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Stress and productivity patterns 
of interrupted, synergistic, and 
antagonistic office activities
Shaila Zaman1, amanveer Wesley  1, Dennis Rodrigo Da Cunha Silva2, Pradeep Buddharaju1, 
Fatema akbar3, Ge Gao4, Gloria Mark3, Ricardo Gutierrez-Osuna2 & Ioannis Pavlidis  1*

We describe a controlled experiment, aiming to study productivity and stress effects of email 
interruptions and activity interactions in the modern office. The measurement set includes multimodal 
data for n = 63 knowledge workers who volunteered for this experiment and were randomly assigned 
into four groups: (G1/G2) Batch email interruptions with/without exogenous stress. (G3/G4) Continual 
email interruptions with/without exogenous stress. To provide context, the experiment’s email 
treatments were surrounded by typical office tasks. The captured variables include physiological 
indicators of stress, measures of report writing quality and keystroke dynamics, as well as psychometric 
scores and biographic information detailing participants’ profiles. Investigations powered by this 
dataset are expected to lead to personalized recommendations for handling email interruptions and a 
deeper understanding of synergistic and antagonistic office activities. Given the centrality of email in 
the modern office, and the importance of office work to people’s lives and the economy, the present 
data have a valuable role to play.

Background & Summary
Modern office work is the backbone of the economy1, defining the careers and lives of many people2. Naturally, 
productivity3 and well being4 at the office has received a lot of attention from the research community. In this 
context, interruptions of office tasks5 and their effects6 have been studied extensively both experimentally7 and 
in-situ8. Interruptions can arise in different forms, such as phone calls and face-to-face exchanges; for over a dec-
ade now social media and text messaging have been added into the mix. Email, however, remains a key source of 
interruptions in office work.

Email’s main effects and interactions with other office tasks, taking into account personality profiles, are 
under-explored. This is especially true when effects are not restricted only to productivity but extend to include 
workers’ stress levels measured in real-time. Here, we describe an experiment to provide comprehensive answers 
regarding the role of email interruptions. This experiment and the associated dataset have three unique aspects:

 1. They afford the study of email use patterns that interact with ubiquitous office stressors, and how these 
interactions are modulated by individual characteristics. Most other studies treat email use in isolation and 
ignore profiles of office workers.

 2. They afford second by second study of workers’ stress responses during the experimental manipulation. 
These stress responses are recorded through five different physiological sensing channels - all acquired 
unobtrusively via imaging or wearable devices.

 3. They combine keystroke dynamics, written/oral content, and facial video. These information channels 
synergistically support investigations into participant emotions9–12, triggered by the experimental stressors.

Moreover, because the email treatments were designed in the midst of other representative office tasks to 
provide context, this study offers opportunities to investigate behaviors across a broader spectrum of information 
work activities. Examples of such investigations afforded by the data include:

1computational Physiology Laboratory, University of Houston, Houston, USA. 2Perception, Sensing, and 
instrumentation Laboratory, texas A & M University, college Station, USA. 3Department of informatics, University 
of california, irvine, USA. 4college of information Studies, University of Maryland, college Park, USA. *email: 
ipavlidis@uh.edu

Data DeSCRIPtOR

OPeN

https://doi.org/10.1038/s41597-019-0249-5
http://orcid.org/0000-0003-4028-5496
http://orcid.org/0000-0001-8025-2600
mailto:ipavlidis@uh.edu


2Scientific Data |           (2019) 6:264  | https://doi.org/10.1038/s41597-019-0249-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

 1. How synergistic activities contrast with antagonistic activities. The experimental design provides for report 
writing free of exogenous considerations vs. report writing burdened by anticipation for an upcoming 
presentation.

 2. How people cope with delivery of critical presentations when they are prepared vs. when they are 
unprepared.

Importantly, the dataset features a comprehensive array of measurement channels and ancillary media. Many 
of these channels and media are multidimensional (e.g., videos), constituting an interrelated collection of long 
data ripe for machine learning. Hence, it is a rich resource for the scientific community to perform not only 
hypothesis-driven but also exploratory research. The dataset is also expected to serve as a benchmark while com-
munication forms continue to evolve - e.g., future office studies may replace email with a social network app, such 
as Slack (Slack Technologies, Inc., https://slack.com), referring back to the current study for comparison.

Analyzing a subset of the data presented in this paper, we reported in CHI’1913 that for neurotic individuals 
batched email is more stressful than continually incoming email. This is in contradistinction to commonly held 
views that batched email is uniformly preferable to instantaneous servicing of emails14. The CHI ’19 work gives a 
small flavor of the dataset’s potential for consequential behavioral and ergonomic research.

Methods
Ethics statement. The experimental procedures were approved by the Institutional Review Boards 
(IRB) of the Texas A&M University (protocol # IRB2017-0271D), the University of Houston (protocol # 
STUDY00000343), and the University of California, Irvine (protocol # IRB2017-3637). The authors performed 
these procedures in accordance with the approved guidelines, obtaining informed consent from each participant 
before conducting the experiments. In the consent form, the participants were given two explicit data use & 
release options, for which a separate signature was required:

OPTION A. Participants that selected this option consented both to the research use and public release of all 
their experimental data, including video data bearing identifying information.

OPTION B. Participants that selected this option consented to the in-house research use of all their experimen-
tal data, but did not consent to the public release of experimental data bearing identifying information. Hence, 
this excluded from the public version of the dataset the facial and operational theater videos of these participants.

Participants. We recruited participants from the Texas A&M University (pop. 68,000), the University of 
Houston (pop. 45,000), and the University of California, Irvine (pop. 33,000) communities. Calls for participation 
were disseminated through email solicitations, portals, and flyer postings. We restricted admission to individuals 
whose native language was English or were bilingual, had at least high-school education, and were at the age of 18 
or above. A total of 96 participants conforming to the inclusion-exclusion criteria volunteered for the study. Raw 
data for n = 33 participants were not properly recorded due to technical issues. Raw data for n = 63 participants 
were nearly complete, constituting our working set; 28 of these participants signed for OPTION A, while 35 for 
OPTION B.

Experimental setup. We carried out the study in three office rooms, each located in one of the participating 
campuses. The experiments in these offices were conducted by personnel trained the same, using identical sys-
tems and layouts (Fig. 1a). During the experimental sessions, the systems continuously imaged the participants’ 
faces with a thermal and visual camera. An additional visual camera angled down from the ceiling was imaging 
the participants’ desktop area. The systems were also capturing the screen and keystrokes of the participants’ 
computer, while two wearable devices were relaying the participants’ physiological signals. A detailed description 
of each system component follows.

Thermal facial camera. A Tau 640 long-wave infrared (LWIR) camera (FLIR Systems, Wilsonville, OR), featur-
ing a small size (44 × 44 × 30 mm) and adequate thermal (50° mK) and spatial resolution (640 × 512 pixels). It 
is outfitted with a LWIR 35 mm lens f/1.2, controlled by a custom auto-focus mechanism. The camera is located 
under the participant’s computer screen (Fig. 1a), attached to Bescor MP-101 Motorized Pan & Tilt Head (Bescor, 
Farmingdale, NY) to facilitate face tracking. Thermal facial data are collected at a frame rate of 7.5 fps or higher. 
We use these thermal facial sequences to extract perinasal perspiration signals, known to commensurate with 
electrodermal (EDA) activity in the palm15.

