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Thermistor at a Distance: Unobtrusive Measurement
of Breathing

Jin Fei and Ioannis Pavlidis∗, Senior Member, IEEE

Abstract—This paper unveils a thermal imaging methodology to
recover the breathing waveform from the subject’s nostrils. The
resulting functionality is equivalent to that of a thermistor, but it
is materialized in a contact-free manner. First, the nostril region is
segmented and tracked over time through a network of cooperat-
ing probabilistic trackers. The mean thermal signal of the nostril
region carries the breathing information. This information is ex-
tracted through wavelet analysis. The method has been tested on
20 healthy individuals. The breathing waveforms determined via
the imaging computation were compared with the corresponding
ones extracted from thermistors. The high degree of agreement
between the two measurement methods confirms the validity of
the proposed approach and opens the way for clinical applications.
Furthermore, thermal imaging can be potentially used as an in-
vestigative tool to understand breathing physiology in ways not
possible with contact sensors.

Index Terms—Breath, facial tracking, sleep studies, thermal
imaging, wavelets.

I. INTRODUCTION

ANALYSIS of breath waveforms plays an important role
in the diagnosis and management of respiratory diseases

like obstructive sleep apnea and asthma. In fact, breathing rate
is one of the vital signs and hence indicative of the overall health
status of a subject.

Human breathing consists of expiration and inspiration
phases. The expired air has higher temperature than the inspired
air due to heat exchange in the lungs and respiratory passage-
ways [1], [2]. This thermic nature of breath around the nostril
area creates an opportunity for a thermal measurement. It is the
underlying principle of operation for the nasal thermistor. The
thermistor probe has to be secured in front of the nostrils—a
rather uncomfortable proposition.

Various other contact modalities have been developed to mea-
sure breath function that capitalize on different aspects of the
breathing phenomenon. A very popular device is the respiratory
belt transducer. It measures the breathing rhythm via pressure
changes on the strap sensor fitted on the subject’s chest or ab-
domen [3]. It is quite sensitive to motion.
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Fig. 1. Subject undergoing sleep study. The discomfort from the nasal ther-
mistor, the wires, and tapes is evident. The oxymoron is that subjects undergoing
such monitoring are having trouble with sleep in the first place.

There is a strong need for unobtrusive breathing measurement
methods in certain clinical applications. Prime examples are
sleep studies (see Fig. 1) and neonatal monitoring, where lengthy
measurement of breath function with the minimum amount of
discomfort is required. The first noncontact breathing rate mea-
surement method was introduced by Greneker et al. [4] and is
based on active sensing. It is called radar vital signs monitor
(RVSM) and is able to measure the subject’s heart beat and
breathing rate at distances up to 30 ft. It senses the chest wall
moving up and down during breathing by Doppler modulated
radar. The RVSM measurements are sensitive to small body
movement.

Thermal IR imaging is a passive contact-free modality. The
sensing element itself can be viewed as a 2-D array of contact-
free thermistors. In previous publications, we have demonstrated
that thermal imaging can be used to measure various physiolog-
ical variables, including blood flow [5], heart rate [6], [7], and
breathing rate [8]. In fact, it is an ideal modality for sustained
physiological monitoring [9].

We demonstrated for the first time, the feasibility of breath
rate measurement through thermal imaging in [8]. Specifically,
we proposed a statistical methodology that models breathing as
a mixture of expiration and nonexpiration distributions. Every
frame is classified as expiratory or nonexpiratory by comparing
the incoming distributions with the existing distributions using
the Jeffrey’s divergence measure. Due to this frame labeling,
we are able to compute the breathing rate. We retrofitted in [10]
the thermal imaging sensor with an optical bandpass filter in the
CO2 absorption zone to improve the SNR. Then we proceeded
to compute the breathing rate using Fourier analysis. In these
early efforts, the measurement region was selected manually and
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there was inadequate compensation for motion. The subjects
were instructed to stay as still as possible in the course of the
experiments.

