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Abstract—In the present paper, we introduce an integrated
framework for detecting peripheral sympathetic responses through
purely imaging means. The measurements are performed on
three facial areas of sympathetic importance, that is, periorbital,
supraorbital, and maxillary. To the best of our knowledge, this is
the first time that the sympathetic importance of the maxillary
area is analyzed. Because the imaging measurements are thermal
in nature and are composed of multiple components of variable
frequency (i.e., blood flow, sweat gland activation, and breathing),
we chose wavelets as the image analysis framework. The measure-
ments also carry substantial noise due to imperfections in tissue
tracking and segmentation. The image analysis is grounded on gal-
vanic skin response (GSR) signals, which are still considered the
golden standard in peripheral neurophysiological and psychophys-
iological studies. The experimental results show that monitoring of
the facial channels yields similar detecting power to GSR’s. How-
ever, detailed quantification of the responses, although feasible in
GSR through appropriate modeling, is quite difficult in the facial
channels for the moment. Further improvements in facial tissue
tracking and segmentation are bound to overcome this limitation.
This paper opens a new research area that leads to unobtrusive
screening technologies in neurophysiology and psychophysiology.

Index Terms—Facial physiology, galvanic skin response (GSR),
stress, thermal imaging, wavelets.

I. INTRODUCTION

THE AUTONOMIC nervous system (ANS) and particularly
its sympathetic division has been the object of intense

study in neurophysiology and psychophysiology. The sympa-
thetic division readies the body for a crisis that may require sud-
den, intense physical activity. It is a primal survival mechanism.
Therefore, interest on methodologies that scrutinize sympathetic
responses is well founded and has many applications.

When sympathetic activation occurs, an individual experi-
ences many changes. Among others, these include increased
activity in the cardiovascular and respiratory centers of the pons
and medulla oblongata, leading to elevations in blood pressure,
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heart rate, breathing rate, and depth of respiration. These vital
sign changes are mediated through adrenergic postganglionic
fibers. Determination of sympathetic activation through vital
sign monitoring is not always straightforward. Vital signs are
often affected by pathophysiology and the time resolution of
their sympathetic activation is limited by the long-lasting effect
of norepinephrine release.

As an alternative, researchers focused their efforts on sym-
pathetic manifestations effected through cholinergic postgan-
glionic fibers. These fibers innervate sweat glands of the skin
and the blood vessels to skeletal muscles and the brain. They
provide a pathway to stimulating sweat gland secretion and
selectively enhancing blood flow to muscles. Cholinergic me-
diation results in local physiological signs (versus vital signs),
which are more descriptive (least affected by pathophysiology)
and fast acting (fine time resolution).

In this context, electrodermal activity (EDA) has been the gold
standard for peripheral monitoring of sympathetic responses.
EDA is measured through the galvanic skin response (GSR),
which is a simple and reproducible method for quantifying
sweat gland activation. During arousal, the exposed part of the
human body where sweat gland activation is considered to be
the strongest is the palm. Therefore, the GSR sensor is attached
to the palm or the fingers and the corresponding signal repre-
sents a change in the electrical properties of the palm’s skin.
Alternatively, EDA can be captured through a palm thermistor,
which registers the full thermoregulatory phenomenon includ-
ing changes both in blood flow and sweat gland activation.

In recent years, we have demonstrated that during arousal
additional physiological signs materialize on the face. Specif-
ically, we have shown that increased blood flow in the peri-
orbital [1], [2] and supraorbital [3] areas are ubiquitous mani-
festations of stress. We have also developed a thermal imaging
methodology to extract both the periorbital and supraorbital
signals. This methodology has introduced a paradigm shift in
peripheral neurophysiological and psychophysiological studies
in more than one way as follows.

1) Contact-free 2-D sensing of easily accessible tissue (i.e.,
face) versus contact-probe 1-D sensing of less accessible
tissue (e.g., palm or finger).

2) Motion effects are canceled to a degree by tissue tracking
technology. This lessens the restrictions on the subject
during experimentation.

3) Measurements are effected through computation and not
electronic transduction.