Wrist EDA & heart rate sensors. An E4 wristband device (Empatica Inc., Milano, Italy) that collects EDA and 
heart rate measurements from participants’ non-dominant hand (Fig. 1a). EDA is measured via E4’s silver (Ag) 
electrode (valid range [0.01–100] μS), while heart rate is measured via E4’s photoplethysmographic (PPG) sensor. 
The E4 wristband is powered by a rechargeable lithium battery and transmits data to the system’s computer via 
Bluetooth (Fig. 1b).

Chest breathing & heart rate sensors. A Zephyr BioHarness 3.0 device (Zephyr Technology, Annapolis, MD) 
that measures participants’ breathing rate and heart rate. The device has the form of a chest strap that is worn 
underneath the participant’s clothing (Fig. 1a). BioHarness is powered by a rechargeable lithium polymer battery 
(up to 26 h per charge) and transmits data to the system’s computer via Bluetooth (Fig. 1b). It can reliably measure 
breathing rate in the range [4–40] BPM, while heart rate in the range [40–140] BPM.
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Visual facial camera. A Logitech HD Pro - C920 camera (Logitech, Newark, CA) with spatial resolution 
1920 × 1080 pixels and a frame rate of 30 fps. It is located 1 m from participants, tucked atop their computer 
screen (Fig. 1a). Appropriate lens zooming for the said distance ensures participants’ faces fit well in the field of 
view. Such tight fit provides sufficient resolution for analysis of facial expressions.

Visual operational theater camera. A Logitech Brio camera (Logitech, Newark, CA) with spatial resolution 
1280 × 720 pixels and a frame rate of 30 fps. It is located 2 m from the participant’s desktop, tucked into the ceiling 
and angled downwards (Fig. 1a), in order to record hand activity.

Fig. 1 Experimental setup and system architecture. (a) Experimental setup. The specific setup is from the 
University of Houston site; mirror setups existed at Texas A&M University and the University of California, 
Irvine. (b) Experimental system architecture. Information channels acquired by the system and participant 
computers are archived in the Amazon cloud.
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System computer. A Dell Lattitude E5570 laptop computer, featuring an Intel DualCore i7–6600U 2.6 GHz pro-
cessor, 16 GB RAM, and 500 GB hard disk. This laptop hosts the main thread of S-Interface, that is, the software 
that performs synced data acquisition from sensors (Fig. 1b). The acquired data are curated at the end of each 
experiment and archived in the Amazon cloud.

Participant computer. A Dell OptiPlex 7050 desktop computer, featuring an Intel QuadCore i7–7700 3.6 GHz 
processor, 16 GB RAM, and 1 TB solid state disk. The computer is connected to a Dell U2417H-Ultrasharp 24 in 
display. Participants use this computer to perform the assigned tasks per the experimental design (Fig. 1a). In fact, 
an automated interface guides participants step by step through the experimental process to enforce precise pro-
tocol execution. Another piece of software, a clone of S-Interface, acquires and curates screen capture recordings 
and participant input (Fig. 1b). Screen capture recordings are effected through S-Interface calls on VisioForge’s 
Software Development Kit (SDK). Participant input includes biographic/psychometric questionnaires, emails/
reports, and keystroke dynamics. All curated data are archived in the Amazon cloud.

Experimental design. To establish individual profiles, all participants complete a biographic questionnaire, 
the Big Five Inventory, the Emotion Regulation Questionnaire, and the Perceived Stress Scale. In the core exper-
iment, participants undergo five treatments. Treatments and information given to participants differ in parts 
depending on the group they are assigned. Specifically, participants are randomly assigned to four groups in a 
2 × 2 factorial design. There are two factors: Email Mode and Anticipatory Stressor. Each factor has two levels: 
Email Mode {Batch, Continual} × Anticipatory Stressor {High, Low} = {BH (n = 15), BL (n = 14), CH (n = 17), 
CL (n = 17)}. The Continual level is characterized by a pseudo-periodic arrival of emails throughout the main 
session, involving a writing task, while the Batch level is characterized by simultaneous delivery of all the emails 
towards the beginning of the session. The Anticipatory High Stressor is implemented by forewarning participants 
about an upcoming presentation. The Low Stressor group is spared such anticipation. The treatments are applied 
in the following order:

Resting baseline (RB). Participants take a deep breath, close their eyes, and think of something relaxing for 
4 min. The purpose of this session is to bring participants’ arousal close to their tonic levels, so it could be used as 
a normalizing anchor for the physiological measures taken during the treatments. The tonic level of arousal differs 
significantly among people, something that is reflected in the physiological readings. Hence, absolute physiologi-
cal measurements during treatments are not reliable stress indicators for participants; what matters is how much 
their arousal has increased with respect to their characteristic tonic level.

Single task (ST). Participants have 5 min to write a short report expressing their opinions on the subject of com-
petition vs. collaboration. This session allows participants to warm up for the subsequent writing session, and 
provides a baseline of writing skills for each participant.

Priming (PM): Stroop OR relaxing video (RV). This session occurs directly before the main writing session 
in order to reinforce arousal for the Anticipatory High Stressor group, while subduing arousal for the Low 
Anticipatory Stressor group. Priming for the Anticipatory High Stressor group is implemented via 5 min of the 
Stroop color word test, while priming for the Anticipatory Low Stressor group is implemented via 5 min of view-
ing a relaxing natural landscape video.

Dual task (DT). This is the main writing session. Participants are asked to write a report on the topic of tech-
nological singularity (i.e., when machines overtake human intelligence). Participants in the two Anticipatory 
High Stressor groups are told that they have to present their report to a panel of judges at the end of the session. 
Participants are given 50 min to compose the report, during which they also have to respond to eight emails (sec-
ondary task). In the Batch group, the eight emails arrive 10 minutes after the start of the DT, and participants have 
5 min to start replying to them. In the Continual group, individual emails arrive every 4 min (on average), and 
participants have 10 s to start replying to each email. If participants do not start their reply within the transitional 
time allotted, the interface shifts into the email page in order to ensure consistency across participants of the same 
email group (Batch or Continual). Five emails ask for opinion/advice and three are scheduling tasks. The order of 
the emails is randomized. At the end of DT, participants complete the NASA TLX questionnaire to gauge psycho-
metrically the loading induced by the experiment’s main treatment.

The emails, the DT report prompt, and the ST report prompt are available in the Supplementary Information 
file. We chose the DT and ST report topics so that they are of interest to knowledge workers and require careful 
thought. The five opinion/advice email prompts were chosen from a pilot study on MTurk, where an original 
selection of 30 emails were presented to 270 workers on the platform. Each email was presented to 9 different 
MTurk workers who were asked to compose a reply as if they worked for a company. Then, we selected the five 
emails that generated the highest mean word count in replies.

Presentation (PR). At the end of DT, all participants are asked to deliver a 5-minute oral presentation in front 
of a panel of three judges, who attend remotely (via Skype). In fact, this is a pre-recorded video with actors that 
gives the impression of a live session. As a result, both realism and stimulus consistency are maintained across the 
participant sample. Public speaking is an example of a Trier Social Stress16 - a stimulus of stronger intensity with 
respect to the milder report stressors designed in this experiment. Hence, in addition to serving as an anticipatory 
stressor for the BH and CH groups, the presentation session also acts as an upper bound of stress for all groups, 
facilitating additional validation of our measurement methods.
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Computation. Algorithmic processing of the thermal imagery yields a signal that quantifies perinasal per-
spiration. The algorithm includes a virtual tissue tracker that keeps track of the region of interest, despite partici-
pants’ small head motions. This ensures that the thermophysiological signal extractor operates on consistent and 
valid sets of data over the clip’s timeline.