In this paper, we introduce a new and improved breathing
measurement method based on automatic tracking/localization
of the nasal region and wavelet analysis. No bandpass fil-
tering is necessary. Not only the breathing rate, but also the
full breathing waveform is recovered this time. Specifically, in
Section II, we describe the tracking and localization algorithms
as well as the wavelet-based signal extraction method. We dis-
cuss the experimental setup in Section III-A, sensitivity analysis
in Section III-B–C, and the experimental results in Section III-D.
Section IV concludes the paper.

II. METHODOLOGY

To measure the breathing function in thermal video, we need
to track the motion of subject, localize the measurement region,
and analyze the extracted signal. We address each of these issues
in detail in the following sections.

A. Tracking

We chose the coalitional tracking algorithm [11], [12] to track
facial tissue during breath measurements. It optimizes multi-
tracker interaction via game theory. The coalitional tracking
method was developed to address the conflicting goals of gener-
ality and accuracy that arise in the context of thermophysiolog-
ical measurements on the face. Thermal imaging is a functional
imaging that depicts an evolving physiological process. The dy-
namic nature of thermal imaging poses a modeling challenge to
track. Particle filter trackers [13], [14] overcome this challenge
because they are general and adapt well to changes. The accu-
racy of these trackers peaks when the real estate they cover is
neither too large nor too small. By optimizing the behavior of a
spatially distributed cluster of particle filter trackers (coalition),
one gains in accuracy without sacrificing adaptability.

The characteristic function of a tracking coalition Ck at time
t is

Π(t)
Ck

= ωα × α
(t)
Ck

+ ωβ × β
(t)
Ck

+ ωγ × γ
(t)
Ck

+ ωδ × δ
(t)
Ck

(1)

ωα + ωβ + ωγ + ωδ = 1 (2)

ωα , ωβ , ωγ , ωδ ∈ [0, 1] (3)

where α
(t)
Ck

, β(t)
Ck

, γ(t)
Ck

, and δ
(t)
Ck

are the four characteristic scores,
and ωα , ωβ , ωγ , and ωδ are the corresponding weights.

1) α(t) is the dynamic template match score, which rewards
trackers that maintain consistent imaging content.

2) β(t) is the geometric alignment score that favors coalitions
whose members have geometric alignment analogous to
the original (t = 0) configuration.

3) γ(t) is the interframe projection agreement score; it is a
continuity constraint to improve robustness by penalizing
abrupt (and improbable) changes of the projected state of
the target between successive frames.

4) δ(t) is the interframe membership retention score. It is
also a continuity constraint to reflect the tendency of the

Fig. 2. (a) Thermal snapshot of a subject’s face. (b) Initialization of coalitional
tracker (TROI). (c) Thermal color map.

winning coalition from the previous time step to retain its
members.

We have ( N
k

) different coalitions of size k (k ∈ 1, 2, . . . , N ),

out of which we select the one with the highest score. We define
this as the winning coalition Ct at time t

Ct = argmax
Ck

Π(t)
Ck

. (4)

We use a coalition grid composed of four-particle filter track-
ers. The grid outline is drawn interactively by a click and drag
operation on the first frame. It encompasses comfortably the
nostril region without any stricter specification. The grid out-
line constitutes the tracking region of interest (TROI) (see white
rectangle in Fig. 2). The localization algorithm (see Section II-B)
operates within TROI and determines the nostril region where
the measurement is performed more rigorously.

B. Localization

The source of thermal signal, and therefore, the measurement
ROI (MROI) for breathing is the nostrils. This region features
both spatial and temporal variances. First, the shape of the nos-
tril region is different for different individuals. Thermal imaging
is a functional modality that records the changing physiology.
In the case of breathing, thermal imagery registers the temper-
ature fluctuation between the inspiration and expiration phases.
When the subject inspires, there is suction of cooler air from the
environment, which convects away heat from the nostril tissue
at a high rate. As a result, the nostril area radiates toward the
camera at a lower power. When the subject expires, there is
forceful ejection of warm air toward the environment. Since the
temperature difference between the expired air and the nostril
tissue is minimal this time, convection is weak and the thermal
signature of the nostril dominates in the imagery. As a result, the
nostril area radiates toward the camera at a higher power. The
phenomenon can be clearly visualized in Fig. 3. It is interesting
to observe that although the nostrils become hotter during ex-
piration, the outer cartilage at the bottom of the nose becomes
colder [see Fig. 3(c)]. This is because the progressively cooled
expiratory air is funneled upward, abducting away heat from
the nose’s outer sides. The intermediate apneic phase between
inspiration and expiration [see Fig. 3(b)] allows the true tissue
radiation to show; thus, both the nostril and outer cartilage areas
appear hot.
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Fig. 3. Temporal variance of nostril region in thermal imagery during breath-
ing. (a) Inspiration phase. (b) Transition phase. (c) Expiration phase. (d) Thermal
color map.

