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Abstract: In this paper, we demonstrate that interventions and stressors do not necessarily cause the
same distractions in all people; therefore, it is impossible to evaluate the impacts of interventions
and stressors on traffic accidents. We analyzed publicly available multimodal data that was collected
through one of the largest controlled experiments on distracted driving. A crossover design was used
to examine the effects of actual and perceived interventions and stressors in driving behaviors and
parallel designs on reactivity to a startling event. To analyze this data and make recommendations,
we developed and compared a wide variety of mixed effects statistical models and machine learning
methods to evaluate the effects of interventions and stressors on driving behaviors.

Keywords: machine learning; data mining and statistical analysis; human behavior understanding;
driving with distraction

1. Motivation

Distracted driving has gained attention, especially after the introduction of smart-phones [1].
Many states in the United States have already introduced hand-free laws [2] to decrease possible
fatalities, since it is now widely viewed that distracted driving is an important problem that leads to
injuries and fatalities. Despite this overwhelming social consensus, it is hard to develop statistically
sound evidence that distracted driving, in fact, causes accidents. Even if we certainly know that
distracted driving causes accidents, it is still hard to identify what kind of interventions or stresses cause
distractions and what kind of distractions cause traffic accidents, injuries, and fatalities. A conceptual
framework was proposed [3] which incorporates an individual’s driving style with driving habits,
social norms, and cultural values. Sagberg et al. [3] also reviewed driving styles and road safety and
the individual and socio-cultural factors that influence driving styles.

While driving simulators allow for the examination of a range of driving performance measures
in a controlled and safe driving environment, no single driving performance measure can capture all
effects of distraction [4] and driver distraction is a multidimensional phenomenon. Virtual simulations
have been designed and used to study the effects of interventions (or stressors) on distracted driving [5–7].
Most of these works have mainly studied the impacts of the interventions and stress on changes in
the driver’s breath and heart rate in addition to lane deviation with mostly simple statistical methods.
Taggart demonstrated that driving in dense, fast-moving traffic raised the heart rate from the resting
range of 70–85 to 100–140 beats per minute regardless of age [5]. Casali demonstrated that the breath
rate erratically changes when the driver is agitated or distracted [6]. Jibo et al. found out that cognitive
load reduces the variability in the lane position of drivers [7].
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There is, therefore, a growing consensus that replacing human drivers with robot drivers (i.e.,
autonomous cars) could dramatically reduce traffic accidents and provide significant savings in
productivity lost and accident-related costs [8,9]. Even in 2006, Miller et al. indicated that humans
are poor drivers and that robots should be given a turn at the wheel [10]. There has been a number of
government reports [11–14] that attribute the majority of traffic accidents to human error, although the
oft-cited 93% can be an exaggeration as Smith [15] indicated.

Robot drivers are expected to be better than human drivers for three reasons: they have superior
(1) sensory and (2) computational powers, and they demonstrate (3) rational behavior [9]. Robots have
super-human sensory powers such as spherical vision, dark vision, and non-visual sensors. Moreover,
they have superior computational power since they can rely on much faster signal transmission
and processing. They can react and decide faster than humans; it has been shown by studies that
humans’ reaction speed is limited to about 1.5 s, which translates to 37 m—about 120 feet—at highway
speeds [16,17]. Humans, in addition, can potentially be irrational; they can retaliate against others,
text, talk on the phone, put make up on, fall asleep at the wheel, or solve math problems, which can
distract them and can further reduce their reaction times [8,9].

To make this problem more complicated, human and robot drivers are not viewed equally under
current law practice. Greenblatt observed that we apply design-defect laws for robots, and we apply
ordinary negligence laws for humans [9]. Therefore, in current practice, a robot driver will be held
liable even under circumstances where a human driver who took the same actions would not be held
liable [9]. To change current laws, Greenblatt further indicated that there is a need for convincing
arguments to treat robot and human drivers equally [9].

