral Ther-
apy for improving driving behaviors [4] and as a monitoring
option in auto insurance policies [24]. Table I summarizes the
differences between our approach and the models reported in
the literature.

III. METHODS

A. Dataset
We used the SIM 1 dataset to validate our method. The

volunteer subjects had at least one and a half years of driving
experience. To control for age, the subjects ranged between

Fig. 1. Probability density function of acceleration for all subjects and drives
in the SIM 1 dataset. Acceleration is expressed in ◦, as the acceleration pedal
was connected to a simulated throttle valve that could move from a fully
closed (0◦) to a fully open (90◦) position.

18 and 27 years of age, and above 60 years of age - the young
and old groups, respectively. All in all, SIM 1 has n = 59
subjects, fairly balanced with respect to gender and age:
12 young males/18 young females plus 14 old males/15 old
females.

This dataset was produced by an experiment meant to
test if esoteric or physical distractions on drivers produce
sympathetic overarousal, associated with dangerous changes in
driving behaviors [7]. The subjects drove four times the same
itinerary in a driving simulator - one time without distractions,
and three times with cognitive, emotional, and sensorimotor
distractions, respectively. The order of the drives was random-
ized to ameliorate practice effects. Cognitive distractions were
induced with mental arithmetic questions. Emotional distrac-
tions were induced with embarrassing questions. Sensorimotor
distractions were induced by asking the drivers to text back
words that were receiving in their smartphones. The collected
data were annotated with the times the distractions started and
stopped.

Levels of sympathetic arousal were captured via imaging
and wearable sensors recording the following physiological
signals:

• Perinasal perspiration through a thermal camera
• Heart rate through a chest sensor
• Breathing rate through a chest sensor
• Electrodermal activity through a palm GSR sensor

At the same time, the vehicle’s computer recorded
driving signals carrying behavioral information. These sig-
nals included instantaneous steering angle and acceleration.
The steering angle is a driving parameter closely related to
sympathetic arousal, as the arms of the driver handling the
steering wheel are the main conduits for funneling ‘fight or
flight’ musculoskeletal responses [8]. In our analysis, we also
found acceleration to carry interesting behavioral information,
featuring a bimodal distribution (Fig. 1). Naturally, we classify
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TABLE I

AN OVERVIEW OF OUR METHOD’S CHARACTERISTICS VERSUS THOSE REPORTED IN THE LITERATURE. ‘YES’ IN THE CONTROLLED COLUMN INDICATES
DATA COLLECTED IN CONTROLLED EXPERIMENTS, WHILE ‘NO’ SUGGESTS DATA COLLECTED IN FIELD STUDIES

as ‘high acceleration’ all the values falling under the right
mode, and as ‘low acceleration’ all the values falling under
the left mode in Fig. 1. With respect to steering, we define as
‘high steering’ all the values that lie beyond one standard devi-
ation in the probability density function of the steering angle
variable; values below the one standard deviation threshold are
defined as ‘low steering’.

We characterize driving to be aggressive in a 10 second
window, if both the steering and acceleration values belong
to the ‘high’ classes for at least one second. Our defin-
ition of aggressive driving is in the same direction with
the definitions used by the insurance industry in the United
States. For example, RightTrack® by Liberty Mutual [25]
is a telematics rewards program that monitors acceleration
signals via an onboard diagnostics (OBD) device; it marks as
aggressive driving all incidents with acceleration > 7 miles per
hour/second. Our approach, however, differentiates from these
insurance-driven programs in two respects: First, our definition
of aggressive driving is based on sample statistics, rather
than heuristic thresholds, which appears to be the case with
RightTrack®. Second, our definition incorporates the latest
psychophysiological results in driving research [8], by using
hand tremors as an additional indicator of aggressiveness.

Figure 2 depicts the methodological flow of our
approach. The remainder of the current section describes in
detail the individual elements of this approach.

B. Preprocessing

A substantial problem in datasets of such experiments is
spurious samples caused by sensor corruption or displacement,
as well as human errors. The SIM 1 dataset comes with a
detailed quality control report [7], where the experimenters
have indicated untrustworthy recordings based on experimen-
tal reports, known hardware limitations, and knowledge of
physiological boundaries.2 We utilize this report to filter away
corrupted signals. Furthermore, the signals are resampled at
1 Hz, because this is the lowest frequency found in the
dataset, coming from the chest sensors measuring heart rate
and breathing rate. Finally, we smooth the signals using a
simple moving average filter of 5 samples to alleviate artificial
variations caused by exogenous factors.