Since the shape of nostrils varies temporally due to the vary-
ing thermal signature of inspiration and expiration, segmenta-
tion is challenging. Fig. 3 shows how within TROI, the nostrils
are separated from the rest of the facial tissue due to colder
boundaries formed by the cartilage. The contrast varies over
the breathing cycle, but it never goes away altogether. This fea-
ture can help to localize MROI. The contrast at the boundary
of the nose is quite strong not only in thermal imagery, but
also in visual imagery, for different reasons. The nose is a dis-
tinct 3-D feature in an otherwise 2-D facial surface and forms
strong edges at the seams. A lot of research has focused on
feature extraction for face recognition [15]–[20]. Due to similar
nose boundary properties, we can leverage some of the works
performed in the visual spectrum for thermal imaging purposes.
Specifically, Brunelli and Poggio [16] showed that the horizontal
gradients are useful in detecting the left and right visual bound-
aries of nose, whereas vertical gradients can detect the nose base.
Kotropoulos and Pitas [16] demonstrated that the vertical and
horizontal projection profiles of human nose are obtained by
summing-up visual pixel intensities row-wise and column-wise,
respectively. We have used elements of these approaches trans-
planted in the thermal IR domain.

Let I(x, y) be the original thermal image, and EX (x, y) and
EY (x, y) be the edge images after applying the following ver-
tical (GX ) and horizontal (GY ) Sobel edge templates:

GX =




−1 0 +1
−2 0 +2
−1 0 +1


 GY =




+1 +2 +1
0 0 0
−1 −2 −1


 .

We perform integral projections on the edge images to extract
the facial features of interest, i.e., the nostrils’ outer edges. The
vertical integral projection is defined as

Pv (x) =
ym∑

y=y1

EX (x, y). (5)

Similarly, the horizontal integral projection is defined as

Ph(y) =
xn∑

x=x1

EY (x, y). (6)

Fig. 4. (Top) Determination of left and right outer nostril edges. (Bottom)
Determination of base edge. (a) TROI images. (b) Edge images. (c) Integral
projections.

Fig. 5. Spatiotemporal evolution of integral nostril projections for a typical
subject. (a) Vertical projections along time. (b) Mean vertical integral projection.
(c) Horizontal projections along time. (d) Mean horizontal integral projection.

The left- and rightmost peaks of Pv (x) yield the left and right
outer nostril edges correspondingly. The maximum of Ph(y)
yields the base edge (see Fig. 4).

The MROI selection varies from frame to frame. Fig. 5(a)
and (c) shows the vertical and horizontal nostril projections
along the time line for a typical subject. Some projections are
weak and the locations also vary. We use a time window of
200 frames (4–5 s) to compute the mean vertical and horizontal
projections in Fig. 5(b) and (d), respectively. This time window
is a representative of the full spatiotemporal evolution as it
covers both expiration and inspiration phases.

Based on anthropometric knowledge, we estimate the nostril’s
height H as one third of its base edge segment W [21], which
is delineated by the left and right outer nostril edges. Thus,
we construct the MROI W × H (see Fig. 6). We compute the
mean temperature within MROI in every frame. This produces
a quasi-periodic thermal signal along the time line, which is
indicative of the breathing function.
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Fig. 6. MROI based on mean nose edges and anthropometric estimates.

C. Wavelet Analysis

We perform identical wavelet analysis on the thermal imaging
and thermistor nasal signals to recover the breathing waveform
and rate. Thus, it is sufficient to present the imaging nasal sig-
nal analysis only. Wavelets are the appropriate analysis tool as
breathing is a nonstationary process.