Despite the sound-looking arguments presented in different studies that we stated earlier, it is
still hard to formally prove that rational and super-power robots would cause fewer accidents than
humans, even though the claim of the irrationality of the human driver is not strongly based from
causality point of view [18–20]. Pearl, the founder of causality, exactly pointed out this issue in a recent
interview by observing that “[robots] need a model of the underlying causal factors [to be comparable
with human intelligent]” [21]. Although studies have suggested that the majority of traffic accidents
are due to human error, we do not have clear expectations of what kind of advances in the power
of robot drivers are needed to consider autonomous cars to be safer than human-driven cars [22].
Research on distracted driving could probably provide an insight into problems related to causality.

These causality problems are important, especially for the development of appropriate policies
and laws to reduce traffic-related injuries and fatalities for both robot and human drivers [23,24].
Since we do not currently monitor all actions of human drivers or have solid data for robot drivers, it is
hard to study either of these two problems [20]. Some car companies, such as Jaguar, are planning to
monitor the brainwaves, breath, and heart rate of human drivers during driving to identify if a driver
is tired or distracted [25]. Such data could eventually be used to directly evaluate the impact of human
distraction during driving on traffic accidents, injuries, and fatalities.

Note that the results in refs. [4–7] do not demonstrate a causality relationship between distracted
driving and traffic accidents. They only demonstrate that there is a correlation between interventions
and indications of distractions such as the driver’s heart rate. In other words, we have no clear evidence
towards the existence of some possibility that distracted driving causes traffic accidents. If there really
exists a causality relation, this is really a significant problem for policymakers and lawmakers, since
they cannot convince the public to develop appropriate policies to reduce traffic-related injuries and
fatalities. Therefore, there is a need for more scientific studies with advanced statistical or machine
learning methods that can provide some satisfactory answer to the public.

2. Introduction

In this work, we provide a scientific study with advanced statistical and machine learning
methods to explain the relation between distracted driving and traffic accidents and to provide some
illumination to this causality problem. Our statistical analysis is based on one of the most detailed
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studies on distracted driving that was obtained by virtual simulations [26]. This study provides a
significantly large multimodal dataset that includes a no distraction (ND) drive and three type of
distracted drives: driving under cognitive, emotional, and sensorimotor interventions (or stressors).
See Figure 1 for representative scenes of virtual simulations of no distraction and distracted drives.
This dataset provides recorded observations that enable modeling and detailed analysis of the effects of
interventions on driving. We, therefore, were able to evaluate the data with a wide variety of advanced
statistical techniques, including mixed effects statistical models and machine learning methods.

(a) (b)

Figure 1. The structure of virtual simulation: (a) No distraction drive; (b) Distracted drive. In this
scene, the distracted drive image shows three types of interventions and stressors that can introduce
distraction: texting while driving (see picture-in-picture), solving simple arithmetic operations (see
though bubble), and road hazards (see cones).

In the rest of the paper, we avoid using the term “distracted driving”, since it is not a neutral
term to define the effect of interventions. The workload is another related term that was developed
to evaluate human performance by Hart and Wickins [27,28], according to our research in related
fields. Instead, we prefer to use the term “stressor”, since interventions are also called stressors [29].
Normal driving already introduces stress to human drivers. Any cognitive, emotional, or sensorimotor
intervention or stressor is expected to increase this stress [30,31]. In other words, distracted driving
is better to be called driving with increased stress. Our analysis of driving with increased stress deals
mainly with answering two types of questions: (1) Which type of interventions and stressors increase
stress? (2) Which type of interventions and stressors cause poorer driving performance.

We introduce an explanatory and model-based analysis to demonstrate that the same intervention
does not necessarily affect every driver’s stress level in the same way. We further observe that this
is really independent of gender or age. The same intervention that increases the stress level of some
people does not increase the stress level of others. This result is actually expected based on other
studies [27,28,32]. For instance, mental tasks that cause changes in the cognitive load used in this
experiment include subtracting two numbers. This is not really an important stress for people who are
good at number crunching. On the other hand, it can be a significant stress for people who rely on a
calculator for even simple calculations. Therefore, it is not surprising that stress is not correlated with
interventions, gender, or age. We observe that there is some correlation between breathing and heart
rate with age, which can be explained by the fact that our physiological abilities diminish with age.

