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Abstract The gradual crowding out of singleton and small team science by large

team endeavors is challenging key features of research culture. It is therefore

important for the future of scientific practice to reflect upon the individual scientist’s

ethical responsibilities within teams. To facilitate this reflection we show labor force

trends in the US revealing a skewed growth in academic ranks and increased levels

of competition for promotion within the system; we analyze teaming trends across

disciplines and national borders demonstrating why it is becoming difficult to dis-

tribute credit and to avoid conflicts of interest; and we use more than a century of

Nobel prize data to show how science is outgrowing its old institutions of singleton

awards. Of particular concern within the large team environment is the weakening

of the mentor–mentee relation, which undermines the cultivation of virtue ethics

across scientific generations. These trends and emerging organizational complexi-

ties call for a universal set of behavioral norms that transcend team heterogeneity

and hierarchy. To this end, our expository analysis provides a survey of ethical

issues in team settings to inform science ethics education and science policy.
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Introduction

Many of science’s grand challenges have become too daunting for individual

investigators to undertake. The increase in the characteristic size and complexity of

teams reflects the division of labor that is necessary in large projects. As a result,

team science is now more prevalent than individual science, a shift that has occurred

slowly but steadily over the last century (Wuchty et al. 2007; Milojevic 2014).

The range in the size of scientific endeavors spans three orders of magnitude, from

singleton to ‘‘Big Science’’ programs in excess of 1,000 members (Price 1986). Large-

scale multi-disciplinary projects, requiring extensive resources, have become increas-

ingly common. Examples include the Higgs particle experiment at CERN, the big data

genomics project by the ENCODE consortium (Birney 2012), cross-institutional

medical trials (Yusuf et al. 2006), and large scale digital humanities projects such as the

Google Inc. n-gram portal (Michel et al. 2011). A better understanding of team science is

important for the economics of science (Stephan 1996, 2012a; David 2008), the

management of science (Wuchty et al. 2007; Guimerà et al. 2005; Börner et al. 2010), the

evaluation of scientific careers (Petersen et al. 2012; Segalla et al. 2001; Stallings et al.

2013), and the internationalization of science (Chessa et al. 2013; Pan et al. 2012).

An open discussion focused on ethical issues germane to team science is also

important for the future of scientific research, which ultimately depends on the

quality of individual contributions. In the academic domain, production of public

knowledge is based upon priority, a type of credit that incentivizes scientists to

share, reuse, and build upon the knowledge stock (Stephan 1996, 2012a; David

2008). Two key features of this credit system are that the priority be clearly

assignable and the credit be transparently divisible among coauthors. However, with

increasing team size, typically accompanied by a hierarchical management

structure, it has become difficult to monitor and evaluate individual efforts towards

team objectives, rendering a fair division of credit challenging (Allen et al. 2014).

Here we take a quantitative historical approach (Laubichler et al. 2013) to initiate

discourse on a class of ethical considerations that have emerged with team science and are

in contradistinction to ethical guidelines in singleton science (Committee on the Conduct

of Science 1989; Committee on Science, Engineering, and Public Policy, National

Academy of Sciences, National Academy of Engineering, and Institute of Medicine

2009). These considerations are inherently complex because they span multiple levels of

context, from the individual, to the team, and even up to the international level.

In what follows, we start in the Results section with empirical evidence that

provides reference points in the Discussion section. Specifically, we start by

analyzing diverse data sources to document the skewed growth of the scientific labor

force, the growth of team size in science, the implications of large team size on

hierarchy and transparency, the limits of individual achievement awards, such as the

Nobel Prize, and the internationalization of scientific collaboration networks. We

then draw upon these quantitative illustrations in our discussion of six ethics issues in

team science: (i) the ethics of credit; (ii) the ethics of coauthorship; (iii) the ethical

dilemmas associated with conflict of interest; (iv) the attenuation of the mentor–

mentee relationship and the threat it poses to virtue ethics; (v) the ethical dilemmas

manifesting in cross-border collaboration; and (vi) the universality of norms.
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Results

Skewed Growth of the Scientific Labor Force

The growth of science is readily illustrated by the numbers of faculty members and

faculty-in-training. In the United States (US), a country with an established public

funding system, this growth is largely driven by federal funding initiatives. As a

result, the scientific endeavor, in particular the scientific labor force, is sensitive to

sudden policy shifts, such as the NIH budget doubling that occurred over the 5-year

period 1998–2003, the 2009 federal stimulus plan, and the subsequent 2013 budget

sequestration in the US (Zerhouni 2006; Stephan 2012a; Alberts et al. 2014;

Weinberg et al. 2014). Other countries are also susceptible to volatile funding, as

was the case with austerity measures in European countries following the recent

global recession.

To illustrate the growth of the scientific population we have analyzed the number

of US graduate students, postdoctoral fellows, and faculty members over a 40-year

span for the natural and health sciences (NSF 2012a, d, b). Figure 1a shows that the

number of NSF and NIH funded graduate students and postdocs is growing at

roughy 2.2 and 3.7 % annual rate, respectively. For comparison, these growth rates

are slightly larger than the growth rates of the global population over the same

period, which according to the US Census Bureau is between 1 and 2 % (USCensus

2014). Figure 1b–d shows the growth in the size SðtÞ of the postdoctoral and faculty

population in six fields, with respect to the base year 1973. When disaggregated by

field, the growth in the academic population no longer exhibits a smooth trend, as in

Fig. 1a, but instead reflects the nuances of federal steering. Notably, the scale of the

growth factor is significantly larger for the postdocs than for the tenure-track

faculty, reflecting the formation of a bottleneck in the career pipeline (Stephan

2012a; Schillebeeckx et al. 2013; Cyranoski et al. 2011). Indeed, Fig. 1e, f shows

how the overall ratio of faculty to postdocs, an indicator of promotion likelihood,

has significantly decreased over the last 40 years.