In the present paper, we comparatively study facial and palm
channels. The facial channels include overall thermoregulatory
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responses in the periorbital, supraorbital, and maxillary regions,
obtained through thermal imaging. The palm channels include
sweat and thermal component responses obtained through GSR
and thermistor sensors, respectively. The study focuses on a clas-
sic repeated arousal experiment. The main thesis of the paper
is that thermoregulatory information of sympathetic importance
on the palm is similar to the one manifested on the face. To test
this hypothesis, first, we introduce a new modeling methodology
to quantify the GSR signal and validate the arousal experiment.
Then, we apply a wavelets analysis method for all channels
(periorbital, supraorbital, maxillary, GSR, and thermistor). The
results reveal tonic (baseline) and phasic (event related) affin-
ity of the three imaging channels to the GSR and thermistor
channels. We also demonstrate that from the maxillary signal,
computation of breath function is feasible through multiresolu-
tion analysis. A unique result presented in this paper is evidence
of concomitant sweat gland activationin the palm and maxillary
areas. To the best of our knowledge, it is the first time that this
maxillary thermoregulatory phenomenon is brought to the fore.

Out of our research is emerging the pivotal role of facial
physiology in the manifestation of stress. It is the first time that
this role emerges in all its facets and its redundancy to local signs
in other parts of the body (i.e., palm) is demonstrated. It is also
remarkable that sensing of peripheral sympathetic responses can
now be accomplished through imaging means.

In the rest of the paper, we unveil our new imaging method-
ology for modeling and analyzing the facial sympathetic chan-
nels. Specifically, in Section II, we describe the method itself.
In Section III, we report and discuss its experimental validation.
In Section IV, we conclude the paper.

II. METHODOLOGY FOR SIGNAL MODELING AND ANALYSIS

A. Modeling of GSR Signal

The first goal is to model the GSR signal and be able to draw
inferences about the repeated arousal effect on each subject.
Specifically, our modeling scheme needs to show that when
individuals tend to habituate to the stimulation paradigm, GSR
amplitudes tend to reduce, latencies tend to increase, while wave
shapes tend to remain unaltered [4]. These well established and
understood patterns of repeated arousals in normal subjects,
if quantified here, will validate our experimental design and
execution.

As we will discuss in the experimentation section
(i.e., Section III), we stimulate the subjects with three auditory
startles spaced at least 1 min apart. For this reason, we choose
to split the GSR signal in three nonoverlapping segments:

1) S1: 2 s before the first startle until 2 s before the second
startle;

2) S2: End of S1 to 2 s before the third startle;
3) S3: End of S2 to end of the experiment.
We divide each of the segments S1, S2, and S3 into three

subsegments:
1) LS: The left subsegment, which spans from the begin-

ning of the segment till the maximum value (shortly after
startle).

Fig. 1. GSR segments S1, S2, and S3 along with the fitted Laplace values for
subject Sub1. The stimuli occurrences have been marked appropriately.

2) RS: The right subsegment, which spans from the maxi-
mum value till the end of the segment.

3) LSOS: The left stimulus onset subsegment, which starts at
the time of the startle and lasts until the maximum value is
reached, is a portion of the LS and is useful in estimating
the habituation effect.

The GSR signal around the stimulus is formed by the charging
and discharging of an RC circuit, which closes on the palm skin
during emotional sweat gland activation. Charging corresponds
to arousal (LS) and is characterized by an exponential increase.
Discharging corresponds to arousal waning (RS) and it follows
an exponential decay. For this reason, we choose the Laplace
distribution to model the GSR signal. The probability density
function is given by

f(t | µ, β) =
1
2β

exp
(
−|t − µ|

β

)
(1)

where µ denotes the mean time parameter, while β > 0 is the
scale parameter.

Although the GSR signal is not symmetric around the local
maximum value, the Laplace distribution is. This led us to model
separately the LS and RS for every segment (see Fig. 1). For LS,
we fit a truncated Laplace distribution, where the µ parameter
is assumed to be known (location of the maximum) and the
distribution is censored to the right of the maximum. Similarly,
for RS, we use a truncated Laplace distribution, where the values
at the left of the maximum are censored. The goal then is to
estimate the scale parameters of the left and right distributions
(i.e., βL and βR ). This estimation is done through the ordinary
least squares (OLS) method.