C. Feature Extraction

We perform feature extraction in a time window of 10 sec-
onds. For the driving variables of acceleration and steering,

2https://osf.io/7nwmk/

Fig. 2. Overview of methodological flow. FT forecasting stands for fast track
forecasting, where data from the last 30 seconds are used to make predictions
for the next 10 seconds. Meta forecasting uses six FT forecasting cycles to
issue a final prediction; it applies only to distracted driving.

feature extraction is straightforward - we compute their means
in a given 10 second window. For the physiological variables,
feature extraction is more involved. Different types of physi-
ological responses have different time constants. Cholinergic
signals (i.e., perspiration) tend to be highly sensitive, man-
ifesting the onset of stress within 2-5 seconds [26], while
adrenergic signals (particularly breathing rate) are slower,
needing as much as 10 seconds to manifest arousal [27].
Hence, we choose the upper limit of sensitivity in sympathetic
changes (i.e., 10 seconds), as the time window to conduct
feature engineering. We extract five different types of features
from all physiological signals in a given 10 second window:
Statistical, correlative, temporal, structural, and spectral.

1) Statistical Features: These features include the mean,
median, standard deviation, sum of squares, and slope of
regression. They are standard descriptive statistics capturing
the nature of the value distributions in the signals.

2) Correlative Features: Correlations between physiolog-
ical variables may hide interesting patterns. We extract the
upper triangle of the Pearson correlation matrix [28] and the
singular values of the covariance matrix.

3) Temporal Features: We assume that signals are stationary
within the 10 second observational window. Accordingly,
in each time window we extract the following features:

• Auto-correlation parameters [29]
• Coefficients of Autoregressive Integrated Moving

Average (ARIMA) [30]
• Sum of squares of ARIMA residuals
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Fig. 3. Example of peak detection in a perinasal perspiration signal (subject
S2, driving session with cognitive distractions).

4) Structural Features: These features relate peaks and
arousal onsets in cholinergic signals. We use a peak detection
algorithm based on zero crossings of the first derivative. The
minimum distance between two consecutive peaks is set to
3 seconds, consistent with neurophysiological limitations [26].
The onset of a particular peak is defined as the minimum
value between the previous peak and the one currently exam-
ined. Figure 3 shows the output of the peak detection for
the perinasal perspiration signal of subject S2 in the drive
with cognitive distractions. Based on the results of the peak
detection algorithm, we extract for each time window the
following features:

• Number of peaks
• Mean intensity difference between a peak and its onset
• Mean time between an onset and its peak
• Mean time between consecutive peaks

5) Spectral Features: These are frequency domain fea-
tures that differ, depending on the type of the physiological
signal.

Perinasal Perspiration Perinasal perspiration is a reli-
able indicator of sympathetic arousal [8]. Like all other
signals of cholinergic nature, it can be decomposed into
two different components, the tonic and the phasic [31].
Therefore, in each time window we extract the maximum
value of the spectrogram in [0 − 0.2] Hz, the maximum
value of the spectrogram in (0.2,∞] Hz, and the respec-
tive frequencies of these two maxima.
Palm Electrodermal Activity. Electrodermal activity
(EDA), much like perinasal perspiration, is a cholinergic
signal [31]. Hence, we extract the same spectral features
we extracted for the perinasal perspiration signal.
Heart Rate. We use Lomb periodogram, because it is
robust to missing samples, to extract frequency com-
ponents that capture the influence of the sympathetic
and parasympathetic system on the heart. These fea-
tures include power spectral density in (0.003 - 0.04],
(0.04 - 0.15], (0.15 - 0.5] Hz, as well as their ratio, and
the total power spectral density.

Fig. 4. Heatmap of the feature correlation matrix. Groups of features from
the same sensors are separated with horizontal lines and different types of
features are highlighted with rectangles. Cor and Cov indicate correlation
and covariance of the signal matrix. ACF indicates autocorrelation. Structure
indicates features derived from peak detection.

Breathing Rate. We use Welch’s average periodogram
with Hanning window in the frequencies: (0, 0.1], (0.1,
0.2], (0.2, 0.3], and (0.3, 0.4] Hz.

D. Feature Selection

The total number of extracted features amounts to 111.
To lessen the possibility of overfitting we reduce the
dimensionality of the feature set. Traditional dimensionality
reduction techniques, such as principal component analysis,
although effective, are not desirable in this case, because we
want to maintain some control in the process, keeping the
physical meaning of our model in perspective. Consequently,
we resort to feature selection techniques.