This is clearly not good news for policymakers who may want to apply the same criteria for
everybody. Our results suggest that every individual is different and it is not possible to develop
umbrella policies that apply to all human drivers. Therefore, instead of focusing on interventions,
it may be better to focus on physiological stress which may correlate with the driver’s performance.
Monitoring brainwaves, breath, and heart rate during driving to identify if the driver is tired or
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distracted, as planned by some car companies [25], could be an effective tool to identify actual driving
performance. Collecting such big data will especially be useful to directly evaluate the real impacts of
the physiological workload on driving performance and accidents, injuries, and fatalities. It could,
then, be possible to develop methods to counter the effects of physiological stress.

It is also important to note that our results do not indicate that increased stress does not necessarily
cause traffic accidents. We still strongly believe that most traffic accidents are caused by increased
stress (also called distracted driving). Our results simply suggest that interventions do not necessarily
cause the same impact of stress on all drivers; therefore, it is impossible to evaluate the impact of stress
on traffic accidents.

The rest of the paper is organized as follows. In the next section, we discuss the basic details of the
publicly available multimodal dataset and issues related to formatting and data loading. In addition,
we briefly explain the data processing process. In Section 4, we provide our analysis and discuss our
results. Section 5 presents the discussion, conclusions and future work.

3. The Dataset

In this paper, we used a publicly available dataset which was obtained as a result of controlled
experiments on distracted driving using the driving simulator shown in Figure 2 [26,33,34]. For these
controlled experiments, the subjects were recruited from a local community (population about 250,000)
through email solicitations and flier postings. All subjects had a valid driving license and had normal
or corrected to normal vision. The admission was restricted to individuals with at least one and a half
years of driving experience who were between 18 and 27 years of age (young) or above 60 years of age
(old). If the subjects were on medications affecting their ability to drive safely, they were excluded.
Seventy-eight subjects, after the inclusion-exclusion criteria, volunteered for the study, whereas one
subject quit in the middle of the experiment because of motion sickness, and 9 subjects were not
recorded properly due to technical issues. That is why 68 subjects completed the experiment. The age
and gender composition of the analyzed dataset was balanced for male and female and also for the
young and old cohorts. For more details about this dataset, please refer ref. [33].

Figure 2. Driving simulator.

To obtain the observations for this multimodal dataset, 68 volunteers drove on the same highway
under four different conditions: no distraction (ND), cognitive distraction (CD), emotional distraction
(ED), and sensorimotor distraction (MD) (See Figures 1 and 2). The experiment closed with a special
driving session, in which all subjects experienced a startle stimulus in the form of an unintended
acceleration—half of them under a mixed distraction and the other half in the absence of a distraction.
This last special driving session was called failure drive (FD). During the experimental drives, key
response variables and several explanatory variables were continuously recorded. The variables in
the collected data included speed, acceleration, brake force, steering, lane position signals, perinasal
electrodermal activity (EDA), palm EDA, heart rate, breathing rate, and facial expression signals as
well as eye tracking data. This dataset enables research into driving behaviors under neatly abstracted
distracting stressors. In this work, we used the variables that have been found to be important in the
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literature or have been statistically shown to be important, so not all drives or variables were used for
our analyses.

3.1. Two Controlled Experiments in Failure Drive

Two different controlled experiments were run using the driving simulator to obtain this
multimodal dataset, as explained in references [26,33,34]. Experiment 1 was based on a crossover
design repeated measures design, such that each experimental unit (subject) received different
treatments (stressor) during the different time periods. This experiment was not statistically sound,
as multiple applications of the startle would have incurred diminishing physiological or emotional
responses to the frequently repeated stressor. This is why Experiment 2 followed a parallel group
design which is a better alternative and is called a non-crossover or between subject design. In parallel
group design, the stressors are applied simultaneously to separate groups of subjects, whereas in a
crossover design, each subject gets the stressors in sequence.