For LS, where t ≤ µ, we have

y = f(t) =
1

2βL
exp

(
−µ − t

βL

)

⇒ ln(y) =
[
− µ

βL
− ln(2βL )

]
+

1
βL

t (2)

so that time t and logarithmic scale ln(y) are linearly related. We
use OLS to estimate the slope, whose inverse is the parameter
of interest βL .
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Fig. 2. Periorbital, supraorbital, and maxillary regions of interest. The peri-
orbital measurement is strictly localized on the thermal footprints of the facial
artery.

For RS, where t ≥ µ, we have

y = f(t) =
1

2βR
exp

(
− t − µ

βR

)

⇒ ln(y) =
[

µ

βR
− ln(2βR )

]
− 1

βR
t (3)

so that time t and logarithmic scale ln(y) are linearly related.
We use OLS to estimate the slope, whose negative inverse is the
parameter of interest βR .

For LSOS, we apply linear fitting, as these subsegments are
nearly impulsive.

B. Wavelets Analysis of Sympathetic Signals

We extract thermal signals from three facial areas: periorbital,
supraorbital, and maxillary. In all three cases, the regions of
interest are tracked using the coalitional tracking method, as
reported in [5]. In the periorbital area, the extracted signal is
formed from the evolution of the mean thermal footprint of the
facial arteriovenous complex. This footprint is segmented via
a fuzzy segmentation algorithm, which is seeded in the initial
frame with two points in the inner orbital areas (see Fig. 2). On
each subsequent frame, the seeds are adjusted with help from the
coalitional tracker. In the supraorbital area, the extracted signal
is formed from the evolution of the mean thermal footprint of
the entire region of interest. In the maxillary area, the extracted
signal is formed from the evolution of the mean thermal footprint
of the entire region of interest.

The periorbital thermal signal is a correlate of the blood sup-
ply to the orbital muscle [1], [2]. The supraorbital thermal signal
is a correlate of the blood supply to the corrugator muscle [3].
The maxillary thermal signal is a correlate of the blood perfusion
in the respective area. The last two signals may be modulated
from the activation of sweat glands in the respective areas. This
modulation appears to be heavier in the maxillary area, partly
due to higher concentration of perspiration pores (see Fig. 3).
Finally, the maxillary signal is periodically modulated from the
thermal effect of breathing, due to the proximity of nostrils.

Concomitantly with the three facial imaging signals, we ex-
tract palm perspiratory and thermal signals through GSR and
thermistor sensors, respectively. We also extract the breathing
signal through a piezo-respiratory belt transducer. All probe
signals (GSR, palm thermistor, and respiratory belt) are syn-
chronized with the thermal imager through an electronic circuit.

Fig. 3. Thermal facial image of high spatial resolution. The high concentration
of perspiration pores in the maxillary area is evident.

The stress content of the GSR signal has been documented in
the literature exhaustively [4], [6], [7]. We have also investigated
the stress content of the periorbital and supraorbital channels in
a number of publications [1]–[3]. In this paper, we introduce and
characterize the maxillary signal as the facial equivalent of the
palm signals. To study the maxillary signal in comparison with
the ground-truth palm signals as well as the other facial signals,
we use a multiresolution wavelets approach. This approach is
also conducive to understanding the thermal effect of breathing
in the maxillary measurement.

Specifically, we consider that all signals if they are of sym-
pathetic importance have either a strong phasic or tonic com-
ponent [8]. The phasic component should be at a scale that
matches the interstimulus interval of the experiment, while the
tonic component will reside at an even higher scale that spans
the entire experimental timeline. Any strong extraneous mod-
ulation (e.g., breathing) in some signals should be evident in a
lower scale (i.e., higher frequency), far away from the phasic
and tonic scales.

Our goal is to analyze the thermal and GSR signals at different
frequency scales but without loss of time information. Since
the signals are nonstationary in nature, we select the wavelet
transformation over the FFT for signal analysis. To quantify
the contribution of phasic, tonic, and other components in the
signals, we first normalize all the signals

Snorm =
S − Min(S)

Max(S) − Min(S)
(4)

where S is signal to be normalized. Normalization is essential
in wavelet analysis because wavelet energy computed on nor-
malized signals exposes detailed information, specifically at the
lower scales (see Fig. 4).