These trends reflect the ways in which the academic profession is growing. The

embedding of scientists into large teams is a corollary of this growth. Little is

known about how these trends are impacting the levels of competition and career

sustainability, but there are signs of potential problems (Alberts et al. 2014; Couzin-

Frankel 2014). In particular, as we shall demonstrate in the next section, the new

entrants into the scientific community swell the number and size of teams. As a

result, the important mentor–mentee relation may be at risk; in addition to the

ethical conflicts that arise when a mentor has more than one mentee (Moberg and

Velasquez 2004), mentors have less time per mentee due to time constraints. This

unbalancing trend in the mentor-to-mentee ratio may negatively impact the graduate

training experience by reducing the opportunities for mentors to offer psychosocial

help (Tenenbaum et al. 2001) and to develop strategies to decrease undesirable

behavior (DuBois and Karcher 2005). Furthermore, it may adversely affect a broad

range of mentoring outcomes (Eby et al. 2008; Berk et al. 2005), including the

development of academic identity and academic expectations (Austin 2002), and in

general, the cross-generational cultivation of values.
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Team Size Growth

As the complexity of research projects increases, collaboration within teams

becomes a key feature of the science system. To illustrate the steady growth of team

sizes, we have undertaken a historical analysis of coauthorship in scientific

publications and coinventorship in patents. The public domain teams recorded in

scientific publications versus the private domain teams captured by patent

applications offer a comparative perspective on the role of teams in R&D during

the last half-century.

Fig. 1 Growth of the scientific labor force. a The annual numbers of graduate students and post
doctorates in US Science & Engineering departments (NSF 2012a). The mentor–trainee relation is being
diluted by disproportionate growth rates, demonstrated here by considering the numbers of faculty to
postdoc positions in Science Engineering and Health (SEH) departments in the USA (NSF 2012a). b–
d Number of US faculty and postdoc positions by degree field (NSF 2012d). e, f The percentage of SEH
doctorate holders and their ratio (number of full-time faculty vs. number of postdocs) in primary US
research universities. Data aggregated over two distinct age cohorts: careers with 1–3 years (early) and
4–7 years (mid) since doctorate (NSF 2012b). (Color figure online)

926 A. M. Petersen et al.

123



Specifically, we analyzed coauthorship patterns in four Thomson Reuters Web of

Knowledge (WOK) publication datasets: (i) the biology journal Cell, (ii) an

agglomeration of 14 high-impact economics journals, (iii) the New England Journal

of Medicine (NEJM), and (iv) the Physical Review Letters (PRL). These journals

represent four distinct research domains, chosen to demonstrate that the pattern of

exponential growth is common across the datasets analyzed. The discipline-specific

growth rates likely reflect the differences in the production of knowledge within

each discipline. We refer the curious reader to (Wuchty et al. 2007) for a broader

subfield analysis, which includes Arts & Humanities, and it also discusses the

relative citation impact premium attributable to teams.

Likewise, the patent system is chosen in order to analyze teaming trends in a

domain governed by an alternative credit system, namely one that is organized

around the potential for financial gain in the private sector. This is in contradis-

tinction to reputation gain, which has been the main incentive in academia (Petersen

et al. 2014). We analyzed coinventorship patterns in two data sets: (i) the set of 2.2

million patents filed at the European Patent Office (EPO) and (ii) the set of 1.7

million triadic patents filed at the EPO, the Japan Patent Office (JPO), and the US

Patent Office (USPTO) under a Patent Cooperation Treaty (PCT) (Maraut et al.

2008).

In each dataset summarized in Table 1 we count for each publication or patent the

number a of coauthors (coinventors), a measure that is a proxy for team size. To

identify the evolution of coauthorship (coinventorship) patterns, we separated the

data into non-overlapping periods and calculated the complementary cumulative

distribution P� ðaÞ for each dataset. To put it another way, the value 100� P� ðaÞ
indicates the percentage of papers (patents) that have at least a coauthors

(coinventors).

Figure 2 illustrates the evolution of P� ðaÞ for all six data sets. Please note that

the range is long, spanning from unity (100) to more than 1,000 (103) on the x-axis

(showing team size) and from unity to 1 part per million (10�6) on the y-axis

(showing frequency). Hence, we use base-10 logarithmic scale to express the entire

range. The key characteristic of these distributions is the persistent shifting towards

larger a values over time, indicating the increasing frequency of large teams. This

shifting is becoming increasingly right-skewed, having a distinct ‘‘extremely large

team’’ component class that is emerging in the right tail (evident in the NEJM, PRL,

EPO, and PCT datasets for a [ 50).

Figure 3a shows the growth of the distribution mean hai and standard deviation

ra for each time interval. Note that the time-period color legends are consistent

across all panels in Figs. 2 and 3a, facilitating comparisons. From each time series

hajðtÞi we estimated the exponential growth rate sj for dataset j, using ordinary least

squares regression of loghajðtÞi. Figure 3a depicts persistent long-term exponential

trends for hajðtÞi, quantified by annual growth rates sj in the range of 0.011–0.045

(see Table 1).