Experiment 1 has followed a crossover design where all subjects underwent all treatments,
including stress-free driving (control), on the same segment of highway and in similar traffic/weather
conditions. This provided data for all four drives (ND, CD, ED, and MD). The distraction order was
randomized to improve the practice effect. The purpose was to account for intra-individual differences.

Experiment 2 followed a parallel group design, with nearly half of the subjects assigned to the
non-loaded group, while the other half were assigned to the loaded group; both groups followed the
same itinerary under similar traffic/weather conditions. The non-loaded group had a stressor-free
drive throughout the itinerary, towards the end of which they experienced the startling event.
The loaded group had a stressor-free drive only in the first portion of the itinerary; in the second
portion of the itinerary, the loaded group subjects were experiencing a strong stressor of mixed nature.
As in the case of the non-loaded group, the startling event took place towards the end of the itinerary,
and this time, the mixed stressor was in effect. In other words, only two types of drives were provided:
ND, now called non-loaded drive, and all others, i.e., CD, ED, and MD were called loaded drives.

In both experiments, towards the end of the drive, all subjects had to wait at a red light at an
intersection. Prior to the green signal, a vehicle malfunction resulted in an unintended acceleration
incident, propelling the car forward and putting it on a collision course with another car that had
entered the intersection.

3.2. Data Loading and Formatting

The multimodal dataset included baseline (BL), practice drive (PD), relaxing drive (RD) and failure
drive (FD: Experiment 1 and also in 2) conditions [33], but we only used the data from the failure drive,
as we found it more interesting. The drives—normal or no distraction drive (ND), cognitive drive
(CD), emotional drive (ED) and sensorimotor drive (MD) were randomized and blocked by gender
and age groups in Experiment 1. In Experiment 2, the failure drive was based on FDL (loaded) and
FDN (non-loaded) [33].

Data for all physiological and performance variables were obtained for all driving sessions for
each participant (when available) from the R-Friendly Study dataset published by the authors on
their data site [33]. R [35] is a programming language and free software environment for statistical
computing and graphics that is supported by the R Foundation for Statistical Computing and was
used in this study. There were neither heart rate, nor breathing rate data available for the failure drive
(FD) for two of the 68 subjects (subjects 32 and 88), and no performance variable data for two other
subjects (subjects 2 and 34), so the other subjects’ data were used for analyses.

CERT software (Version 1, Machine Perception Laboratory - University of California, San Diego,
CA, USA) [36] was used to record facial expressions (anger, contempt, disgust, fear, joy, sad, surprise,
neutral) of the subjects during each of the driving sessions. Facial expression signals (FACS) were
reported in the structured data directory of the data site [33], and were not available in the R-Friendly
Study dataset. The facial expression signals were extracted for all participants for the failure drive
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(when available) and merged with the physiological and performance variables. Facial expression
signals were not available in three of the 68 subjects (subjects 45, 46 and 68). Given the data availability
from the different sets, there was a complete final dataset for 60 of the 68 subjects.

3.3. Data Processing

Although the raw data seemed to have been cleaned, there was still a significant number of outliers
for most of the variables (given the valid ranges provided). Outliers were removed and normality was
visually assessed in the “cleaned” variables (See Figure 3b). No outliers were removed from the FACS
variables given that they had been normalized. Using histograms and normal reference plots, it was
determined that heart rate, breathing rate, and lane offset were approximately normally-distributed
(See Figure 3b) in both experiments.

(a)

(b)

Figure 3. Histogram and normal probability plots of heart rate, breathing rate, and lane offset in
Experiments 1 (a) and 2 (b) that demonstrate a Gaussian distribution.