The thermal video sampling rate fluctuates around 55 frames
per second (fps). This is due to the use of a standard PC instead
of a hard real-time platform for image acquisition. A constant
sampling rate is necessary for optimal results in wavelet decom-
position. We choose δ = 10 fps as the resampling rate of the
thermal signal.

We normalize and perform wavelet analysis on sliding seg-
ments (windows) of the resampled thermal signal. As the sliding
window travels along the evolving time line of the resampled
and normalized signal, we compute a series of breathing wave-
forms and rates. This renders the breath computation near real
time. The details of each algorithmic step are as follows.

1) Normalization: We define as Sg (t), t ∈ {0, . . . , Ng}, the
resampled breathing signal on the segment g. We normalize the
signal amplitude as follows:

S ′
g (t) =

Sg (t) − µg

σg
(7)

where µg and σg are the mean and standard deviation of Sg (t),
respectively. The normalization transforms signal Sg (t) to S ′

g (t)
with mean µ′

g = 0 and standard deviation σ′
g = 1.

2) Wavelet Transform: We perform continuous wavelet
transformation (CWT) [22] on the resampled and normalized
thermal signal segment

ΨΨ
S ′

g
(τ, s) =

1√
|s|

∫
S ′

g (t)ψ
(

t − τ

s

)
dt (8)

where ψ is the “mother wavelet,” τ represents the translation
parameter, while s denotes the scale at which the signal segment
is examined. We use the Mexican Hat (MH) [22] as the mother
wavelet.

3) Breathing Waveform: CWT allows analysis at all scales,
thus facilitating the extraction of the signal component of inter-
est (i.e., breathing). We assume that the breathing component
exists at a scale smax corresponding to a local maximum of the

Fig. 7. Experimental setup: subject, imaging, and ground-truthing clinical
equipment.

wavelet energy coefficients WTi(t)

smax = argmax
i

{∑
|WTi(t)|2

}
. (9)

Lower scales than smax are likely to contain noise, while higher
scales contain metabolic contributions. The comparative exper-
imental results in Section III-D verify the correctness of this
hypothesis; thus, it can be safely used to compute the breathing
waveform in thermal imagery of the nostrils.

4) Breathing Rate: Given a mother wavelet, the frequency
that maximizes its transform is the center frequency Fc . This
frequency is known for the MH mother wavelet used to represent
the generic nostril signal. The center frequency Fc adjusted for
downsampling δ = 10 fps is the breathing frequency BR dilated
(scaled) by the factor smax

BR ·smax = Fcδ. (10)

One can solve this equation to find the breathing rate BR.

III. EXPERIMENTS

A. Experimental Setup

The centerpiece of the imaging system we used in our ex-
periments is a forward looking IR (FLIR) SC6000 midwave
IR (MWIR) camera with an indium antimonite (InSb) detector
operating in the range 3–5 µm [23]. The camera has a focal
plane array (FPA) with maximum resolution of 640 × 512 pix-
els. The sensitivity is 0.025 ◦C. The camera is outfitted with an
MWIR 50-mm lens f/2.3, Si : Ge, bayonet mount from FLIR
Systems [23].

The ground truth system is composed of a PowerLab 8/30 data
acquisition system and a thermistor from ADInstruments [3]. An
electronic trigger synchronizes the imaging and ground truth
systems.

The experiments took place in a climate-controlled room ac-
cording to an approved protocol by the Institutional Review
Board, University of Houston. Subjects were located 6 ft away
from the imaging system and offered a frontal view when sit-
ting in a comfortable chair (see Fig. 7). The subjects were also
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Fig. 8. Evolution of tracker’s centroid in two runs for a typical thermal clip.

fitted with the nasal thermistor to ground truth the imaging mea-
surements. The MWIR camera was calibrated with a two-point
calibration at 28 ◦C and 38 ◦C, which are the end points of a
typical temperature distribution on a human face. We recorded
3 min thermal clips (and corresponding thermistor signals) for
20 healthy subjects of both sexes.