Next, we extend the signals beyond the boundary limits be-
fore computing wavelet coefficients. Convolution of a wavelet
with a finite-length signal looks for data points beyond the sig-
nal end points. As there are no data points beyond the signal end
points, this introduces an error in the wavelet energy computa-
tion, which is known as the border discontinuity error. The bor-
der discontinuity error leads to wrong local and global maxima
in wavelet energy curves (see Fig. 5). The purpose of the signal
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Fig. 4. Wavelet energy plots for subject Sub1: (a) without signal normalization
and (b) with signal normalization. Wavelet energy plot of a normalized signal
reveals detailed information at the lower scales.

Fig. 5. Wavelet energy graph for subject Sub1. The black curve corresponds
to a signal without extension, while the gray energy curve corresponds to a
signal with extension. The latter reveals the true global maximum in this energy
graph.

extension is to define data points beyond the signal boundary.
There are many ways to extend the finite-length signal. Among
them, zero-padding, wraparound, and symmetric extension are
popular in the image and signal analysis communities. As our
signals are nonstationary in nature, we select the symmetric
extension technique. Selecting an appropriate signal extension
length is also very important in the wavelet energy computation.

We apply three different extension lengths, 2N, N, and N/2, and
for each signal, we choose the one that has the minimal border
discontinuity error in the wavelet energy computation.

To quantify the contribution of phasic, tonic, and other
components in the preprocessed signals, we apply a continu-
ous wavelet transform (CWT) with a Daubechies-10 mother
wavelet. Finally, we compute the energy of each signal in all
scales. The energy curves feature global and local maxima. We
analyze these maxima to understand if they correspond to phasic
or tonic responses. We also compare their relative contributions
in each signal. For intervening phenomena for which we have
ground truth (e.g., breathing), we perform a comparative eval-
uation to verify the source of the wavelet component beyond
doubt.

Out of this image analysis, an intriguing picture of the facial
physiology of stress is emerging, tied to a trustworthy channel
that served well in research and practice for many years (i.e.,
GSR) and from an experiment whose validity has been verified
through the modeling approach described in Section II-A.

III. EXPERIMENTATION AND DISCUSSION

We used a high-quality thermal imaging (TI) system for data
collection. The centerpiece of the TI system is a ThermoVi-
sion SC6000 midwave infrared (MWIR) camera [9] (NEDT =
0.025 ◦C). We recorded ten thermal clips from the faces of
ten subjects while resting in an armchair. Concomitantly, we
recorded ground-truth GSR, palm thermistor, and piezorespira-
tory signals with the PowerLab 8/30, ML870 data acquisition
system [10].

The dataset included subjects of both genders, different
races, and with varying physical characteristics. Exclusion cri-
teria were the presence of any overt peripheral neuropathy or
psychophysiological disorder. The subjects were asked to ab-
stain from consuming vasomotor substances (e.g., caffeine and
nicotine) for at least 3 h prior to participating in the experiment.
All participants signed the informed consent form and the study
protocol was approved by the Univesity of Houston Institutional
Review Board.

The experiment was conducted in a quiet room where only
two persons were present, the subject and the experiment con-
ductor. The room lights were dimmed in order to allow the
subject to relax. The subject was placed 9 ft away from the ther-
mal camera. After all, the ground-truth electrodes were attached
to the subject’s body, the subject was asked to relax for 10 min
before the experiment began. This helped to reduce the effects
of other stress factors that the subject may have carried in from
previous events. During the experiment, the subject focused on
the simple mental task of counting circles that appeared on
a monitor. The subject’s physiological activity was measured
through thermal imaging and contact sensors (see Fig. 6). The
experiment lasted 4 min. After the first minute, an auditory
startle was delivered, and after that, two more were delivered,
spaced 1 min apart. All stimuli were chosen to be natural star-
tle sounds that people encounter in real life. Specifically, the
first and third stimuli were glass breakage sounds. The second
stimulus was phone ring. We chose the second stimulus to be
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Fig. 6. Experimental setup; subject, imaging and ground truthing clinical
equipment.

Fig. 7. Experimental timeline; the auditory startle sound was delivered after
every minute.

different than the other two to raise the habituation threshold.
The experiment ended 1 min after the delivery of the third startle
(see Fig. 7). During the data collection procedures, the experi-
menter was out of the subject’s field of view to avoid creating
distraction.