Transformations were not very effective for the other variables as they were highly skewed.
We decided to move forward with heart rate, breathing rate, and lane offset as response variables in both
experiments. All original variable names were preserved. The subjects, interventions, stressor types
(ND, MD, CD, ED in Experiment 1 and FDL vs. FDN in Experiment 2) and facial expressions as a result
of FD which involves FDL and FDN in Experiment 2 were used. Because of the overwhelming disgust
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facial expression signal, it was necessary to look at different clusters dominated by different signals.
To determine the clusters, we used the Hiearchical Cluster Analysis (HCA) [37], and the results of the
HCA are discussed in Section 4. We need to emphasize that the inclusion of the facial expressions
created more interesting data for Experiment 2; however, Experiment 1 was still important to allow us
to draw sound conclusions.

Before moving into modeling and prediction, it was also useful to look at the effects of gender,
age, and distmode (stressors) on the heart rate, breathing rate, and lane offset. The box plots from
Experiment 1 (See Figure 4a) show that (i) females and males do not seem to differ much in their
breathing rate behaviour but seem to behave in opposite directions for heart rate and lane offset;
(ii) there seem to be differences between old and young individuals whereby the direction of the
difference in lane offset was reversed compared to the other two; and (iii) among the loaded drives,
sensimotor drives consistently showed slightly higher values than the other three distractors. The box
plots from Experiment 2 (See Figure 4b) show that (i) females and males do not seemed to differ much
in their behaviors for all variables; (ii) there seem to be differences between old and young individuals
whereby the direction of the difference in lane offset was reversed compared to the other two; and (iii)
among the drives, loaded drives consistently showed higher values than non-loaded drives, and the
difference lwas larger for heart rate.

(a)

(b)

Figure 4. Box plots that demonstrate the effects of gender, age, and stressors in Experiments 1 (a) and 2 (b).
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4. Analysis and Results

In this section, we provide the analysis and results. In the first and second subsections, we present
the statistical analyses of Experiment 1 and Experiment 2, respectively.

4.1. Advanced Mixed Effect Analysis of Experiment 1

We previously looked at the explanatory data analysis and behaviour of the variables with gender,
age, and stressors in the earlier sections. In this section, we explain the advanced linear mixed effect
model to predict changes in lane offset, breath, and heart rate. The linear mixed effects model that we
have used in this case has the following form:

yijklm = µ + αi + bj(i) + γk + τd(i,k) + ζl + ξm + (τξ)dm + (τζ)dl + (ζξ)lm + (τζξ)dlm + εijklm (1)

where y represents the heart rate or breath rate or lane offset depending on the model. α, b, γ, τ,
ζ, ξ, and ε are the notations for the sequence of drives, drivers nested in sequences, time period,
interference, age group (young or old), gender (male or female), and random error, respectively.
There were two-way and three-way interactions in which the notations were combined. Subscripts
(i, j, k, d, l, m) refer to the number of levels or observations depending on whether the related variable
included the observations or groups (levels). We included the interactions to demonstrate if the results
changed jointly depending on the stressors, age, and gender.

The random sequence of drives for all subjects explained the variability in the model six times
more than unexplained variability according to significant (95% confidence level) model for heart rate.
This gives us some kind of assurance to indicate that we successfully eliminated any possible biases
that may have arisen in the experiment causing us to incorrectly draw conclusions.

The interactions between gender, age, and interference types in predicting the lane offset, breath,
and hearth rate were also found to be significant (95% confidence level) model. These interactions
were even more significant (smaller probability of finding more extreme results when the joint effect
was not there) in breath and heart rates compared to lane offset. In the explanatory data analysis
shown in Figure 4a, MD was associated with a slightly higher median breath rate compared to ND,
CD, ED, whereas the median of MD was similar to the others in regard to heart rate and lane offset.
This advanced statistical model show the same effects of stress in different age groups and genders.