First, we remove features with constant values. These fea-
tures cannot contribute to class discrimination, as they do not
change at all. This filtering eliminates all first autocorrelation
parameters, as well as the maximum frequency components
of the perinasal and palm EDA signals. Afterwards, we deal
with the unavailable values (N/A) left behind by the feature
extraction process. We remove features that consist of more
than 10% N/A values. This multi-step cleaning process results
into a dataset with 98 features and 43 subjects, forming a total
of 9956 distinct samples.

Subsequently, we apply min-max normalization to reduce
differences between various types of features with aberrant
scales. Next, we remove features that are highly correlated
with other features, that is, they exhibit over 0.8 positive
or negative Pearson correlation. Figure 4 shows the feature
correlation matrix. The matrix follows a block structure across
the opposite diagonal. Using the horizontal lines that highlight
the features of a specific sensor, we can conclude that features
from the same sensors can be highly correlated with each
other, but the correlations between features from different
sensors are scant.
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Focusing on each modality, we see a triangle with high
negative and positive correlations. These correspond to the
autocorrelation parameters, each one being positively corre-
lated with the immediate previous ones, and negatively with
the ones that are further back These correlative relationships
cause the removal of a significant number of features in each
sensor. The correlation of spectral density features depends on
the sensor modality. For example, the two maximum spectrum
features of palm EDA are not correlated with any other feature,
while the respective perinasal ones are found to be correlated
with each other. For all modalities, the ARIMA residuals are
positively correlated with the standard deviation, while the
ARIMA parameters are positively correlated with the mean.
This makes sense as the residuals relate to variance, and
the ARIMA parameters rely on mean estimates. Means are
also positively correlated with energy and medians, indicating
that the signal distributions are not skewed. Mean breathing
correlates with several spectral features of breathing. Out of all
these correlated features, we keep just the means as they are
more robust and easier to compute. The most dominant and
weakest eigenvalues of covariance, are positively correlated
with the mean of palm EDA and the mean of perinasal,
respectively. This suggests that palm EDA is the strongest
contributor in signal variance, which, given that it is our most
noisy signal, makes sense. To verify that strong correlative
indications do not stem from pseudo-correlations, we also
plotted each highly correlated couple for visual inspection.
48 features were left standing after this process.

Finally, we employ feature selection methods from the
machine learning literature to trim the feature set down to
its most informative components with respect to predicting
distraction and aggressiveness. Towards this, we use two
methods. The first method is based on the feature importance
index computed by Extreme Gradient Boosting machines [18].
The task is to predict distraction using all 48 features and
keep the 10 most informative ones. In the second method,
we use simple linear models where each feature acts as a
sole predictor of distraction. We use 10-fold cross-validation
to identify the 10 most successful predictors. We also use
these two methods to predict aggressiveness. We take the
intersection of the resulting four feature vectors to form an
optimal set of 17 physiological features. The final feature
vector has these 17 physiological features plus the two mean
driving features (Table II). Interestingly, there is 80% overlap
between the best predictors for distraction and aggressiveness,
indicating a common physiological and behavioral core for
these two dangerous habits.

E. Extreme Gradient Boosting

We chose Extreme Gradient Boosting (XGB) because of
its robustness in overfitting, its interpretability, and its com-
putational efficiency [18]. Furthermore, XGB can handle rel-
atively successfully unbalanced class problems such as ours;
distractions have a 1:2 positive-negative class ratio and aggres-
siveness has 1.5:8.5. Indeed, XGB surpassed in performance
well-known machine learning algorithms in a comparative
experiment we ran against the SIM 1 dataset (Table III).

TABLE II

FINAL SET OF FEATURES EMPLOYED IN THE MODELS

TABLE III

COMPARISON OF XGB VERSUS NAIVE BAYES, GENERALIZED LINEAR

MODEL (GLM), AND SUPPORT VECTOR MACHINES (SVM) IN THE
SIM 1 DATASET. THE AREA UNDER THE CURVE (AUC) AND

ACCURACY (ACC) PERFORMANCE SCORES DEMONSTRATE

THE SUPERIORITY OF XGB IN PREDICTING DISTRACTIONS
AND AGGRESSIVENESS AT THE FT LEVEL

The XGB model is an ensemble of decision trees, meaning
that during training multiple trees are constructed sequentially
in a stepwise manner, each taking into account the weaknesses
of the previous one. When testing a new sample, each tree
gives a probability score for each class and a weighted com-
bination of them gives the final estimate. A gradient descent
methodology is adapted to optimize the structure of the trees
in each step. The vector of predictions of the model in step t
is defined as:

ŷt =
t∑

k=1

fk(x) =
t−1∑

k=1

fk(x) + ft x = ŷi
t−1 + ft (xi ) (1)

where fk(x) represents the function corresponding to the tree
developed at step k, with T leaves and w ∈ RT being the
scores assigned to the samples in those leaves. The optimiza-
tion aim is to reduce the binary loss from ŷt to the real value
of y:

l(y, ŷt ) =
n∑

i=1

(yiln(1 + e−yt
i ) + (1 − yi)ln(1 + eyt

i ) (2)

and the regularization term, which serves as a measure for the
complexity of the model, is defined as:

�( ft ) = γ T + 1

2
λ

T∑

j=1

w2
j (3)

where γ and λ are hyper parameters, and w j is the score of
the j -th leaf. Adding Eq. (2) and Eq. (3) gives the objective
function, which measures how good the structure of the tree
is. By solving this function the optimum score of j -th leaf is:

w∗
j = −

∑
i∈I j

gi
∑

i∈I j
hi + λ

(4)
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Fig. 5. The density of the model’s probabilistic distraction predictions,
color-annotated with ground-truth information.

where I j are the indices of the samples classified to that leaf
and gi , hi are the first and second derivatives of the loss
l(y, ŷt−1). To employ this when constructing the trees, a gain
index is defined to estimate what is the best feature to choose
as the next decision node. This index depends on the leaves
created by the candidate decision node (R and L) and the gain
on the current node I :

gain = −1

2
[w∗

R + w∗
L − w∗

I ]. (5)

F. Multiscale Predictions

The method makes predictions at two time scales - a fast
track (FT) prediction and a meta prediction after a period
of deliberation. The FT prediction applies to both distracted
and aggressive driving. Predictions are issued for the next
10 seconds (x) using 30 seconds (3x) from the immediate
past. Hence, the sampling process operates on a 40 second
time window that slides forward. The lag has been set to 3x,
after sensitivity analysis ranging from 1x to 10x .

For aggressive driving, the FT prediction is the only predic-
tion that takes place. For distracted driving, the FT prediction
serves as an intermediate layer, feeding to a meta prediction
mechanism. This higher level process averages FT predictions
for six cycles (i.e., 60 seconds in total), before issuing an
ultimate prediction for distracted driving the next 10 seconds.
The probabilistic threshold for the meta-predictor to issue a
distraction ‘alarm’ has been set to 0.4. The optimality of this
threshold is evident in Fig. 5, which shows the probabilities
of distraction given by the model, color-annotated with the
ground-truth information.

Texting while driving and smartphone distractions in general
are habitual and persistent in nature, characterized by an
intermittent pattern that lasts a lot longer than a few seconds.
The same applies for esoteric distractions, such as absent-
mindedness, especially in the context of tedious commutes.

TABLE IV

5-FOLD CROSS VALIDATED EVALUATION METRICS AND RESULTS FOR
FAST TRACK (FT) PREDICTIONS FOR DISTRACTIONS AND

AGGRESSIVENESS (EVERY 10 s), AND META-PREDICTIONS

(MP) FOR DISTRACTIONS ONLY (EVERY 1 min): AREA

UNDER CURVE (AUC), ACCURACY (ACC), SPECIFICITY
(SPEC), SENSITIVITY (SENS), POSITIVE

PREDICTIVE VALUE (PPV), NEGATIVE

PREDICTIVE VALUE (NPV)

Hence, it makes sense to have a multiscale prediction scheme
for the said distractions, because their typical time frame
would support it. Taking a more deliberative approach would
likely increase the accuracy and reliability of the system, as it
is likely to avoid getting caught in local minima created by
the intermittent pattern of distractions.

In contrast to distractions, aggressive driving events are
characterized by relatively shorter durations and have bursty
nature. A key reason is that acceleration is an important
determinant of aggressive driving, and usually one cannot keep
accelerating/decelerating for very long or very often. Hence,
prediction of aggressive driving is best to operate at the FT
level only.

IV. RESULTS

To evaluate the effectiveness of the method, we apply 5-fold
cross-validation [32] both at the fast track (FT) and meta pre-
diction levels. As part of this process, we keep ∼2000 samples
for testing and we use the remaining ∼8000 samples for
training. This is repeated for five times, choosing a different
subset of ∼2000 samples each time to produce predictions.