Thermal imaging - tissue tracking. We use the tissue tracker reported by Zhou et al.17. On the initial frame, the 
experimenter initiates the tracking algorithm by selecting the participant’s perinasal region. The tracker estimates 
the best matching block in every next frame of the thermal clip via spatio-temporal smoothing. A visual example 
of the tissue tracking operation is shown in the TOP row of Supplemental Fig. S1.

Thermal imaging - perinasal perspiration signal extraction. In facial thermal imagery, activated perspiration 
pores appear as ‘cold’ (dark) spots, amidst ‘hot’ surrounding tissue. A morphology-based algorithm is applied 
on the measurement region of interest (MROI) to compute the perspiration signal15; MROI refers to the upper 
orbicularis oris portion of the tracked perinasal tissue. The MIDDLE row of Supplemental Fig. S1 shows the 
evolving thermal signature of perspiration spots in the MROI of participant T005, as she undergoes moments 
of low and high arousal. The said algorithm quantifies the manifested spatial frequency pattern, extracting an 
energy signal E(k, j), indicative of perspiration activity in the perinasal MROI of participant k, for treatment 
j (BOTTOM panel of Supplemental Fig. S1). Any high-frequency noise in this signal is suppressed by a Fast 
Fourier Transformation (FFT) filter.

Data Records
The data are freely available on the Open Science Framework (OSF)18. The OSF repository has quantitative data, 
textual data, and ancillary media organized participant-wise; it also holds the custom software tools and other 
material we used to acquire these data.

Quantitative data folder. The quantitative data folder holds four comma separated value (csv) files, as well 
as the voluminous thermal imaging data: (1) Questionnaire Data - 5 KB. (2) Physiological Data - 21.8 MB. (3) 
Keyboard Data - 42.7 MB. (4) Report Data - 13.9 KB. (5) Thermal Imaging Data - 1.86 TB.

The first two columns of the csv files hold the participant ID and group, respectively. The participant ID is 
coded as Txyz, while the group assignment takes values from the set [BH, BL, CH, CL]. The remaining csv columns 
are specific to the corresponding type of data; their description follows.

Questionnaire data file. In the Questionnaire Data file, in addition to the columns holding the participant 
ID (Column A) and group information (Column B), there are columns holding biographic data (Columns C - K) 
and other columns holding scores from psychometric inventories (Columns L - Y). Specifically:

Column C: Age: Age of participants in years.
Column D: Gender: Gender of participants [1 ≡ Male, 2 ≡ female].
Column E: Nationality: Nationality of participants [1 ≡ United States, 2 ≡ Others].
Column F: Other_Nationality: Nationality of non-U.S. participants.
Column G: Native_Language: Mother tongue of participants [1 ≡ English, 2 ≡ Others].
Column H: Other_Native_Language: Mother tongue of bilingual participants.
Column I: Education: Educational level of participants [1 ≡ High School, 2 ≡ Undergraduate, 3 ≡ Master or 

equivalent, 4 ≡ PhD, JD, or equivalent].
Column J: Writing_Proficiency: Self-reported writing proficiency of participants in a seven-point Likert 

scale, where 1 ≡ Not fluent at all and 7 ≡ Very fluent.
Column K: Daily_Email_Frequency: Self-reported daily use of email in a seven-point Likert scale, where 

1 ≡ Never and 7 ≡ Very often.
Big Five Inventory (BFI) - A trait psychometric related to the participant’s key personality factors19. It has 

five sub-scales.

•	 Columnn L: BFI_Agreeableness: The level of participant’s friendliness with score range [9–45].
•	 Column M: BFI_Conscientiousness: The level of participant’s organized nature with score range [9–45]
•	 Columnn N: BFI_Extraversion: The level of participant’s outgoing nature with score range [8–40].
•	 Column O: BFI_Neuroticism: The level of participant’s nervousness with score range [8–40].
•	 Column P: BFI_Openness: The level of participant’s curiosity with score range [10–50].
•	 Emotion Regulation Questionnaire (ERQ) - A trait psychometric related to the participant’s ability to reg-

ulate emotions20. It has two sub-scales.
•	 Column Q: ERQ_Cognitive_Reappraisal: The degree to which a participant can change the way s/he thinks 

about emotion-eliciting events with score range [6–42].
•	 Column R: ERQ_Expressive_Suppression: The degree to which a participant can change the way s/he 

responds to emotion-eliciting events with score range [4–28].
Column S: Perceived Stress Scale (PSS): Level of non-specific perceived stress of participants with score 
range [0–40]. This is a trait psychometric that predicts health-related outcomes associated with appraised 
stress21.
NASA TLX - A state psychometric administered upon completion of DT to gauge the perceived loading 
this task induced to participants. NASA TLX22 features six sub-scales with common rating [1 = Strong-
ly disagree, 2 = Disagree, 3 = Somewhat disagree, 4 = Neither agree or disagree, 5 = Somewhat agree, 
6 = Agree, 7 = Strongly agree].

•	 Column T: NASA_Mental_Demand: Perceived mental load induced by DT.
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•	 Column U: NASA_Physical_Demand: Perceived physical activity induced by DT.
•	 Column V: NASA_Temporal_Demand: Perceived time pressure induced by DT.
•	 Column W: NASA_Performance: Perceived success in executing DT.
•	 Column X: NASA_Effort: Perceived amount of work expended to achieve the said level of DT performance.
•	 Column Y: NASA_Frustration: Perceived level of irritation in performing DT.

Physiological data file. In the Physiological Data file, in addition to the columns holding the participant ID 
(Column A) and group information (Column B), there are columns holding treatment information, task informa-
tion, timing, and signal data from the various sensing modalities used in the experiment. The recordings of the 
physiological sensors were synced. Hence, each row from left to right holds the time and the synced set of modal 
signal values recorded at that time. The temporal resolution is fixed at 1 s across the board to match the slowest 
physiological channels Chest BR and Chest HR. The main data repository18 holds the quality controlled values of 
the physiological variables (_QC). The raw variable values and the R code that operates upon them to implement 
the processes described herein, reside in GitHub (Zaman, S. & Pavlidis, I. Office-Tasks-2019-Methods. GitHub 
https://github.com/UH-CPL/Office-Tasks-2019-Methods). In more detail:

Column C: Treatment: The treatment during which each set of modal signal values was recorded.
Column D: Time: The recorded date and time for each set of modal signal values.
Column E: Treatment_Time: The time elapsed in seconds since the start of the present treatment.
Column F: Task: Labeling of email vs. report writing activity during DT.
Column G: PP_QC: Values of the perinasal perspiration signal in °C2.
Column H: EDA_QC: Values of the EDA signal in μS, measured with E4 in the wrist of the participant’s 

non-dominant hand.
Column I: BR_QC: Values of the breathing rate signal in BPM, measured with the BioHarness in the partic-

ipant’s chest.
ColumnJ: Chest_HR_QC: Values of the heart rate signal in BPM, measured with the BioHarness in the par-

ticipant’s chest.
Column K: Wrist_HR_QC: Values of the heart rate signal in BPM, measured with E4 in the wrist of the par-

ticipant’s non-dominant hand.

Keyboard data file. In the Keyboard Data file, in addition to the Columns holding the participant ID 
(Column A), group information (Column B), treatment information (Column C), time information (Column 
D), and task information (Column E), there are columns holding keystroke information. Specifically:

Column F: Is_Key_Up: 0 stands for key depressed, while 1 stands for key released.
Column G: Key: Alphanumeric code of the key that is either released or depressed.