The subjects were left free to move in their chairs. During the
recording, some of them appeared more agitated than others,
thus providing good testing data for the tracker. Almost all sub-
jects exhibited the normal breathing rates of resting adults (i.e.,
12−20 cycles per minute [24]), as validation of their respiratory
health.

B. Sensitivity to Tracking

The coalitional tracker is composed of particle filter trackers
that have stochastic components. This means that the tracker’s
behavior is not absolutely deterministic. If the same tracker is
run twice with exactly the same initialization conditions, it will
produce slightly different results. Provided that repeatability
stays within bounds, this is an acceptable compromise for the
tracker to overcome local extrema and discretize effectively the
search space.

To quantify the repeatability of the coalitional tracker, we
ran it twice on all 20 thermal clips of the dataset. For each
clip, the initialization conditions between runs remained the
same. Fig. 8(a) and (b) shows a typical evolution of the tracker’s
centroid coordinates Xi and Yi , respectively, where i denotes
the run number.

We computed the Euclidean distances DistXt
= ‖X1t −

X2t‖ and DistYt
= ‖Y1t − Y2t‖ of the tracker’s centroid along

the time line t ∈ {0, . . . , N}. Table I shows the first- and second-
order moments for the centroid drift between runs. On average,
the drift is negligible as it remains within 1 pixel in either dimen-
sion. Only in the case of S19, where the tracking performance
is not effective, the drift is somewhat larger.

TABLE I
REPEATABILITY STATISTICS FOR TRACKER CENTROID

C. Sensitivity to MROI Selection

In Section II-B, we described an algorithm for automatic
MROI localization. The estimated MROI is meant to cover the
outer extent of the nostril region. Strictly speaking, the source
of the signal is the nostril orifices. The MROI covers nearby
cartilage in addition to the orifices. This simplifies segmentation
and provides some room for tracking error. The question then
becomes how sensitive the breathing measurement is to liberal
MROI selection.

To quantify sensitivity, we chose a random clip from the
dataset, and generated slightly larger and smaller MROIs from
a baseline one. In Fig. 9, the baseline MROI is shown in solid
yellow, and it is the minimal rectangle covering tightly the two
nostrils. The dashed pink and blue MROIs are offset inward by 1
and 2 pixels, respectively. Similarly, we have four MROIs offset
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Fig. 9. Various size MROIs centered on the nostrils.

Fig. 10. Thermal signals corresponding to the MROIs depicted in Fig. 9.

outward by 1, 2, 4, and 6 pixels correspondingly. The latter
one is the MROI generated automatically by the localization
algorithm described in Section II-B.

Fig. 10 shows the extracted mean thermal signals from the
seven MROIs of Fig. 9. The waveform colors correspond to
the MROI colors. We observe that the signals have identical
periodicity and very similar amplitude. Therefore, slightly larger
or smaller MROIs from the baseline can preserve the source
breath signals as long as they are centered on the nostrils.

In addition, we examined the robustness of the MROI local-
ization algorithm by selecting various sizes for TROI. Naturally,
TROI differs from trial to trial and from user to user. It is meant
to serve as gross initialization in the absence of a face segmenter.
Despite the inherent variance in the TROI selection, the MROI
algorithm should always provide precisely the same region on
a particular clip. For every subject in the dataset, we selected
six different TROIs and ran a corresponding number of times
the MROI algorithm. We also manually delineated the base-
line MROI that encompasses tightly the nostril orifices. Fig. 11
shows visually the results for subject S15 .

A measure of consistency is for the automatic MROI to in-
clude entirely the baseline MROI to prevent any loss of signal
information. We define as coverage Cn

Cn =
R(Automatic MROI ∩ Baseline MROI)

R(Baseline MROI)
(11)

where R(.) denotes the area of a region. Table II shows the
computed Cn for all six TROI trials in the entire dataset. On
average, the coverage is close to 95%. The MROI algorithm
performs better when the user chooses smaller TROI (e.g., TROI
1) and deteriorates somewhat when he/she chooses larger TROI
(e.g., TROI 6).

Fig. 11. MROI localization for different TROIs.