Table IV shows that the Area Under the Curve (AUC) is
over 84% for both distraction and aggressiveness predictions,
across scales. AUC, which is based on the rate of true versus
false positives [33], is more reliable than binary accuracy in
this application due to the heavy imbalance of classes. Indeed,
drivers are non-distracted and drive non-aggressively most of
the time. This class imbalance contributes to the disparity
between specificity and sensitivity, especially at the FT level.
The high specificity and high negative predictive value show
that the model is very good at predicting when drivers are
not distracted or not aggressive. The FT sensitivity values
show that the model underpredicts true positive states. The
combination of these qualities is revealing of a model that
will alert drivers on rare occasions and will usually be right.
This is a requirement for a driving behavioral model to be
successful. Drivers would not be keen on using systems that
admonish them often and for no good reason. Hence, reliably
predicting when not to warn drivers, is crucial.

Figure 6 provides an insight into the model’s performance.
Specifically, Fig. 6 A, B visualize the model’s meta and
FT level performance in predicting distractions. Figure 6 C
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Fig. 6. Visualization of the model’s predictive results. A. Meta predictions for distractions. B. Fast track (FT) predictions for distractions. C. Fast track
predictions for aggressiveness.

visualizes the model’s FT level performance in predicting
aggressiveness. Each plot corresponds to a drive afflicted by a
specific type of distraction, per the SIM 1 experimental design.

Green discs denote true positive predictions, black discs denote
false positive predictions, and red discs denote false negative
predictions. Hollow discs denote true negatives - clearly, true
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negatives constitute the majority of states, and thus the class
imbalance discussed earlier. In Fig. 6 A,B, green discs cluster
in two phases; before, in between, and after these two phases
there is preponderance of hollow discs. This reflects the SIM
1 experimental design [8], suggesting that the model captures
well the overall pattern of driving behaviors.

At the FT scale, the false negatives are dispersed within
the phases that the subjects were cognitively, emotionally,
or physically distracted. This happens because distractions are
not 100% on all the time. They rather have an interlacing
pattern, where, for example, in a 10 minute period, thoughts
are coming in and out of a driver’s mind, or the driver texts
intermittently. Interestingly, the false positives at the FT scale
come mostly after the end of the distracted driving phases,
representing after-effects that shortly outlive the stressors,
as documented in the literature [8]. Hence, labeling has some
limitations here, and in terms of substance, some of the
false negatives and false positives are likely not false at
all. Furthermore, this conundrum also points to a practical
problem: Assume that we had a perfect method to label short
non-distracted intervals within a period of overall distracted
driving - would it be proper or meaningful to continually
switch on and off the alerts?

This analysis prompted us to consider a more deliberative
decision time scale for issuing distraction alerts. We imple-
mented this as a meta process, weighing on six FT predictions
that operate as a hidden layer. Meta predictions of distractions
significantly improved performance across all metrics and
particularly with respect to sensitivity.

Some of the patterns identified in the prediction of distrac-
tions are also present in the prediction of aggressiveness. These
patterns manifest more sparsely in the drives with esoteric
distractions (cognitive and emotional), and more intensely in
the drive with physical distractions (sensorimotor). This is
consistent with previous findings, which documented that the
anterior cingulate cortex (ACC) manages subconsciously (and
effectively) the driving function when pure esoteric distrac-
tions are at play [8]. In the context of the SIM 1 dataset that
features straight highways and little traffic, this makes for a
smooth ride. ACC, however, fails in its function when physical
distractions are introduced [8], resulting in lane deviations for
which the driver needs to take corrective action, resulting in
acceleration adjustments and significant steering corrections,
all of which drive up the aggressiveness factor.

The model draws on two types of variables to perform
its machine learning and prediction functions - physiological
variables from the imaging and wearable sensors, and driving
variables from the vehicle’s computer. To quantify the relative
usefulness of each type of variable, we ran a comparative
experiment feeding the model once with the physiological
variables, once with the driving variables, and once with both.
Figure 7 shows the results, confirming the valuable role of
the physiological variable set, especially in the prediction
of distractions, where it outperforms the driving variable
set, with the exception of sensitivity. The combined set of
variables (physiology + driving) nearly always outperforms
each individual set, suggesting a level of complementarity.
This outcome supports previous findings regarding the use

Fig. 7. Relative contribution of the physiological and driving features to the
model’s performance.

of physiological and performance variables for classifying
cognitive workload during driving [34].