Report data file. In the Report Data file, in addition to the columns holding the participant ID (Column 
A), group information (Column B), and treatment information (Column C), there are Columns holding report 
length measures, writing quality measures by the e-rater scoring engine of the Educational Testing Service 
(ETS)23, and usage measures for the delete keys.

Column D: Word_Count: The number of words in the report.
Column E: Character_Count: The number of characters in the report.
Column F: Criterion_Score: The overall report quality score given by the e-rater.
Column G: Mechanics_Errors: Number of mechanics errors in the report, such as spelling errors; it is pro-

vided by the e-rater.
Column H: Grammar_Errors: Number of grammar errors in the report, such as subject-verb agreement 

errors; it is provided by the e-rater.
Column I: Usage_Errors: Number of usage errors in the report, such as article errors; it is provided by the 

e-rater.
Column J: Style_Errors: Number of style errors in the report, such as repetition of words and very short or 

very long sentences; it is provided by the e-rater.
Column K: Delete_Key_Count: The number of times the backwards and forward delete keys were depressed 

during the writing of the report. This information is extracted from the Keyboard Data file.
Column L: Mechanics_Errors/WC: The number of mechanics errors divided by the number of words in the 

report.
Column M: Grammar_Errors/WC: The number of grammar errors divided by the number of words in the 

report.
Column N: Usage_Errors/WC: The number of usage errors divided by the number of words in the report.
Column O: Style_Errors/WC: The number of style errors divided by the number of words in the report.
Column P: Delete_Key/CC: The number of times the backwards and forward delete keys were depressed 

during the writing of the report, normalized per the report length in characters.

Thermal imaging data subfolder. This subfolder contains the facial thermal imaging sequences acquired 
during experimentation via the S-Interface24. These sequences can be used for extraction of additional physiolog-
ical indicators, such as breathing signals25, the re-extraction of perinasal perspiration signals, or other computer 
vision research. The files holding the thermal imaging sequences are in a binary format called .dat. Each .dat file is 
accompanied by a text file .inf. The header of each .inf file has three numbers: (1) The number of thermal frames 
contained in the corresponding .dat file. (2) The width of each thermal frame. (3) The height of each thermal 
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frame. The body of each .inf file contains the timestamps of all thermal frames contained in the corresponding 
.dat file. The S-Interface uses.inf files to properly open the corresponding .dat files and process them.

Textual data folder. Reports and emails file. This Excel file holds the ST (Column C) and DT (Column D) 
reports of participants, as well as the eight emails they wrote (Column E to Column L); its size is 124.8 KB.

Ancillary media folder. Facial videos. Visual videos of participants’ faces during experimentation. They 
are in mp4 format named as Txyz-FV.mp4; their total size is 53.6 GB.

Operational theater videos. Visual videos of participants’ desktop area during experimentation. They are in mp4 
format named as Txyz-OTV.mp4; their total size is 53.6 GB.

Computer screen videos. Visual videos of participants’ computer screen during experimentation. They are in 
mp4 format named as Txyz-CSV.mp4; their total size is 69.1 GB.

Thermal MROI videos. Videos of participants’ perinasal MROI extracted through the S-Interface. The PP signals 
are computed upon these MROIs. The said videos are in mp4 format named as Txyz-MROI.mp4; their total size 
is 3.05 GB.

Tools folder. This folder contains the interfaces, applications, and videos needed to reproduce the present exper-
iment and collect additional data. Specifically: (a) p-Interface for executing the experimental protocol; (b) Stroop 
application for stress priming in the BH and CH groups; (c) natural landscape video for relaxation priming in 
the BL and CL groups; (d) panel of judges video delivered to participants during the presentation treatment; (e) 
Survey Gizmo links for delivery of the experiment’s questionnaires. The only experimental tool that is missing is 
the S-Interface, which is held on a general purpose repository24, as it is software with broader applicability.

technical Validation
To ensure the soundness of the data, we carried out the following operations: (1) Quality control of study varia-
bles. (2) Experimental validation of study variables. We conducted hypothesis testing against a one tail-alternative 
in the NASA-TLX sub-scales and a two-tail alternative in all other cases; levels of significance were set at α = 0.05 
designated by *, α = 0.01 designated by **, or α = 0.001 designated by ***. In physiological and performance 
variables we applied paired t-tests, with logarithmic corrections if the corresponding distributions had an expo-
nential structure. In a few cases where normality assumptions were violated but variables did not have an expo-
nential structure, we applied paired Wilcoxon signed-rank tests.

Quality control of study variables. Biographic variables. Supplemental Fig. S2 shows distributions of 
biographic variables for the study participants. Supplemental Fig. S2a indicates that the great majority of the 
participants were young adults (23.75  ±  8.76 yr). This dovetails with Supplemental Fig. S2e, which reveals that 
the great majority of the participants were undergraduate students. Supplemental Fig. S2b shows that among the 
participants 45 were female (F) and 18 were male (M). We did not control for gender and thus the sample is not 
balanced, but still features a reasonable mix (70% F vs. 30% M). As an educated cohort of individuals, the partic-
ipants appeared highly confident about their writing proficiency (Supplemental Fig. S2c). In addition, the over-
whelming majority of the participants declared either frequent or very frequent use of daily email (Supplemental 
Fig. S2d). Since the experiment calls for report writing interspersed with email use, writing proficiency and email 
use are important participant attributes for a meaningful study. Hence, the biographic makeup of the participants 
is highly consistent with the intent of the experimental design.

Psychometric variables. We screened participants psychometrically via three inventories. Across the sub-scales 
of these inventories participant distributions feature a healthy spread (Supplemental Fig. S3), suggesting the pres-
ence of useful variability. Specifically:

•	 Big Five Inventory or Big 5 - Supplemental Fig. S3a. It measures five personality traits: agreeableness 
(detached vs. friendly), conscientiousness (careless vs. organized), extraversion (reserved vs. outgoing), neu-
roticism (confident vs. nervous), and openness (cautious vs. curious). Of particular interest in this experi-
ment are conscientiousness, extraversion, and neuroticism traits. Indeed, organizational skills may play some 
role in the way people manage multi-tasking, while different extraversion and neuroticism levels may affect 
participant responses in the presentation task. The agreeableness distribution is at 35.39  ±  5.01 in a sub-
scale that can range from 9 to 45; thus, it is shifted towards the high-end of the sub-scale, indicating that the 
majority of participants were agreeable individuals. The conscientiousness distribution is at 31.28  ±  5.41 in a 
sub-scale that can range from 9 to 45. The extraversion distribution is at 26.08  ±  6.53 in a sub-scale that can 
range from 8 to 40. The neuroticism distribution is at 22.11  ±  4.71 in a sub-scale that can range from 8 to 40; 
thus, it is centered near the middle of the sub-scale and characterized by absence of extremes, which would 
have confounded physiological responses. The openness distribution is at 37.41  ±  5.94 in a sub-scale that can 
range from 10 to 50; thus, it is shifted towards the high-end of the sub-scale, indicating that the majority of 
participants were open individuals.

•	 Emotion Regulation Questionnaire or ERQ - Supplemental Fig. S3b. It measures cognitive reappraisal and 
expressive suppression. The experimental design provides for four groups: Two groups (BH, CH) are told 
from the beginning they need to give a presentation after DT, while the other two groups (BL, CL) are advised 
about the presentation directly before the PR phase of the experiment. Hence, the ability to reframe an antic-
ipated stressful situation in the first case, or deal with its surprising announcement in the second case, may 
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affect participant responses and performance. Cognitive Reappraisal is at 32  ±  5.46 in a sub-scale that can 
range from 6 to 42; thus, it is shifted towards the high-end of the sub-scale, indicating a cohort of participants 
capable of controlling emotions via reframing. Expressive Suppression is at 14.34  ±  5.08 in a sub-scale that 
can range from 4 to 28.