It remains to be determined how much of the growth in team size is produced by

social versus technological change, and whether the variation in sj across disciplines

reflects specific socio-economic factors such as size, subfield population
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Table 1 Summary statistics for the journal and patent datasets analyzed

Dataset Years Articles/Patents Team size growth rate s

Cell 1978–2012 11,637 0.035(1)

14 Economics Journals 1958–2012 36,466 0.013(1)

New England J. Medicine 1958–2012 18,347 0.040(3)

Physical Review Letters 1958–2012 98,739 0.045(4)

European Patent Office 1974–2008 2,207,204 0.011(1)

Patent Cooperation Treaty 1979–2008 1,695,339 0.018(2)

The exponential growth rate s (per year) is estimated using ordinary least squares regression; the standard

error in the last significant digit shown is denoted in parentheses. Multiply growth rates by a factor of 100

to obtain the percentage growth

Fig. 2 Expansion of the team-size distribution. The observed frequency Pð� aÞ of papers or patents with
team size of at least size a. The plots are shown on log–log axes, where each colored curve corresponds to
a non-overlapping 5-year period indicated in the legend. The broad distribution of a values for each
journal demonstrates that the credit for a single publication can be distributed across a very broad number
of contributors, whereas for patents, the typical team size is considerably smaller. (Color figure online)
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composition and population growth, or idiosyncratic publication and funding norms

(Wuchty et al. 2007). Furthermore, it is also unclear if the recent shift represents a

transient reorganization from one regime to another, or if the trend will continue to

persist long-term. It is also worth noting that the distribution of team size does not

necessarily depend on the sustained growth of scientific production, but instead

reflects the relative prevalence of large teams with respect to small teams across a

widening range. To illustrate this point, consider the medical journal NEJM, for

which there has been a dramatic decrease in the fraction of publications that have a

single author—from 21 % in 1958–1962 to 7 % in 2008–2012. Redistributing this

14 % difference in the frequency of singleton publications, across the entire range

of the distribution, and taking into account that large clinical trial publications can

have in excess of 700 coauthors, accounts for a significant portion of the growth in

haji.
Despite these caveats, given the relatively stable trends, it is tempting to make a

crude forecast for the next generation of scientists. If we take the growth trend

observed for the journal Cell over the past 35 years (representing a career length),

and extrapolate the trend over the next 35 years to 2050, we predict the mean team

size hað2050Þi to be approximately 34 coauthors per paper. A similar extrapolation

for the EPO growth trend suggests that by 2050 the mean patent will have

approximately 4.2 coinventors; for comparison, this is the same as the mean

Fig. 3 Persistent growth of team size and the increasing dilemma of sharing credit. a For each 5-year
period we plot the mean of the distribution hai and the standard deviation ra, and report the annual
growth rate s calculated for haðtÞi. Years listed are the start year for each of the 5-year non-overlapping
periods. b There is an increasing complexity with team size. a denotes the number of team members
(nodes), N the number of ‘‘associations’’ (links), and so the ratio T � a=N is a simple measure for the
transparency of the team’s activities. (Color figure online)
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coauthorship for Cell in 1988. For PRL and NEJM the predictions for hað2050Þi are

significantly greater, being 105 and 74 coauthors, respectively. Overall, these basic

trends demonstrate the systemic shifts arising from slow but steady exponential

growth in the course of one generation. While it is unrealistic to expect the growth

trend to extend indefinitely, there remains plenty of room for team size growth,

especially considering that the distributions of team size are heavily right-skewed

and so the mean can be dramatically affected by just a few extreme events. For

example, consider the new opportunities in science provided by the ability to obtain

crowdsourced research input across the entire population. As such, the upper limit to

the number of participants in a research project may be bounded only by the human

population size, as it is evidenced in a recent open laboratory project with roughly

37,000 acknowledged participants (Lee et al. 2014).

Interestingly, for the medicine and physics journals analyzed here, there is a

crossover period, where the standard deviation (measuring the characteristic

deviation from the mean value) becomes greater than the mean value,

raðtÞ[ haðtÞi. This ‘‘tipping point’’ marks the entrenchment of large team science

in these disciplines (Price 1986). In the PRL data this crossover occurred in the

1970s, whereas for NEJM this occurred in the 1990s. It is well documented that

large team endeavors have existed in physics since the Manhattan project (Rhodes

2012). Our quantitative analysis points to similar shifts in medicine related to large

clinical trials (Yusuf et al. 2006). Recently, this pattern has been spreading to

biology due to large genome projects such as ENCODE (Birney 2012). The ‘‘large

team science’’ feature has not yet appeared in either the economics or the patent

datasets, although one is left to speculate that it is only a matter of time as long as

the right incentives to collaborate are present.1

Hierarchy and Transparency in Large Teams

The growth in characteristic team sizes is persistent across time for each dataset

analyzed, and largely reflects the increasing complexity of scientific endeavors. This

increasing complexity is also manifest in the organization of scientific teams.

Ideally, team leaders efficiently implement a division of labor according to various

levels of specialization, so that resources are optimally utilized within the team.