In support of open science, we made available an application
in R that visualizes predictions vs. ground truth per subject and
experimental session.3 This application also gives quantitative
estimates of the model’s success per case.

V. DISCUSSION

This research produced a model that alerts drivers when
dangerous driving behaviors of habitual nature appear to
take hold. The work is motivated by the increasingly grim
statistics of crashes due to distractions, as well as the tedious
commutes in metropolitan areas that tend to throw drivers
into absent-mindedness or aggressive responses. In the near
future, the aim is for the system to act either as a behavioral
orthotic, or as a quantitative risk assessment tool for insurance
companies. Further down the line, when vehicles with Level 3
and Level 4 automation become reality, such a system could
factor in the machine’s decision to wrest control of the vehicle.

The model uses physiological and driving variables within
a machine learning context to issue fast track (FT) predictions
for distracted or aggressive driving every 10 seconds. These
predictions are based on the evolution of the physiological and
driving variables the past 30 seconds. While for aggressive-
ness FT predictions are the final predictions, for distractions,
FT predictions serve as hidden intermediary indicators that
are weighed over a minute to form a meta prediction. This
more deliberative approach addresses the intermittent patterns
of distractions. Such patterns can lead FT predictions to
misdiagnose a pause in a period of distracted driving as
the end of it, resulting in frequent on/off alert switching.
Hence, in classification terms, FT predictions result in lower
sensitivity. In practical terms, FT predictions undermine the
driver’s trust to the system, exhausting her/his good will.

This investigation documented that both physiological and
driving variables play a key role in predicting distractions
and aggressiveness; their combination nearly always improves
classification results. This is partly due to the complementary
nature of these two variable sets - the physiological set excels
in accuracy and PPV, while the driving set is strong in terms
of sensitivity and NPV (Fig. 7).

3https://georgepanagopoulos.shinyapps.io/ForecastRoadBehavior/
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Regarding the feasibility and practicality of the system,
the core portion of it is immediately implementable in current
Level 2 vehicles. All the driving parameters the method
uses (i.e., steering angle and acceleration) are recorded by
the computer of a typical Level 2 vehicle. Regarding the
physiological variables, some are recoverable from the drivers’
smart watches (i.e., heart rate), which are connected to the
vehicle’s computer via Bluetooth. Some other more exotic
physiological variables, such as perinasal perspiration from
thermal imaging, have not been commoditized yet. However,
extrapolating the price drop in thermal imaging sensors the
last decade, it is almost certain that such measurements will
be commoditized by the time Level 3 and Level 4 vehicles are
on the streets.

Using physiological variables to detect the affective state of
drivers goes back in time [35]. However, combining physio-
logical with driving variables is much less common. Further-
more, in comparison with other prior work [34], the present
method has the advantage of being subject independent. It also
relies on a sizable, well-abstracted, and validated dataset that
includes both esoteric and physical distractions [8]. This is in
contradistinction to the typically small, ad-hoc (i.e., one type
of distraction), and non-validated datasets upon which other
methods were trained and tested [36].

One limitation of the current dataset is with respect to
aggressive driving incidents. Such incidents are scant because
the SIM 1 study design that produced the data was focused
on distracted driving. As a result, the aggressive driving
prediction method is trained on highly unbalanced data and the
resulting sensitivity is low. To appreciate how the sensitivity
of the aggressive driving predictor would scale up in a more
appropriate dataset, one has to look at the sensitivity of the
distracted driving predictor in the present dataset. Irrespective
of this, the specificity of the system is excellent, which means
that the method may be missing some aggressive driving
events, but whenever it issues aggressive driving notifications,
is almost always right. Consequently, the method will appear
trustworthy to the driver, which is key to acceptance and
behavioral modification.

All in all, the presented distracted and aggressive driving
prediction models demonstrated very good performance in
state of the art controlled experiments. Future enhancements
would benefit from testing on a naturalistic dataset, where
other factors, such as weather and traffic conditions, would
need to be incorporated into the models. The incorporation of
additional sensory measurements from drivers’ smartphones
also hold promise [37], although relevant validated datasets
are for the moment in short supply. Last but not least, future
investigations should also focus on sharpening the machine
learning aspects of the method. In this respect, long short-term
memory neural networks [38] could result in higher accuracy.
Multi-task learning is also worth exploring. Several researchers
have employed multi-task learning models to overcome cross
subject generalization problems [39].
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