•	 Perceived Stress Scale or PSS - Supplemental Fig. S3c. It measures how stressful the respondents find their 
lives. The PSS distribution is at 17.13 ± 5.68 in a scale that can range from 0 to 40; thus, it is centered toward 
the middle of the scale and characterized by absence of extremes that would have confounded physiological 
responses.

At the end of DT and prior to PR, we asked participants to complete the NASA Task Load Index (TLX) to 
measure the loading induced by the experiment’s main treatment. For the sub-scales of the NASA-TLX index, 
the score ranges are as follows: Mental Demand [1–7]; Physical Demand [1–7]; Temporal Demand [1–7]; 
Performance [1–7]; Effort [1–7]; Frustration [1–7]. Ranks from 1 to 4 indicate various degrees of trivial perceived 
loading, while ranks from 5 to 7 indicate various degrees of substantial perceived loading. For Performance, 
loading refers to sense of success. In Supplemental Fig. S4 the left column of plots shows the distributions of the 
responses in the seven-point Likert scales, while the right column shows the distributions of these responses 
when clustered in trivial vs. substantial loading subgroups. Testing if substantial loading are significantly larger 
than trivial loading subgroups suggests that the great majority of participants perceived DT as mentally challeng-
ing (p < 0.001, test of proportions in Mental Demand), for which they expended significant effort (p < 0.001, test 
of proportions in Effort), under time pressure (p < 0.001, test of proportions in Temporal Demand). These results 
confirm the success of the experimental design, which meant for DT to simulate a consuming office task. At the 
same time, the participants felt that did not expend any significant physical effort (p > 0.05, test of proportions 
in Physical Demand) - it was sedentary work after all. The participants also found the task to be non-frustrating 
(p > 0.05, test of proportions in Frustration).

Physiological variables. These variables constitute a set of peripheral physiological indicators of arousal that 
track levels of stress. The set includes perinasal perspiration, wrist EDA, breathing rate, and chest/wrist heart rate 
signals. We use up to two levels of quality control in curating data from physiological channels. Quality control 
level 1 (QC1) indicates the application of a specification filter. In the case of signals from physiological probes, 
their values are checked to ascertain they are within the specification range given by the sensor manufacturer. 
Signals that are found to have values out of range are discarded from the set. In the case of signals extracted algo-
rithmically from physiological imagery, the image quality is examined to ascertain conformance to algorithmic 
assumptions.

In certain physiological channels, where additional information empowers a more detailed screening, quality 
control level 2 (QC2) follows QC1. In some instances, QC2 involves removal of signals plagued by excessive high 
frequency noise, which escaped algorithmic or electronic filtering. For the most part, however, QC2 takes place 
when there is a redundant channel modality, enabling congruency tests. A case in point is the presence of two 
synchronized heart rate channels in the dataset, one associated with a chest sensor and the other with a wrist sen-
sor. Where temporally matched measurement pairs from such redundant channels are found to be incongruent, 
the most plausible values are kept, while their cross-modal paired measurements are discarded. Plausibility is 
assessed on the basis of background physiological knowledge and experimental context.

Perinasal perspiration signals. The left column of Supplemental Fig. S5 depicts the algorithmically extracted 
perinasal perspiration (PP) signal sets (see Methods section), while the right column depicts the down-selected 
PP signal sets after the application of quality control. Perspiration signal extraction from thermophysiological 
imagery is morphological in nature, quantifying the presence of active perspiration pores, which are tiny in size; 
thus, it critically depends on sharp focusing. Focus quality in facial thermal imaging sequences is assessed on 
the basis of edge contrast between the participants’ (cold) eyebrows and the surrounding (hot) tissue. We found 
that only two of the 314 PP signals were extracted from improperly focused thermal imagery; these signals were 
removed from the dataset.

EDA signals on wrist. Supplemental Fig. S6 shows the participants’ wrist EDA signals per treatment. The left 
column of this figure depicts the original signal sets, while the right column depicts the down-selected signal sets 
after the application of two levels of quality control. The first level of quality control (QC1) is based on valid range 
checking - it removes signals featuring at least one value outside the range [0.01,100] μS. Values outside this range 
violate the E4’s EDA sensor specification, suggesting weak electrodermal signal26 or other abnormality. We found 
5.19% of the wrist EDA data to be below 0.01 μS; we found no EDA data to be above 100 μS. The said invalid 
values were spread over 54 signals, which were removed from further consideration. The second level of quality 
control (QC2) scans for patterns of excessive high frequency noise, suggestive of poor wristband fitting. We found 
five EDA signals to exhibit such patterns and removed them from the dataset (Supplementary Information: EDA 
graphs for T011-PM, T011-ST, T011-DT, T064-ST, and T096-DT).

Breathing rate signals on chest. Supplemental Fig. S7 shows the participants’ breathing rate signals per treatment. 
The left column of this figure depicts the original signal sets, while the right column depicts the down-selected 
signal sets after the application of quality control. Quality control, in this case, is based on valid range checking 
(QC1) - it removes signals featuring at least one value outside the range [4, 40] bpm. The Zephyr BioHarness 3.0 
device cannot measure reliably breathing rates outside this range. Moreover, extreme breathing rates are unlikely 
for sitting subjects that are under mild to moderate stress. We found 0.22% of the breathing rate data to be below 
4 bpm, while we did not find any data to exceed 40 bpm. These invalid values were spread over 12 signals, which 
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were removed from further consideration. Breathing rate measurements in Zephyr BioHarness 3.0 are more 
resilient to disruptions with respect to heart rate measurements by the same device. This is due to the piezoelec-
tric nature of the breathing sensor, where breathing signal formation tracks the expansion and contraction of the 
chest’s circumference. This operational principle ameliorates the effect of poor fitting and posturing, as measure-
ment failures require significant strap deformation or detachment.

Heart rate signals on chest and wrist. Supplemental Figs S8 and S9 show the heart rate signals measured on the 
participants’ chest (via BioHarness) and non-dominant wrist (via E4), respectively. The left columns of these 
figures depict the original signal sets, while the right columns depict the down-selected signal sets after the appli-
cation of quality control. Quality control in these cases proceeds in two stages - range checking (QC1) followed 
by cross-modality checking (QC2).

QC1 The first stage of quality control is based on valid range checking (QC 1) - it removes signals featuring 
at least one value outside the range [40, 140] bpm. The Zephyr BioHarness 3.0 device cannot measure reliably 
heart rates outside this range. Moreover, extreme heart rates are unlikely for sitting subjects that are under mild to 
moderate stress. In Zephyr BioHarness 3.0 we found 9.90% of the heart rate data to be below 40 bpm and 0.01% of 
the heart rate data to exceed 140 bpm. These invalid data values were spread over 33 signals, which were removed 
from further consideration. One additional signal was removed because of a preponderance of missing values. In 
E4 we found no heart rate data to be below 40 bpm, while we found 0.11% of the data to exceed 140 bpm. These 
suspect data values were spread over seven signals, which were removed.