1 It is important to note that the intellectual property rights associated with a patent are also shared across

all a coapplicants (coinventors and/or coassignees). Because patenting is based upon proof-of-principle

and not necessarily implementation, at the least, the commercial rights only need belong to the

person(s) who originated the idea. Furthermore, due to the possibility of direct financial benefits attached

to the patent rights, there is a tendency to keep coapplicant lists from reaching extreme sizes. Since only

the idea is necessary, and prospects of large financial reward are understood, industries encourage

patenting ideas almost as quickly as they are generated. Nevertheless, because most ideas are never

implemented, there is little incentive to include people with potential downstream contributions (e.g.,

those who eventually would implement the idea and/or test it). These reasons account for the significantly

smaller team sizes and growth rates in patents with respect to scientific publications. Nevertheless, recent

policies in companies and academic and government institutions requiring the pre-assignment of an

employee’s future intellectual property to the employer may be responsible for a systematic shift away

from single-applicant patents.
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The schematic in Fig. 3b demonstrates how the overwhelming number of

dependencies between team members in large teams calls for a modular

management strategy, which is effected by a hierarchical distinction between team

members. Indeed, the maximum number of (undirected) dependencies N in a team

of size a is given by N ¼ aða� 1Þ=2. These dependencies (links) represent the

multitude of associations between team members. In line with common intuition,

the ability of any given team member to monitor all aspects of the team’s

operations—i.e., the ‘‘transparency’’ of the operation—decreases as the mean

number of links per person in the team, hki ¼ 2N=a, increases. Hence, for highly

connected team networks, the transparency T � a=N decreases significantly with

increasing a, reaching a minimum value T0 ¼ 2=ða� 1Þ for a completely

interdependent team.

Figure 3b illustrates how the team structure positively affects transparency. By

going from team ðiÞ to team ðiiÞ where the team size increases from 3 to 10, the

transparency value decreases by a factor of 5, going from 1 to 0.2. However, a

modular team structure, as demonstrated in team ðiiiÞ, can overcome the

transparency reduction problem. In this case, even though the team size increases

by a factor of 3 from team ðiiÞ to team ðiiiÞ, the transparency value a=N remains the

same. Nevertheless, introducing this organizational complexity means that three

team members (red) are distinguished from the other team members, forming a

leadership hierarchy.

The larger implications of this transparency problem are that for large teams it is

difficult ex post facto to allocate credit (Allen et al. 2014), to assign blame, to justify

inclusion or exclusion from coauthor lists, to disentangle conflicts of interest, and

from a practical perspective, to maintain team efficiency (Petersen et al. 2012).

These basic conjectures are consistent with recent research on team formation

aimed at explaining why some teams far outperform other teams (Pentland 2012).

This research indicates that three team member properties—energy, engagement,

and exploration—are crucial factors underlying successful teams. It is also found

that structural features, such as hierarchical ‘‘teams within teams’’, can reduce the

cohesive engagement among less active team members. Hence, in order to

overcome this negative feature of hierarchy, as well as to overcome the transparency

problem so that members are aware of each other’s contributions, teams must

actively focus on high levels of engagement.

In science, the fair allocation of credit is especially relevant in the context of

lifetime achievements, which come in the form of career awards and membership in

prestigious academic societies. The problem is that career awards such as the Nobel

prize, which are limited to a maximum of 3 recipients per award, can significantly

disregard the success that is attributable to collaboration. Indeed, it is becoming

evident in the Nobel prize award cardinality patterns that the institutions of

singleton awards are reaching their limits. Figure 4 shows the number of recipients

per Nobel prize award for each of the 4 science categories (NobelPrize 2013). To

provide a crude estimate of recent growth rates for comparison, we estimated an

exponential growth trend using the 10-year mean calculated within non-overlapping

10-year periods. The growth trends suggest that an amendment to the 3-person cap

on the number of recipients per award should be made for both the ‘‘Physiology or
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Medicine’’ and ‘‘Physics’’ prize, which appear to be outgrowing the upper limit

established in the era of singleton science. This example serves as additional

evidence that the incentive system in science is not adapting to the systemic shifts

that have occurred alongside the basic growth of the scientific industry.

Internationalization of Scientific Networks

The internationalization of global R&D reflects the drive to produce high quality

output through optimal combination of experts, independent of locality. Trends in

cross-border collaboration intensity can indicate the role of distance and geopolitics,

factors of great relevance for the integration of interdependent innovation systems,

e.g., within the European Research Area (Chessa et al. 2013). Scientific publication

data provides a good proxy for cross-border activities, yielding insights into various

collaboration network properties and the relation between a country’s international

collaboration intensity, spending per researcher, and the mean citation impact per

paper (Pan et al. 2012).

While the number of publications has been growing steadily, in large and small

R&D systems alike, it is not well understood at which rate smaller countries are

joining the network of established R&D systems. To illustrate this integration

process, we analyzed a NSF database of 264,431 Science & Engineering

Fig. 4 Increasing cardinality of the Nobel Prize. The number of Nobel prize recipients per award (black
data), averaged over each decade (blue data), shows steady growth (dashed red curve is the exponential
fit of 10-year mean with growth rate s indicated in each panel). We provide the estimated growth rate
purely as a comparative value between disciplines without implying that the cardinality of the Nobel prize
will continue to grow. (Color figure online)
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publications sampled from the years 1995 and 2010 (NSF 2012c). From the counts

of the total number of publications Mij coauthored by country i and j, we define the

relative share of country j in the collaboration portfolio of country i in year t as

SijðtÞ � MijðtÞ=
P

i MijðtÞ. The relative integration index gijðt;DtÞ �
log½SijðtÞ=Sijðt � DtÞ� ¼ log½SijðtÞ� � log½Sijðt � DtÞ� measures the relative growth

of county j within the portfolio of country i over a given time period Dt. The natural

logarithm is used so that SijðtÞ reflects a relative (percent) change over time, since

the value MijðtÞ can vary dramatically across the set of countries analyzed.

Figure 5a shows the 15-year growth matrix gij for the top 38 internationally

collaborating countries in 2010, where the countries are listed in decreasing order of

total publications Aið2010Þ. The mean value hgij ¼ 38�1
P

i gij of a given country,

shown in the bottom row of the relative integration matrix, indicates how much the

country is integrating globally; green shading corresponds to positive growth while

red shading corresponds to negative growth. The leaders over the 15-year period are

Singapore (SN), Iran (IR) and China (CH). In contrast, Russia (RS) stands out as the

only country with a negative mean integration rate (see the Methods section for a

full list of country names). The overall trend is for the countries with smaller Ai

(countries further to the right in the growth matrix) to have the largest integration

rates, indicating their recent entry into the global R&D economy.