We also confirmed the explanatory data analysis results shown in Figure 5 with the model
relationship. Both results indicated many inconsistencies that do not suggest causal relationships.
We know list some of these inconsistencies. Figure 5a shows that the mean heart rate of young females
did not increase during texting. In other words, the stress of young females stayed the same while
texting, which is counterintuitive. It is even more interesting that the stress for young males increased
texting during the MD drive. At the same time, Figure 5b further shows that stress decreased for
young males during the ED drive. Similarly, for both old females and males, stress decreased during
ED, as shown Figure 5e. To make matters worse, the driving performances of both young and old
drivers, as shown in Figure 5c,f, seem to be inconsistent which suggests they are independent of the
interventions. These observations further demonstrate the difficulty of proving causality relationships
between interventions and driving performance.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Interaction plots obtained by the mixed effects model presented in Equation (1), where the
top plots are the younger drivers and the bottom plots are the older drivers. (a) Mean heart rate for
young group. (b) Mean breathing rate for young group. (c) Mean lane offset for young group. (d) Mean
heart rate for old group. (e) Mean breathing rate for old group. (f) Mean lane offset for old group.
In these plots, the solid blue lines refer to males and the dotted red lines refer to females.

4.2. Advanced Mixed Effect Analysis of Experiment 2

The main differences between Experiments 1 and 2 are (i) facial expressions could be included,
and (ii) we only had loaded versus non-loaded drives instead of normal drive, cognitive drive,
emotional drive, and sensorimotor drive in the second experiment. At the end, the drives included a
collusion path that would usually result in a traffic accident [26].

The main issue in dealing with facial expressions is that the recorded eight main facial expressions
do not clearly provide information to determine stress, since some of the facial expressions appeared
excessively and are questionable in the data. For example, we found out that the disgust expression,
which is usually used to determine stress, was overwhelming in the data, as shown in Figure 6a.
When we overlooked this and tried to model the data, we ended up with unreasonable models. The
literature indicates that disgust can be confused with other negative facial expressions, like anger
[38], so we decided to investigate if we could further cluster the facial expressions to provide more
conclusive information about stress.

We, therefore, ran the Hierarchical Cluster Analysis to determine the different facial experiment
clusters. We observed a significant jump in clustering distance for six clusters and identified that
the use of six facial clusters, rather than eight facial expressions, was sufficient to represent stress,
as shown in Figure 6b. It turned out that contempt or surprise were not necessary to obtain these
clusters. Therefore, six out of eight facial expressions were sufficient to account for over 90% of the
variability in the data according to hierarchical clustering with an average linkage of facial expression
signals (See Figure 6b).
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(a) (b)

Figure 6. Original facial expressions and our hierarchical clustering. (a) Distribution of original
facial expression signals that demonstrate that disgust is the dominated expression; (b) Compound
dendogram that provides the compound correlated data of our facial expression clusters obtained by
the Hiearchical Cluster Analysis (HCA) analysis [39].

Looking at the explanatory boxplots of heart rate, breathing rate, and lane offset data shown in
Figure 7, clusters 1, 2, 4, and 5 are similar clusters. It is interesting to note that despite this similarity,
these four clusters were dominated by different facial expressions. Namely, cluster 1 was dominated
by high disgust signals, cluster 4 was dominated by high anger signals with some disgust signals,
cluster 5 was dominated by sad expressions with some anger or disgust signals, and cluster 2 was
dominated by neutral signals. The similarity between anger and disgust reactions was not unexpected.
In fact, this similarity was observed earlier by Pochedly et al. [38]. It is important to note that
clusters 3 (dominated by high joy signals) and 6 (more fear and some sad) were the ones with the
fewest number of observations. By evaluating these findings, we emphasize that only three combined
expressions are crucial for heart rate, breath rate, and lane offset. Those three combined expressions are
anger + disgust, joy, and fear + sadness. Since the hierarchical clustering recommends six clusters, we
used this information for modeling instead of our observations on the cluster boxplots (See Figure 7).

(a) (b) (c)

Figure 7. Heart rate (a), breathing rate (b), and lane offset (c) boxplots for each cluster.