Overall, problems were of small to moderate scale and consistent with wearability limitations for BioHarness 
and E427. Interestingly, violations of the lower bound were found exclusively in the chest heart rate signals, while 
violations of the upper bound were found only in the wrist heart rate signals. The distribution of the failure modes 
can be explained by the different measurement principles and body locations associated with the BioHarness and 
E4 heart sensors. The BioHarness performs heart rate measurements based on electrophysiological sensing and 
is sensitive to electrode detachment, which is likely in the thoracic area when participants crouch; it leads to cata-
strophic failures (see zero drops in Supplemental Fig. S8). E4 performs heart rate measurements based on plethys-
mography and is sensitive to probe contact force; overtight or loose wristbands lead to unreliable measurements. 
Even when the wristbands are loose, however, they do not result into loss of signal (no zero drops in Supplemental 
Fig. S9), because the heart rate measurements are effected via light beams - not electrodes.

QC2 The redundancy in heart rate measurements affords the opportunity of a second stage quality control. 
Mean heart rate measurements on the chest and wrist should not be significantly different within participant 
and treatment - after all, people have only one heart! Hence, cross-modality comparisons can detect incongruent 
measurement pairs. A study of these incongruent pairs can identify the modality at fault in each case, leading to 
the removal of erroneous signals.

In this direction, we studied how chest heart rate data regress on the corresponding wrist heart rate data. In 
the QC1 sets, we found significant association but no high linear correlation between the two modalities (p = 0, 
r = 0.514, Pearson correlation) - Fig. 2a1. Next, we studied the multinormal distribution of |ChestHR−WristHR| 
(Fig. 2a2) that quantifies the modes of agreement/disagreement between the two modalities. All secondary nor-
mal modes in the region |ChestHR−WristHR| > 10 contain noisy measurements that reduce the strength of the 
linear relationship between chest and wrist heart rate. We focused our attention on the normal modes occupying 
the tail region |ChestHR−WristHR| > 15.5, inspecting the 21 outliers contained therein. We determined that in 
all 21 cases the wrist heart rate was in error. The prevalent pattern was apparent overestimation by the wrist heart 
sensor in resting baseline (RB) and priming (PM) sessions. In these non-stressful treatments, E4 was reporting for 
certain participants heart rate measurements in excess of 100 BPM, featuring waveforms with aberrant variance 
- all telltale signs of an unsettled wristband. Examples of erroneous wrist heart rate signals that fall under the said 
pattern include T019-RB, T031-RB, T031-PM, T035-RB, and T035-PM (see Supplementary Information). We 
removed all such faulty measurements and recomputed the regression, revealing this time high linear correlation 
between the chest and wrist modalities (p = 0, r = 0.865, Pearson correlation) - Fig. 2b1.

Unavoidably, setting the cutoff threshold at 15.5 (instead of 10) in the probability distribution function (PDF) 
left a small amount of noise in the heart rate data (Fig. 2b2), which is hard to remove without introducing other 
errors. Indeed, as the absolute difference of the paired mean heart rate measurements gets smaller, entering the 
region 10 < |ChestHR−WristHR| ≤ 15.5, it becomes difficult to discern which modality is at fault.

Overview of quality control outcomes on physiological variables. Figure 3 depicts the probability density func-
tions (PDF) for each physiological channel before and after quality control; the key treatments are included in 
each graph. In certain cases, the beneficial effect of quality control is evident. For instance, in Chest HR, the long 
left tails of the distributions in the original signal sets (left Chest HR panel) were removed (right Chest HR panel). 
At the same time, the stressful effect of presentation came into sharper focus, as its mean Chest HR moved further 
away from the means of the other treatments (right vs. left Chest HR panel).

Although prior to precise analysis, physiological measurements need to be normalized within participants to 
factor out inter-individual variability, the non-normalized PDF trends in the right column panels of Fig. 3 can 
provide soundness cues. Indeed, these trends need to conform to common-sense expectations with respect to the 
effects of the experimental design. In the current experiment, the mean arousal level in the resting baseline (RB) 
is expected to be the lowest, the mean arousal level in the presentation (PR) is expected to be the highest, and the 
mean arousal levels in the two writing treatments (ST and DT) are expected to be in-between. In this sense, the 
PP trends fully conform to expectations, suggesting a high quality physiological channel. In contradistinction, 
the wrist EDA channel presents non-sensical trends, which is worrisome but consistent with other reports in the 
literature26. The breathing rate channel captures well the stress effect of the writing treatments with respect to 
the resting baseline, but gives a non-sensical result for the presentation. In contrast, the two heart rate channels 
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capture well the high stress effect of the presentation, but give an unclear picture regarding differences between 
the writing treatments and the resting baseline.

The complementarity between the heart rate and breathing rate variables could be abstracted in terms of task 
characteristics. Heart rate performs well in moderate office stressors with an emotional component, such as office 
presentations. The latter is fortunate, because tasks that involve speech are outside the operational envelope of 
the breathing rate channel, due to interference of speech respiratory patterns28. By contrast, heart rate performs 
poorly in mild office stressors of a cognitive nature (e.g., report writing), where thankfully breathing rate excels. 
This success of the breathing rate channel can be explained as follows: Cognitive tasks at the office are bereft of 
physical activity, and thus metabolic rate of office workers during report writing is defined by energy consump-
tion in the brain. Respiration tracks metabolic rate29 and in turn breathing rate tracks respiration.

An additional cardiac variable that is considered a good tracker of sympathetic activation is heart rate varia-
bility (HRV)30. In this experiment HRV is measured via the BioHarness. HRV is expressed in various metrics31. 
Quality control and validity analysis of RR - the most fundamental HRV metric - is presented in Supplementary 
Information, suggesting that HRV mirrors the information provided by the Chest HR channel.

Performance variables - report scores and keystrokes. Two key office tasks in this experiment are the reports 
required of the participants in ST and DT. Hence, performance in these reports constitutes an important set of 
response variables. We scored the participant reports using the Educational Testing Service (ETS) e-rater scoring 
engine23. For each report, the e-rater produces a holistic score, called criterion score, which rates overall quality 
of writing. The e-rater also provides scores for four key writing traits - mechanics, grammar, usage, and style 
errors. Moreover, report content is entered using the keyboard, with keystroke information being captured in the 
Keyboard Data file. We can use this dynamic information to cross-check the static information in the report text, 
as manifested by the e-rater scores.

In Fig. 4, the distributional differences between ST and DT in word counts (WC), character counts (CC), crite-
rion scores, mechanics errors, and style errors are visually apparent. To confirm these visual impressions we resort 
mostly to rank tests instead of t-tests because nearly all the distributions violate normality assumptions, as is also 
evident by their skewed or multinormal shape. In fact, we perform paired Wilcoxon signed-rank tests (rather than 
pooled Wilcoxon signed-rank tests), to safely account for inter-individual differences. Such hypothesis testing 
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suggests the DT reports of participants have significantly higher quality than their ST reports (p < 0.001, paired 
Wilcoxon signed-rank test).