Since the relative integration matrix represents the integration between country

pairs, it is also insightful to visualize the systemic correlations that are contained in

the network topology. Of particular interest in the context of our analysis are the

sparsely distributed gij values that are significantly positive (dark green), which

likely represent new country–country links. In order to visualize the network defined

by these relatively large gij values, Fig. 5b shows the integration matrix after we

eliminate all values with gij\1:34. We choose the pruning threshold gc � 1:34

because this is the largest value for which all nodes (countries) in the network are

still connected within a single network. In the network science terminology, this

minimal set of links that connects the entire system defines what is called the ‘‘giant

spanning cluster’’.2 Figure 5c illustrates the giant spanning cluster network and

highlights the role of incoming partners on the globalization of science. The global

integration hubs Iran (IR), Singapore (SN), Turkey (TU), China (CN), and South

Korea (KS) are characterized by the disproportionate number of integration links

connecting them to countries from every other geographic region represented in the

data.

Hence, how does globalization affect issues of team ethics? While it is

straightforward to argue that the integration of the global R&D economy is good for

both science and society, in the following discussion we highlight practical

dilemmas arising from significant differences between the social norms and ethical

2 Interestingly, the United States is the first country to be eliminated from the giant spanning cluster

network for gc [ 1:34. This feature follows from the fact that the US has long been a collaboration hub,

having already a large Mijð1995Þ for all the countries shown. Hence, the percent growth of counties

within the US portfolio is relatively small due to upper limits in the amount that collaboration can

increase. Nevertheless, China, Singapore, Turkey, and Iran show signs of significant integration with US

research over the 15 year period.
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Fig. 5 Visualizing cross-border
collaboration growth. a The
relative integration matrix gij

measures how much a country in
column j has increased (green)
or decreased (red) its
collaboration in scientific
publications with the other
countries (row i). The final row
indicates the mean value of gij

for each column. China (CN)
stands out as a large producer of
scientific publications, which
has also increased its
collaboration share with almost
every country shown. b By
eliminating (pruning) all matrix
values with gij\1:34 we obtain

the minimal spanning cluster.
c Network representation of the
minimum spanning cluster;
nodes are countries colored by
region with size proportional to
log Aið2010Þ, and links have
thickness and shading
proportional to gij (1995–2010).

(Color figure online)
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boundaries framing scientific activities in different countries. We argue that as

countries with different economic levels, language, governance, laws, and cultural

teamwork norms, continue to integrate their R&D programs, it will become

increasingly difficult to disentangle subjective ethical considerations. As a result, we

predict that ethical conflicts of this type will become increasingly prevalent.

Discussion

Here we address the intersection of our quantitative analyses with broad themes

pertaining to team science ethics. The persistent trends in the skewed growth of the

scientific labor force, the increasing organizational complexity arising from

increasing team sizes, and the global increase in the intensity of cross-border

collaboration activities, have consequences for at least six issues of ethics outlined

below.

Ethics of Credit: Who to Reward and Who to Blame?

The assignment of credit is fundamental to the reward scheme in science (Stephan

1996; David 2008; Stephan 2012a). The basic staple of the science credit system is

the credit associated with a publication. This is supposed to be shared across all a

coauthors independent of their rank. The problem is that large teams in science have

a pyramidal structure, with the scientists who masterminded the project and

obtained the funding at the top. These project leaders reap co-authorship gains from

the entire hierarchy below them. For example, it is not uncommon for directors of

large particle physics laboratories to publish upwards of 50 papers in a good year.

Hence, due to the nonlinearity of the underlying hierarchy and the broad range of

team sizes in science (Fig. 2), even fractionally distributing publication and citation

counts could introduce unfair bias.

In another hierarchical corps, the military, a scheme of battle badges evolved in

order to distribute credit among the team members contributing towards large scale

goals. The science corps has developed a similar system of allocating special

‘‘badges’’ to the first author and the corresponding author, the latter typically being

the principal investigator who led the project. However, variations in the norms of

determining authorship order do exist across disciplines.3

Recently, the methods for distinction have begun to change in prestigious

journals, allowing authors to designate their particular roles, e.g., designed research,

performed research, contributed new reagents/analytic tools, analyzed data, or wrote

the paper. This shift reflects the need for scientists within teams to distinguish

themselves (Allen et al. 2014). Being associated by name with a seminal paper can

be a major career boost, especially for the first and corresponding authors. Yet, as

3 In the natural sciences, the first and corresponding author(s) are typically distinguished from other

coauthors. In economics alphabetical ordering of the coauthor list is often the norm, thus eliminating

special credit for the lead author and principal investigator. Furthermore, in economics it is common that

graduate student data collectors and data cleaners are not included in the coauthor list and only

acknowledged in a footnote.
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the team size increases, possibly across multiple groups and hence across multiple

principal investigators, a great difficulty in selecting first and corresponding authors

arises (Dance 2012). One resolution to the problem is the practice of multiple

publications, whereby several variations of the same paper are submitted to various

conferences and journals with permuted author list orderings (Chen 2011). This

practice, however, contradicts the system of precedence and is considered in some

disciplines as ethical misconduct.