Moreover, looking at the raw lane offset data shown in Figure 7c, all clusters had similar variability
with the highest median occurring in cluster 3, whereas the cluster 6 had the highest median heart
rate. Breath rate had similar high medians in clusters 1, 2, 4, and 6. Again, looking at these results,
it is possible to infer the existence of interesting causality relationships [19,40]. For instance, according
to the data, the lane offset may possibly cause fear and sadness along with an increased heart rate.
In other words, fear, sadness, and increased heart rate can be considered to be the outcomes of lane
offset. This suggests some kind of self-awareness, as also discussed by Leary [41,42] in the literature.
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On other hand, joy was not related to lane offset. By itself, it was able to cause an increase in heart rate.
In this case, heart rate can be considered to be an outcome of joy. This discussion demonstrates the
difficulty of inferring causality relationships [18,43] which can possibly exist in every direction.

In order to provide more solid evidence, we again built a linear mixed effects model with the
inclusion of facial clusters to predict the changes in lane offset, breath, and heart rate. The general
model was as follows:

yijkrm = µ + αi + γj + τk + δr + (αγ)ij + (ατ)ik + (αγτ)ijk + εijkrm (2)

where y represent the heart rate or breath rate or lane offset depending on the model. α, γ, τ, δ, and ε

are the notations for the interference, age group, gender, facial expression clusters, and random error,
respectively. There were two-way and three-way interactions where the notations were combined.
Subscripts (i, j, k, r, m) refer to the number of levels or observations depending on whether the related
variable included the observations or groups (levels).

This model still resulted in significant (95% confidence level) interactions between gender, age and
interference types in the predicting lane offset, breath, and hearth rate. This interaction was even more
significant (smaller probability of finding more extreme results when the joint effect was not there) than
in Experiment 1 in the respective models for lane offset, breath, and heart rate. We observed earlier
that cluster 3 was dissimilar to all other facial expression clusters in terms of lane offset. However,
this was not indicated in its coefficient and related test in the linear mixed effects model (having a 95%
confidence level). Its coefficient was not the largest in magnitude either. It should be noted that both
positive and negative lane offset can be of interest, and it could be that the other clusters exhibited
negative offset of larger magnitude. This is a really interesting result, since it means that our earlier
causality inference from the raw data may not necessarily be correct, even though it looks logical.
This suggests that lane offset and fear may not necessarily be correlated, which does not satisfactorily
confirm our earlier observations about the self-awareness of drivers in terms of the lane offset.

Our explanatory analysis for Experiment 2 was also confirmed by interaction plots shown in
Figure 8 as a result of modeling. The results corresponding to Experiment 2 also demonstrated
inconsistencies that do not suggest causal relationships. Again, we list some of those inconsistencies.
Figures 8a,b,d suggest that stress increased with the interventions, which is logical. On the other hand,
Figure 8e indicates that stress decreased with the interventions for old males and females which is
illogical and contradictory to previous observations. To make matters worse, the driving performances
of both young and old drivers, as shown in Figure 8c,f, improved with the interventions. This further
demonstrates the difficulty of proving causality relationships between interventions and driving as we
showed earlier using Experiment 1.

We reached conclusions on how facial expression clusters affect predictions, so we wanted to see
if the inclusion of these clusters improved the model. We ran a four-fold cross validation which is also
called rotation estimation or out-of-sample testing to validate the models to assess how the results of a
statistical analysis generalize to an independent data set. This method is widely used in settings where
the goal of the modeling is prediction and estimation to see how accurately a predictive model will
perform in practice.

We used the statistical model comparison tools, the Akaike’s Information Criteria (AIC) and
Bayesian Information Criteria (BIC). For better model fit, lower values of AIC or BIC should be
obtained in model comparison. The models with training data, which included the facial expression
clusters, resulted in lower AIC and BIC as well as lower ASE (Average Squared Error) values in the
validation data compared to the models without facial expression clusters. Even though there was
an improvement, it was marginal for all three outcomes (heart rate, breath rate, lane offset) so we
conclude that the facial expression clusters can be overlooked and facial expression may not play as an
important of a role as we thought it may.
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(a) (b) (c)

(d) (e) (f)

Figure 8. Interaction plots obtained by the advanced model presented in Equation (1) where the top
plots are the younger drivers and the bottom plots are the older drivers. (a) Mean heart rate for young
group. (b) Mean breathing rate for young group. (c) Mean lane offset for young group. (d) Mean heart
rate for old group. (e) Mean breathing rate for old group. (f) Mean lane offset for old group. In these
plots, the solid blue lines refer to males and the dotted red lines refer to females.