The two key differences between ST and DT lie in the absence vs. presence of multi-tasking and the limited 
vs. comfortable amount of report time, respectively. In ST, participants had only report writing to contend with, 
but they had to finish in 5 minutes. In DT, participants had to respond to emails while working on the report. 
Nevertheless, the session was longer, leaving them at least 20 minutes for report composition. These significantly 
different times resulted in significantly different report lengths. As Fig. 4 shows, DT reports have significantly 
larger mean word and character counts than ST reports (p < 0.001, paired Wilcoxon signed-rank test and t-test, 
respectively). The variances of word and character counts also differ significantly between ST and DT. There is 
only so much one can write in 5 minutes, resulting in short reports with similar lengths for ST (low variance). 
Given extra time in DT, several people take advantage of it writing significantly lengthier reports, while others do 
not (high variance).
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For mechanics, grammar, usage, and style errors the e-rater reports absolute counts. To put these counts 
into perspective, we normalize them with respect to the corresponding report length, measured in number 
of words (Fig. 4). In this context, the participants perform significantly more mechanics errors in DT reports 
(p < 0.001, paired Wilcoxon signed-rank test), while they commit significantly more style errors in ST reports 
(p < 0.001, paired Wilcoxon signed-rank test). Given that we normalize for report length, one would expect that 
mechanics errors remain invariant within participants, as is the case for grammar and usage errors (p > 0.05, 
paired Wilcoxon signed-rank test in both cases). This would likely have been the case if the participants used a 
standard modern editor, such as Microsoft Word. However, because the participants used a basic editor without 
spell-checking capability, the mechanics errors result makes sense, adding to the validity of the data.

The error-ridden style in ST also makes sense, as participants did not have the time in that short session to 
thoughtfully style their sentences. This assertion is nicely supported by the dynamic information contained in 
the Keyboard Data file. As the last panel in Fig. 4 indicates, participants made far more extensive use of the delete 
keys in DT vs. ST (p < 0.001, paired Wilcoxon signed-rank test). Apparently, this extensive editing activity was 
funneled in restyling sentences, which dovetails with e-rater’s style scores.

Experimental validation of study variables. Initial soundness indications for each physiological chan-
nel suggested by aggregate and non-normalized PDF trends (Fig. 3), need to be rigorously checked through valid-
ity testing. We choose to perform such validation within group and within treatment to account for the nuances 
of the experimental design.

Validity of PP as a stress tracker. Let PP(Si, Gj, Tk) represent the perinasal perspiration signal of participant Si, in 
group Gj, for treatment Tk, where i ∈ {1, …, 63}, j ∈ {BH, BL, CH, CL}, and k ∈ {ST, Stroop, RV, DT, PR}, respec-
tively. In each group Gj, we normalize within participants the expected PP values by computing the distributions 
of paired differences between the participants’ mean PP in Tk and TRB:
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Equation (1) produces the boxplots in Fig. 5. The NULL hypothesis is that arousal within participants in 
treatments ST, Stroop, DT, and PR is no different than arousal in resting baseline RB. The results indicate that 
perinasal perspiration captures well the stressful effect of all these treatments across groups - a clear sign of a high 
quality data channel. Specifically, in ST (p < 0.05 or better, paired t-test in all groups); in Stroop (p < 0.05, paired 
t-test in all applicable groups); in DT (p < 0.01 or better, paired t-test in all groups); and in PR (p < 0.001, paired 
t-test in all groups).

Validity of EDA as a stress tracker. Let EDA(Si, Gj, Tk) represent the wrist EDA signal of participant Si, in group 
Gj, for treatment Tk, where i ∈ {1, …, 63}, j ∈ {BH, BL, CH, CL}, and k ∈ {ST, Stroop, RV, DT, PR}, respectively. 
In each group Gj, we normalize within participants the expected EDA values by computing the distributions of 
paired differences between the participants’ mean EDA in Tk and TRB:

µ µ∆ ⋅ = ⋅ − ⋅ .G T G T S G T SEDA EDA EDA( , , ) ( , , ) [ ] ( , , ) [ ] (2)j k j k j RB

Equation (2) produces the boxplots in Fig. 6. The NULL hypothesis is that arousal within participants in 
treatments ST, Stroop, DT, and PR is no different than arousal in resting baseline RB. The EDA results indicate 
that there was no significant elevation of arousal within participants for any of these treatments (p > 0.05, paired 
t-tests in all cases). This suggests that the EDA channel cannot track participants’ stress condition and its use in 
analytics with respect to this experiment should best be avoided.

One reason for EDA’s subpar performance is the small n numbers left in each group to partake in the validity 
tests. This is partly due to loss of data because of technical problems, and partly due to signal rejections in QC1. 
The latter took place because a significant number of signals exhibited values lower than the sensor’s specification. 
Taking also into account that these cases were characteristic of certain participants, suggests that a portion of the 
sample had very weak electrodermal responses in the wrist, where the E4 sensor was attached. This outcome is 
consistent with other reports in the literature26, leaving perinasal perspiration as the only viable cholinergic chan-
nel in the present experiment.

Validity of BR as a stress tracker. Let BR(Si, Cj, Tk) represent the breathing rate signal of participant Si, in group 
Gj, for treatment Tk, where i ∈ {1, …, 63}, j ∈ {BH, BL, CH, CL}, and k ∈ {RB, ST, Stroop, RV, DT, PR}, respectively. 
In each group Gj, we normalize within participants the expected BR values by computing the distributions of 
paired differences between the participants’ mean BR in Tk and TRB:
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Fig. 5 Experimental validity of the perinasal perspiration channel. It performs well across the board. We used 
the ln(⋅) transformation to comply with normality assumptions.
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Equation (3) produces the boxplots in Fig. 7. The NULL hypothesis is that arousal within participants in treat-
ments ST, Stroop, DT, and PR is no different than arousal in resting baseline RB.

The results indicate that breathing rate captures well the stressful effect of ST across groups (p < 0.001, paired 
t-test in group BH and p < 0.01, paired t-tests in groups BL, CH, CL). Breathing rate also captures the stressful 
effect of Stroop (p < 0.01, paired t-test in group BH and p < 0.05, paired t-test in group CH). In DT, the perfor-
mance of the breathing channel deteriorates, capturing stress effects only for groups BL and CL (p < 0.05, paired 
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Fig. 6 Experimental validity of the EDA channel. It performs poorly across the board. We used the ln(⋅) 
transformation to comply with normality assumptions.
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Fig. 7 Experimental validity of the breathing rate channel. It largely captures the stressful effect of ST and DT, 
but not of PR.
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t-tests in groups), while missing them in groups BH and CH (p > 0.05, paired t-tests in groups). The breathing 
channel altogether misses stressful effects in PR (p > 0.05, paired t-tests for all cases). This disappointing perfor-
mance in PR can be explained by breathing modulation incurred during speech. Hence, the BR channel should 
not be used in analytics with respect to the PR treatment. However, BR can be used in analytics with respect to 
all other treatments.

Validity of chest HR as a stress tracker. Let  Chest HR ≡ HRC(Si, Gj, Tk) represent the chest heart rate signal of 
participant Si, in group Gj, for treatment Tk, where i ∈ {1, …, 63}, j ∈ {BH, BL, CH, CL}, and k ∈ {ST, Stroop, RV, 
DT, PR}, respectively. In each group Gj, we normalize within participants the expected HRC values by computing 
the distributions of paired differences between the participants’ mean HRC in Tk and TRB:

∆ ⋅ = ⋅ − ⋅ .G T G T G THR HR HR( , , ) ( , , ) [BPM] ( , , ) [BPM] (4)j k j k j RBC C C

Equation (4) produces the boxplots in Fig. 8a1–d1. The NULL hypothesis is that arousal within participants in 
treatments ST, Stroop, DT, and PR is no different than arousal in resting baseline RB.