The problem of credit attribution among coauthors is not new. Historically, even

in the case of small teams, sometimes the contributions of junior scientists are

unfairly allocated to the senior scientist. However, the possibility of unfair reward

increases with team size for two main reasons. First, because it becomes

increasingly difficult to discriminate efforts of the individual participants as

demonstrated in our discussion of the team transparency T . And second, because it

becomes increasingly difficult to discriminate who should and who should not be

included as a coauthor. While there have been recent efforts to develop quantitative

methods that factor in team size in allocating publication and citation counts

(Petersen et al. 2010; Stallings et al. 2013), accounting for variations in team

organization and specialization remains a core issue in the fair distribution of

scientific credit.

The former considerations address scenarios where science goes well. But the

converse scenario raises the issue of who to blame when science goes wrong.

Questionable tactics pervade everyday scientific practice, including several that are

particularly relevant to team settings, such as failing to acknowledge credit for

research ideas, misallocation of authorship credit, multiple publications, and non-

disclosure of conflicts of interest (Martinson et al. 2005). Retraction of scientific

papers is quite common, with roughly 2/3 of retracted papers related to misconduct

(Fang et al. 2012). Not all coauthors, however, may agree with the retraction, which

further complicates matters. By way of example, recent claims of faster-than-light

neutrinos in a large team setting resulted in a subsequent retraction. However, a

fraction of the team including the principal investigator insisted on the validity of

the finding despite mounting evidence that the initial results were flawed by

experimental error. In the case of retraction due to experimental error it may be

difficult to trace the blame to any single individual. In the case of retraction due to

fraud (for example, the Woo Suk Hwang controversy) the blame may be entirely

attributable to a principal investigator whose individual actions can compromise the

efforts, reputation, time, and careers of each team member (Editorial 2006; Lu et al.

2013).

Beyond the scientist’s responsibility towards her/his team, lies the scientist’s

responsibility towards society. It was in the early twentieth century when certain

risks to humanity from scientific progress became evident and moral questions

about the role of individual scientists were raised. Such was the case of Fritz Haber

(Nobel Prize in Chemistry, 1917), who discovered a method to synthesize ammonia

with applications in fertilizers and chemical bombs. By the mid twentieth century,

Oppenheimer became the tragic figurehead of the Manhattan project, which

epitomizes the dilemma associated with the moral responsibility of individual

scientists embedded in larger socio-political programs. With increasing numbers of

936 A. M. Petersen et al.

123



large projects faced with ethical dilemmas, and with many of these projects having

multiple figureheads and a hierarchical structure that tends to cloud the channels of

responsibility (Consoli 2006), paradoxically moral responsibility has been shifting

towards the scientific commons.

Parasitic Authorship

In a large team setting, it is difficult not only to determine coauthor order, but also to

determine who merits inclusion in the coauthor list. After all, the addition of a single

coauthor, from a! aþ 1, appears to be only a marginal modification when a is

large. Some senior researchers take advantage of this coauthorship culture by

exploiting uncertainties or ambiguities in research guidelines and thus prospering in

poorly regulated, grey areas (Kwok 2005). To limit this problem, scientific

institutions need to better define and impose ethical codes for authorship credit,

materially discouraging free-riding and other corrupt authorship practices, such as

bartering for coauthorship (Hvistendahl 2013).

The central question is what constitutes coauthorship? The criteria differ among

disciplines and may be journal dependent. Even within a given community, there

may not be consensus on the criteria that constitute significant contributions

meriting coauthorship (Kwok 2005). By way of example, with English becoming

the de facto language for science, many international teams must include members

solely for the purpose of helping and reviewing in the writing process (Lozano

2013). But does this constitute authorship, or does it fall under the category of

support? Many would argue that in the case of support, the contribution should only

be mentioned in the acknowledgement section of the manuscript. But is this a fair

way of rewarding a crucial feature of scientific discourse and refinement (Oettl

2012)?

Conflict of Interest

Many ethical dilemmas in science arise from a conflict of interest which may

emerge between individual scientists but can also be made manifest between the

scientist and the greater body of science. For example, self-interest and favoritism

are known to undermine the publication review process, which relies on individuals

to treat each other fairly, sometimes in light of undisclosed competing interests. For

this reason it is widely accepted that previous coauthors or mentor–mentee pairs

should not be allowed to review each other’s manuscripts (Campanario 1998). It has

also been proposed that mentors with more than one mentee are implicitly incapable

of meeting the ethical obligations of a mentor (Moberg and Velasquez 2004). Such

conflicts of interest between individuals become more likely as team sizes grow and

the interconnections in the ‘‘invisible college’’ become unavoidable. Furthermore,

as the scientific enterprise expands and competition for limited resources increases

(sometimes even within the same team) the risk-to-return tradeoff may incentivize

unethical success strategies. In this respect, a conflict of interest between the

scientist and the scientific commons emerges, whereby bad behavior may evolve as

individuals reconsider their identity and responsibilities within the scientific system
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(Martinson et al. 2005; Consoli 2006; Martinson 2011; Adamo et al. 2011;

Martinson et al. 2009).

The level of competition in science can be readily illustrated by considering the

number of successful NIH R01 grants and grant-holders relative to the number of

submissions and the total size of the applicant pool. Along those lines, a recent news

focus in the journal Science puts into perspective the decreasing total NIH budget

from 2003 to 2014 and how it has impacted various actors in biomedical science

(Couzin-Frankel 2014). Their numbers show that the NIH budget decreased from its

peak at roughly 22 billion USD in 2003 to 17 billion USD in 2014 (values deflated

to 1998 USD$); meanwhile, the success rate of R01 grants has halved while the

number of funded4 principal investigators has increased by 5 % from 2000 to 2013.