TABLE II
COVERAGE Cn (IN PERCENT) OF TROI 1–6

D. Experimental Results

Based on the methodology described in Section II, we deter-
mine the breathing waveforms from the thermal imaging and
thermistor signals by computing the wavelet energy curves in
all scales, and selecting the local maximum in the small-scale
region. The small-scale region corresponds to relatively high-
frequency phenomena embedded in the thermal signals, and
breathing is one of them. Actually, it is expected to be the
strongest phenomenon present due to the measurement locale.
Fig. 12 shows the imaging and thermistor energy curves for the
corresponding signals of all subjects included in the test popula-
tion. One can observe the simultaneous peaks of the two curves,
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Fig. 12. Wavelet energy curves of the thermal imaging PT and thermistor PG signals for all subjects. Only small scales [1]–[32] are shown.

which indicate agreement between the two modalities as to the
scale (and thus, the frequency) of the breathing phenomenon.

Fig. 13(a) shows the thermal imaging and ground truth
wavelets corresponding to the breathing scale smax = 10 for
subject S20 . Fig. 13(b) shows the cross correlation (XR) be-

tween the two waveforms as a function of time lag. The max-
imum XR is 97.48%, where the thermally imaged breathing
waveform ST

sm a x
(t) is −4 lags, i.e., 0.4 s behind the ground

truthed one, i.e., SG
sm a x

(t). Table III shows that, on average, the
maximum XR in the dataset is 92.75%. Overall, the breathing
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Fig. 13. (a) Breathing wavelets of imaged and ground truth signals. (b) Cross correlation.

TABLE III
XR OF BREATHING WAVEFORMS

waveform extracted from the thermal imaging data lags the
breathing waveform extracted from the thermistor by −0.48 s.
This small delay is due to the imaging computation and in-
significant. As the exceptionally effective scale agreement and
XR numbers demonstrate (second, third, and fifth columns in
Table III), the extracted breathing waveforms from the two
modalities are almost identical. This is a firm confirmation that
the thermal imaging method can function as a virtual thermistor.

Table IV shows the detailed experimental results regarding
the rates of the breathing signals. The imaging measurements
(BRT ) are juxtaposed with the corresponding ground truth ones
(BRG ) obtained through the thermistor.

The comparison between the two modalities is based on two
measures, CAND and CuSum. CAND stands for complement
of the absolute normalized difference given by

CAND = 1 − |BRT − BRG |
BRG

(12)

TABLE IV
BREATHING RATE RESULTS

which is the absolute difference between the mean thermal imag-
ing and ground truth measurements normalized against the mean
ground truth and subtracted from unity. This gives a weighted
indication of how close the mean thermal imaging measurement
(BRT ) is to the mean ground truth measurement (BRG ) in each
case. The mean CAND for the experiment is 98.27%.

CuSum stands for cumulative sum, and is an indication of the
instantaneous error in the imaging measurement with respect to
the ground truth measurement

CuSum =
1
T

T∑
t=1

|BRT (t) − BRG (t)|
BRG (t)

× 100%. (13)

The mean CuSum error for the experiment is 10.42%. On av-
erage (see CAND), the two modalities give almost identical
measurements. There is more discrepancy if one examines the
measurements on a beat-by-beat basis (see CuSum), but these
tend to cancel out on the whole.
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Fig. 14. Visualization of 2-D thermal isosurfaces in the nostrils over time for a subject. This is the native information the thermal imaging sensor produces
and one can intuitively understand the wealth of information hidden therein. However, mathematical handling of this information becomes more involved. In the
current study, a mean value was obtained at each point in time to form the 1-D signal that emulates a thermistor operation.

IV. DISCUSSION

Breathing is one of the vital signs. It is used as an indicator
of overall health status and also in diagnosis of chronic or acute
diseases, like obstructive sleep apnea or heart attack. In certain
cases (e.g., sleep studies or neonatal care), extensive monitoring
of breathing function is necessary in as unobtrusive manner as
possible. In this paper, we have described a new imaging method
that fulfills these demanding specifications. It is a leap forward
with respect to previous methods we reported on this matter.
The present method automatically localizes the nostril region
and cancels the effect of head motion. Also, a novel departure
from previous methods that we reported is the use of wavelet
analysis for the determination of not only the breathing rate, but
also the full breathing waveform. This is a better approach than
Fourier analysis as breathing is a nonstationary process. Based
on the largest scale experiment we conducted yet, the thermal
imaging measurement appears to be in par with the existing
clinical standard. Now that the feasibility of breath measure-
ments with passive imaging means has been firmly established,
future efforts should be concentrated on pathophysiological
experiments.