5. Conclusions and Future Work

In this paper, we have demonstrated that stress does not necessarily cause the same distractions in
all people; therefore, it is impossible to evaluate the impact of stress on traffic accidents. Stress measures
do not vary together or with biographical measures. Our results demonstrate that neither type of
stress measure significantly improves modeling outcomes. Stress may be more helpful in the absence
of knowledge of its type. There may be other measures, such as driving performance, that are more
predictive of outcomes with added benefit but may not be worth the cost of measuring.

One of the shortcomings of our analysis is that we used only a portion of this immense dataset.
More interesting observations could be deducted with an additional deep analysis. For instance,
a preliminary analysis of some of the available data that is not reported in this study suggested that
human drivers are not as irrational as expected. In particular, we observed that human drivers know
that they deviate from their lane under certain types of stress and they become extra careful. In other
words, the Dunning–Kruger effect, i.e., people with low ability having illusory superiority [44,45],
was not high for human drivers who took the experiment. Having low confidence of their own abilities
in dangerous situations is an important asset for all people to avoid accidents.

The difference between self-awareness of lane deviation can be explained by the abilities and
shortcomings of human sensing. We can always see that the car is not in its lane. On the other hand,
we can only sense acceleration, not speed. Speed and acceleration data are highly skewed so usual
liner methods do not apply to them and more research is needed in this area. Without appropriate
sensing mechanisms, it is not possible to be self aware. In the case of self awareness, robot drivers are
guaranteed to be better than human drivers, since we can always include appropriate sensors to get
correct feedback. Again, more research is to come in this area.

In conclusion, it is possible to show that most human drivers probably are not as bad as they are
portrayed in proponents of robot drivers. Experienced drivers most likely develop strategies to handle
stress and stressors [46]. In fact, previous studies show that personality factors related to aberrant
driving behaviors work well in predicting the involvement of traffic accidents [47–49]. Drivers with
personality factors that are susceptible to accidents can be a small percentage of the population, and a
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small random sample in the population may not necessarily include those drivers. This could be why
we did not see distinct outliers in the data that we analyzed.

Another interesting problem is that accidents are usually caused by errors of more than one driver.
The probability of more than one human driver making a mistake at the same time is low. In fact,
considering how many cars travel on roads, the number of fatal collisions appears to be low, but we
could not find any studies on this issue. An appropriate comparison will only be possible when we
have as many cars driven by robots as humans.

We observed that even though this particular dataset is one of the most advanced datasets, there is
still too much to do in terms of the design of experiments. One of the main problems is that we do not
have more than one single human driver in the system. Without at least two simultaneous human
drivers, it is not exactly possible to simulate real driving situations since there are many other issues
with simulators. For instance, the current set up only included three screens that did not provide
full coverage. Without coverage on the sides, it is not possible to provide motion parallax, and it is
impossible to sense speed. It may also be necessary to include some haptic responses that can be
related to speed, for example, speeding cars can shake more.

One idea to allow the use of more than a single driver is to use robot drivers that behave like
humans in the experiments. Since this particular dataset provides us with human behavior, we could
randomly create human-like behavior in a simulation environment. We could also combine them with
real human drivers. Using such an environment, we may be able to study virtual traffic crashes in
game-like environments.

It must also be noted that the advances we discussed earlier, such as monitoring all driving
information along with brainwaves, breath, and heart rate of human drivers during driving, could be
helpful to understand the problems. Our results suggest that there could be some latent variables
that were not collected in this study. It could even be important to collect additional information
about drivers, such as their expertise, their occupation, and their education. The collaboration of
different fields like psychology, computer science, statistics, or other related fields is crucial to design
the experiment from start to end, analyze the data, and inform the policymakers accordingly.
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