The report goes on to show that the average scientist’s age at the time of his/her first

R01 grant has increased from 36 in 1980 to 42 in 2013, and likewise, that that the

percentage of principal investigators over 65 has increased from 3.5 % in 2000 to

7 % in 2010. Aside from the unsustainable generational economics of science, these

trends also indicate that the young scientists are assuming a disproportionate amount

of the financial burden, likely due to the granting system and other features of

science careers, which are based upon the principles of cumulative advantage.

In a system where less funding must support a growing population of scientists,

one quick solution is to fund teams instead of individuals, a step up from the

Howard Hughes Medical Institute’s (HHMI) mission to fund ‘‘people not projects’’.

For the moment, there is a tension between the de-facto tenure requirement in

biomedical departments that an assistant professor must obtain an R01 grant before

tenure consideration and the grant competition levels that render this prospect a

statistical impossibility, even for stellar young scholars. To address this problem,

funding needs to be increased, the number of scientists in the pipeline needs to

decrease (Alberts et al. 2014), and specific to the case for tenure, the criteria for

research scholarship need to be adjusted to better reflect contributions in team

settings.

The categories for documenting teaching, research, and service activities in the

tenure process (see Chait 2002, pp. 49–52) are numerous and can vary from institute

to institute. The documentation of teaching activities is more transparent, as

teaching hours and student evaluations of the candidate are relatively easy to

evaluate ex-post facto. However, determining an individual’s contribution to

research scholarship in an ex-post facto evaluation can be extremely difficult if

the output of journals, books, grants, patents and presentations are complicated by a

variable and non-negligible team size. Moreover, while it is important not to

discount the value of authorship in multiple-author research products, so that tenure

productivity criteria aren’t biased against team-oriented scientists, it is also

important not to discount the value of investigator status in Multiple Principal

Investigator (multi-PD/PI) grants. Concerning the service component of tenure

4 These numbers reflect the number of funded individuals, and so do not account for the unfunded

population, which by inverting the success rates provides a rough estimate that the unfunded population

has increased by 22 % over the same period. This scenario is further exacerbated by the fact that a small

number of principal investigators (6 % of senior scientists) receive a disproportionate amount of the

annual funding (28 %) provided through NIH grants (Couzin-Frankel 2014).
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criteria, there is a growing consensus calling for the acknowledgement of patenting

and other commercially valuable activities, which have a ‘‘community service’’

component (Sanberg et al. 2014).

Mentor–Mentee Ethics

The incentives to publish (or not publish) for a young scientist are different than

those of an established scientist. For example, what happens in the case that a

mentee’s findings are in disagreement with the previously published findings of the

mentor? Further mentor–mentee issues may arise in large teams where the ratio of

mentors to mentees is small (as shown in Fig. 1). In these cases, the mentor may be

unable to guide each student or postdoc individually due to time constraints. As a

result, the benefits of mentorship become diluted with negative implications for

academic character building which is the basis of virtue ethics (Consoli 2006).

An additional issue that tests the mentor–mentee relation is the narrowing

bottleneck in academia (Martinson 2011; Schillebeeckx et al. 2013), whereby an

increasing number of Ph.D.s and postdocs are being churned by large multi-

institutional project grants that likely have a weak impact on the number of new

tenure-track openings. As the prospects of climbing the career ladder in Academia

are often overstated, with the career outcomes traditionally being poorly

documented (Stephan 2012a, b), many young scientists have likely been ‘‘lured’’

into postdoctoral traps within large projects. This raises the question: Are the next

crop of scientists trained to be leaders or to just fit into a large production line? And

once they enter the tenure track, do the lessons they learned in their ascent reflect

positive scientific values? Or do they reflect a system engaged in productivity at the

expense of quality, the choice of conservative research projects over innovative

risk-taking ones, and pathologically competitive attitudes that run counter to

socially beneficial progress (Adamo et al. 2011; Freeman et al. 2001; Anderson

et al. 2007)?

International Variations in Ethics Codes

The norms of leadership, management, and promotion can be largely country

dependent (Segalla et al. 2001). Moreover, the norms for ethical conduct in science

(Pennycook 1996) and the laws reflecting bioethical standards on research topics

involving stem cells (Knowles 2004), experiments with animals, and human clinical

trials, can also vary significantly across counties (Vasconcelos et al. 2012).

For example, the localization of proprietary biomedical R&D in countries with

less restrictive stem-cell bioethics legislature (Mauron and Jaconi 2007; Owen-

Smith and McCormick 2006) reflects how these variations across countries have

entered into corporate strategy. While it may be in violation of local ethics codes

and legislature to work on specific types of stem cells in one country, should it also

be in violation to collaborate with partners in another country that does allow the

controversial stem cell line? To give another specific example, the outsourcing of

clinical trials to poor regions of India has been uncovered as a viable way of side-

stepping local ethical and economic impediments (Jayaraman 2001, 2004).

A Quantitative Perspective on Ethics 939

123



Figure 5 shows that in the era of large team science, more collaborations are

crossing national borders involving developing economies and possibly third world

poverty. Adhering to local ethics codes in a global system is important for the

building of character and identity. To facilitate the decision making process when

international teams encounter conflicts in local ethics codes, the global standard-

ization of ethical norms is crucial (ESF-ORI 2007; WCRI 2010).

Universality of Norms

We have already mentioned how international standards can vary significantly.

Another relevant question is whether we should expect for the ethics of small team

science to map across scale and apply unflinchingly to large team science. Several

features of large team science challenge the institutions constructed for small team

science, namely the reproducibility of such large projects (inherently requiring

complementary large teams committed to verification), and the distribution of credit

to all participants. Finally, increasing team size is also accompanied by the growth

of interdisciplinary science: Is it possible to expect that social norms of ethical

publication conduct be shared across disciplines?