One could ponder various questions that arise from the
prospect of applying the method in clinical practice, particu-
larly in sleep studies. At closure, we briefly discuss a few of
these questions in an effort to render further help in future clin-
ical investigations.

1) Cost: The thermal imaging system has high initial cost.
However, it has negligible maintenance cost once it is
acquired. This is in complete antithesis to a classic
polysomnographic system, which has lower initial cost,
but higher operational cost. The latter stems from the
sterilization and replacement of consumables. Therefore,
over the long run, the cost-effectiveness of the thermal
imaging solution is viable. In fact, lower grade (and thus
cheaper) thermal imaging systems can be probably used
with equal effectiveness to the one used in this study. The
reason is that the thermic effect of breathing appears to
be in the tenths, not hundredths, of degrees of Celsius,
and hence capable to afford lower sensitivity. Further-
more, the spatial extent of the phenomenon spreads over
dozens of pixels, and hence capable to afford lower spatial
resolution.

2) Single channel: Air flow is one of many channels used
in polysomnography. However, it is the most important.
There is a possibility for some additional channels to be
proved measurable via thermal imaging through further re-
search. For example, eye movements could be indirectly
quantified through the metabolic heat signature of the ocu-
lar muscle. Some relevant work for a different application
has been done in [25]. And pulsation has proved quan-
tifiable through thermal imaging of superficial vascula-
ture [7]. In general, since the entire face is imaged, there
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is potential for virtual measurements of multiple physio-
logical variables at appropriate locales.

3) Operational envelope: During sleep, the subject can turn
and assume either a prone or lateral posture. In the case of
classic polysomnography, the wires are likely to be severed
in such turns and the sensors to be detached. The sleep
study operator, who monitors the signals in another room,
has to go to the patient’s bedside and reattach the sensors
or content with losing the signal for a period of the study.
In the case of thermal imaging, if the subject turns on the
side, the operator would simply need to relocate the virtual
measurement area on the imagery using the mouse. This is
a significant advantage. If the subject turns and assumes a
prone posture, the operator would have to do what usually
is done in polysomnographic studies—go to the patient’s
room and help him/her turning back (without reattaching
wires this time) or content with losing the signal for a
period of the study.

In general, there is considerable operational flexibility with
the imaging method that does not exist in polysomnography.
With imaging, when things go wrong, automation may break
down, but the operator can click away from the problem, right at
his/her monitor. With polysomnography, when things go wrong,
the operator always have to rush to the patient’s bedside and take
physical corrective action. For example, if the nostril segmenta-
tion fails, because the subject turns on the side, or it is irrelevant,
because the subject starts breathing from the mouth, the opera-
tor can fix the problem by simply repositioning the TROI and
MROI areas with the mouse. Future algorithmic enhancements
may improve robustness so that automation remains uninter-
rupted even when turns occur.

Beyond the potential clinical applications, this technology
can be useful as an investigative tool to understand respira-
tory physiology deeper and improve current practices. This is
especially true if one does not reduce the inherently multidi-
mensional imaging signal to 1-D, as the method presented in
this paper did. Fig. 14 shows the evolution of 2-D thermal iso-
surfaces in the nostrils of a subject over time. Breathing from
the left nostril of the subject appears to be impaired. However,
this subtle abnormality was masked in the thermistor data, as
the thermistor was averaging from the two nostrils due to its in-
between placement. This is a rather standard practice in sleep
clinics, which should probably stop. It is far better to place one
thermistor in each nostril, if one wants to catch subtle breath-
ing abnormalities that are not shared by both nostrils. In other
words, thermal imaging technology can be used to better un-
derstand what current simpler sensing counterparts are missing;
this may lead to the adoption of optimization strategies, like the
one presented in this example. One major contribution of this
paper is that it opens the way for investigations like this to take
place in the future.
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