The results indicate that heart rate when measured in the chest captures well the stress effect of PR (p < 0.01, 
paired t-test in BH, paired Wilcoxon signed-rank test in CH and p < 0.05, paired t-tests in BL, CL). However, 
the chest heart rate performance is disappointing in all the other treatments. Specifically, it captures the stressful 
effect of ST only in one group (p < 0.001, paired t-test in BH), while misses it in the other three groups (p > 0.05, 
paired t-tests in BL, CL, paired Wilcoxon signed-rank test in CH). Similarly, it captures the stressful effect of DT 
only in one group (p < 0.01, paired t-test in BL), while misses it in the other three groups (p > 0.05, paired t-tests 
in BH, CL, paired Wilcoxon signed-rank test in CH). It altogether misses the stressful effect of Stroop (p > 0.05, 
paired t-test in BH, paired Wilcoxon signed-rank test in CH). Based on these results, the chest heart rate channel 
could be considered as a complementary adrenergic channel to breathing rate. Indeed, while the chest heart rate 
channel appears to be a valid stress tracker in presentation tasks, the breathing rate channel appears to be a valid 
stress tracker for most other office tasks, except those involving speech delivery.

Validity of wrist HR as a stress tracker. Let Wrist HR  ≡ HRW(Si, Gj, Tk) represent the wrist heart rate signal of 
participant Si, in group Gj, for treatment Tk, where i ∈ {1, …, 63}, j ∈ {BH, BL, CH, CL}, and k ∈ {ST, Stroop, RV, 
DT, PR}, respectively. In each group Gj, we normalize within participants the expected HRW values by computing 
the distributions of paired differences between the participants’ mean HRW in Tk and TRB:

∆ ⋅ = ⋅ − ⋅ .G T G T G THR HR HR( , , ) ( , , ) [BPM] ( , , ) [BPM] (5)j k j k j RBW W W

Equation (5) produces the boxplots in Fig. 8a2–d2. The NULL hypothesis is that arousal within participants in 
treatments ST, Stroop, DT, and PR is no different than arousal in resting baseline RB.

The wrist heart rate results indicate that there was no significant elevation of arousal within participants for 
any of these treatments (p > 0.05, paired t-tests in BH, CH, CL cases, paired Wilcoxon signed-rank test in BL 
case). This suggests that the wrist heart rate channel cannot track participants’ stress condition and its use in 
analytics with respect to this experiment should be avoided.

A likely reason for wrist heart rate’s subpar performance is the small n numbers left in each group to partake 
in the validity tests. This is partly due to loss of data because of technical problems, and partly due to signal 
rejections in QC2. As analyzed in an earlier section, the latter take place because some Wrist HR signals found to 
overestimate with respect to the corresponding Chest HR signals.

Usage Notes
Usage of S-Interface. The dataset includes both the thermal sequences (primary data), and the perinasal 
perspiration signals that were extracted from these sequences. If one is interested to extract the perinasal signals 
anew, s/he has to use the S-Interface software24, selecting the (outer) tracking and (inner) measurement region of 
interest (MROI) in the first frame of each .dat file. The perinasal MROI is bound at the top by the subject’s nostrils, 
at the bottom by the subject’s lips, and on the left and right sides by the ends of the subject’s mouth. Based on this 
initial selection, the tracker is capable of following up this tissue area for the duration of the session, giving the 
chance to the physiological signal extractor to operate on a valid data set. In rare instances, the tracker momentar-
ily fails. This happens when, for example, the participant performs a very abrupt head turn. The end result of such 
momentary failures are spikes in the perinasal signal. These spikes are removed by applying a noise-reduction 
algorithm reported in32. This algorithm is included in the S-Interface thermal imaging configuration. In even 
rarer instances, the tracker drifts away from the perinasal area. This typically happens when the subject has turned 
her/his head at an extreme angle and stayed there for some time. The user can reposition the tracker by simply 
clicking the mouse in the perinasal area. The tracker is restored and the signal extraction process resumes from 
that point onward on the right footing.

Usage of R scripts. In the paper’s GitHub repository (Zaman, S. & Pavlidis, I. Office-Tasks-2019-Methods. 
GitHub https://github.com/UH-CPL/Office-Tasks-2019-Methods), there is detailed description of the R scripts 
that generate out of the raw data the curated data and validate them. Analysts who are content with our quality 
control and validation processes can use the curated dataset in18. However, in case analysts are interested to 
extract more information form the raw data, they can resort to the GitHub repository (Zaman, S. & Pavlidis, I. 
Office-Tasks-2019-Methods. GitHub https://github.com/UH-CPL/Office-Tasks-2019-Methods) and intervene in 
the scripts. For example, some analysts may decide to not eliminate from consideration Chest HR signals with 
zero drops, but keep them after reducing their noise levels.
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Code availability
Data acquisition interface: We use S-Interface, a modular software system available on figshare24 that supports 
real-time data acquisition from sensors and computer peripherals. S-Interface’s imaging subsystem reads 
radiometric data from the thermal facial camera and applies certain operations on them to extract perinasal 
perspiration (PP) signals; it also acquires the facial and operational theater recordings from the visual cameras. 
S-Interface’s participant input subsystem captures the participants’ computer interactions. Specifically:

S-Interface’s imaging configuration runs on the system computer and includes:

1. The tracker plug-in (an implementation in C# of ref.17), which follows the participants’ perinasal area in the 
thermal imagery, nullifying the effect of head motion.
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Fig. 8 Experimental validity of the heart rate channels. (a1–d1) Experimental validity of the chest heart rate 
channel. It captures the stressful effect of PR, but largely misses it in ST and DT. (a2–d2) Experimental validity 
of the wrist heart rate channel. It performs poorly across the board.
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2. The perspiratory morphological signal extractor (an implementation in C# of ref.15), which operates upon 
the orthorectified perinasal MROI, yielding a signal commensurate to the extent of activated perspiration pores. 
This perspiration signal serves as a proxy of arousal.

3. The visual facial and operational theater plug-ins that capture the corresponding video streams.

S-Interface’s participant input configuration runs on the participant computer and includes:

1. The screen capture plug-in, which calls upon the VisioForge SDK to record the participants’ computer 
display.

2. The keyboard plug-in, which captures the participants’ interactions with the computer’s input device.

Protocol interface: To enforce consistency in the execution of the experiment and the delivery of the stressors, 
we developed a custom interface (p-Interface). The p-Interface implements the experimental protocol, guiding 
participants step by step through the designed treatments. Specifically, in the ST and DT treatments, the p-In-
terface presents to the participants a basic editor to write their reports. It also features a basic email client to 
deliver the email interruptions and allow participants to send back their responses. The p-Interface is written in 
Javascript and is available under the Tools folder in18.

Survey interface: We developed an interface to deliver questionnaires to participants and collect their 
responses. This survey interface is implemented via surveygizmo and is available under the Tools folder in18.

Stroop application: We wrote an application to deliver the Stroop color word test for the BH and CH groups. 
This application is presented to the participants from within the p-Interface. The Stroop application is written in 
Javascript and is available under the Tools folder in18.

Data curation, quality control, and validation scripts: We developed four sets of R scripts to curate, ensure 
quality control, and validate the raw data collected via the S-Interface and other tools in this project. Both the 
scripts and the raw data reside in GitHub (Zaman, S. & Pavlidis, I. Office-Tasks-2019-Methods. GitHub https://
github.com/UH-CPL/Office-Tasks-2019-Methods). The first set of scripts curates the raw data. The second set of 
scripts operates upon the curated data, performing the first level of quality control (QC1). The third set of scripts 
operates upon the QC1 data, performing a second level of quality control (QC2). The fourth set of scripts carries 
out validity tests on the QC2 data. The final outcomes of these script sets are the quality controlled data residing 
in18, as well as the statistical plots featured in the present manuscript and its Supplementary Information file. 
Some additional information about relevant practical issues can be found in33.
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