Conclusion

We have used quantitative analysis to document trends in scientific operations that

bear ethical ramifications and call for introspection and open discussion. Over time

these trends will affect an increasing fraction of scientists, whose careers will

depend on team activity. Even within the social sciences, where historically team

sizes have been small, the trends reveal slow but persistent growth. For example,

our analysis indicates that by the year 2050 the mean publication team size in

economics will be hað2050Þi � 3:5 coauthors, which is comparable to the mean

publication team size in cell biology during the 1980s and in physics during the

1970s. Moreover, in the next 35 years—typifying a scientific generation—we also

project that 5 % of the teams will be greater than 100 coauthors in physics and

greater than 50 coauthors in cell biology. Hence, the ethics issues we have outlined

will become increasingly pressing.

The first issue raised is how persistent growth in team size poses a challenge to

the longstanding credit system in science, and calls into question the appropriate-

ness of singular achievement awards in team settings. In our discussion, a theme has

developed around the heterogeneity of the actors in scientific teams and the distinct

role of team leaders who often gain a disproportionate share of credit. When this

credit bias is coupled with limited upward mobility in the research career ladder, it

creates a state of ‘‘haves and have-nots’’ that tests scientists’ attitudes and behaviors

(Martinson et al. 2005).

Concerning unethical behavior, further research is needed to investigate how to

incentivize cooperation and ethical practice in the team environment, likely calling

for new team ethics paradigms. Sanctioning bad behavior in a team environment has

benefits, as there is recent evidence that the role of organizational (in)justice, and
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perceptions thereof, can have an impact on a scientist’s identity within the scientific

system, and can affect his/her propensity to behave or misbehave (Martinson et al.

2006, 2010). Furthermore, evidence from organizational game theory suggests that

policies that punish unethical behavior should be widely adopted, since institutions

with sanctioning are more preferred and offer a competitive advantage over those

without (Gürerk et al. 2006). To this end, it is important to establish guidelines for

sanctioning, both internal and external to specific teams, which discourage parasitic

coauthorship and other bad behaviors that are particular to team settings. Bringing

these issues to light may be the first step to establishing a more ethically conscious

scientist. However, providing solutions to the problems raised here will be

challenging since monitoring ethical standards and sanctioning misbehavior is

difficult in large team endeavors due to the transparency problem.

An insidious problem highlighted is how a large team environment may hinder

the cross-generational transmission of values from mentor to mentee, undermining

the building of virtuous academic characters. Over time this may lead to gradual

erosion of ethical standards across science. To fill the gap, there is need for policies

that aim to cultivate morality. Such policies should promote a bottom-up

educational approach with emphasis on humanistic values, starting with a student’s

first introduction to science in secondary school. In a very general sense, cultivation

of team science ethical values should become a corollary of the longstanding

scientific method.

A body of ethical scientists is indeed an invaluable community resource since the

support of social norms is a self-reinforcing process, gaining strength with adoption

size. This is a virtuous cycle to which we are likely to fall if we address the

emerging team science issues early. The alternative is a vicious cycle that we should

aspire to avoid.

Data and Methods

Publication and Patent Collaboration Data

Publication data for the journals Cell, the New England Journal of Medicine

(NEJM), Physical Review Letters (PRL), and 14 top economics journals, American

Economic Review, Econometrica, Journal of Political Economy, Journal of

Economic Theory, Journal of Econometrics, Journal of Financial Economics,

Journal of Finance, Journal of Economic Growth, Journal of Economic Perspec-

tives, Journal of Economic Literature, Quarterly Journal of Economics, Review of

Economic Studies, Review of Financial Studies, Review of Economics and

Statistics, were downloaded from Thomson Reuters Web of Knowledge for the

55-year period 1958–2012. For the natural science journals we restricted our

analysis to publications denoted as ‘‘Articles’’, which excludes reviews, letters to

editor, corrections, and other content types. For the economics publications we

restricted our analysis to the publication types: ‘‘Articles’’, ‘‘Reviews’’ and

‘‘Proceedings Paper’’. We obtained the patent data from the Organization for

Economic Cooperation and Development (OECD) (Maraut et al. 2008): years
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1974–2008 for European Patent Office (EPO) patents and 1979–2008 for Patent

Cooperation Treaty (PCT) patents. We obtained the NSF Science and Engineering

Indicators data from (NSF 2012a, d, b, c).

International Collaboration Network Data

Article collaborations are tabulated using a whole-count basis whereby a country is

counted only once per paper even if there are multiple affiliations with a given

country address. Article data from Thomson Reuters Web of Science covers

journals indexed in Science Citation Index and Social Sciences Citation Index.

Country abbreviations are: United States (US), Germany (GM), United Kingdom

(UK), France (FR), Canada (CA), Japan (JA), Italy (IT), Russia (RS), Netherlands

(NL), Switzerland (SZ), Sweden (SW), Spain (SP), Australia (AS), Belgium (BE),

China (CH), Poland (PL), Israel (IS), Denmark (DA), Austria (AU), Brazil (BR),

Finland (FI), India (IN), Norway (NO), South Korea (KS), Hungary (HU), Czech

Republic (EZ), Mexico (MX), Taiwan (TW), Greece (GR), New Zealand (NZ)

Argentina (AR), South Africa (SF), Portugal (PO), Ireland (EI), Chile (CI), Turkey

(TU), Singapore (SN), Iran (IR).
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