A. GSR Results

We applied the modeling methodology detailed in
Section II-A to each segment of every GSR waveform. There-
fore, we had three segments (S1, S2, S3) × 3 subsegments (LS,
RS, LSOS) × 10 subjects = 90 cases for which we needed to
estimate the scale parameter β (Laplace fitting for LS and RS)
or the slope (linear fitting for LSOS). The results are shown in
Table I and elicit the following conclusions.

1) For almost all stimuli (S1, S2, and S3), LS has a much
smaller scale parameter than RS indicating that the phe-
nomenon causes a steep increase and then decays at a
much lower rate.

2) Comparing the LS parts of S1, S2, and S3, within the
same subject, we observe that usually the 1st stimulus
causes the steepest increase, and as we move to subsequent
stimuli, the response is less steep (i.e., the βL parameter
is increasing).

3) Comparing the RS parts of S1, S2, and S3, within the
same subject, we observe that usually the subject recovers
slowly after the 1st stimulus (i.e., it has a high βR parame-
ter). Recovery from subsequent stimuli is becoming faster
(smaller βR parameter).

4) Comparing the LSOS parts of S1, S2, and S3, within
the same subject, we observe that usually the estimated
(positive) slope of the linear regression is decreasing as
we move from S1 to S2 to S3 (habituation).

These conclusions are in accordance with the expected behav-
ior of normal subjects, and therefore, our experiment is valid.

B. Comparative Wavelets Analysis Results

We have applied the wavelets analysis methodology detailed
in Section II-B for all six sympathetic signals from all ten sub-
jects. Fig. 8 shows the wavelet energy curves in lower and
higher scales of subject Sub1. In lower scales (i.e., 50–250),
the piezorespiratory signal (Brt) appears to have a dominant
component, as it is manifested by the high bell-shaped bulge.
This is in accordance with its expected function. The second
most prominent component is featured by the maxillary signal
(M). This verifies our hypothesis of breathing modulation for
this signal, as it is sampled in proximity to the nostrils. Fig. 9
is a superimposition of the wavelet components that correspond
to the local energy maxima of the Brt and M for subject Sub1.
There is a slight, but consistent phase shift due to the fact that
the Brt signal is sampled around the chest while the M signal
in the vicinity of the nostrils. Other than that, the periodicity of
the signals matches beat for beat. Similar results are produced
for the other subjects.

In higher scales, (i.e., 1000–3000), the GSR signal appears
to have a dominant component, as it is manifested by the high
bell-shaped bulge [see Fig. 8(b)]. This is the phasic component
as the scale is about 1/3 of the total scale and matches the period
of the repeated stimuli in our experiment. The strong presence
of a phasic component in the GSR signal is consistent with its
nature. The fascinating result here is the almost equally strong
phasic component in the maxillary signal (M). This is consis-
tent with our hypothesis of strong sweat gland activation in the
maxillary area concomitant to the palm area. Other facial sig-
nals (i.e., periorbital-P and supraorbital-S) also have significant
but relatively weaker phasic components, which verifies their
sympathetic relevance.

The phasic components of the thermal and GSR signals illus-
trate another fascinating result (see Fig. 10). The phasic com-
ponent of the periorbital signal (P) has a 180◦ phase shift with
respect to the phasic component of the maxillary signal (M)
but is in phase with the phasic component of the GSR signal.
The periorbital signal is associated with the blood supply to
the orbital muscle, which elevates the temperature of the peri-
orbital region during stimulation. The maxillary signal, on the
other hand, is heavily modulated by sweat gland activity during
stimulation, which decreases the temperature of the maxillary
region. Therefore, an inverse relation exists between the pha-
sic components of the periorbital and maxillary signals. This
inverse relation may be difficult to visualize through raw data,
but it becomes clear through wavelet analysis. The GSR signal,
which represents skin conductivity, exhibits a steep increase dur-
ing stimulation while the facial temperature changes relatively
slowly. However, although the GSR and periorbital signals are
changing at different speeds around the stimuli, their changes
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TABLE I
ESTIMATED β PARAMETERS FOR LS AND RS LAPLACE DISTRIBUTIONS ALONG WITH

LINEAR REGRESSION SLOPE ESTIMATES OF LSOS

Fig. 8. Wavelet energy curves of subject Sub1 for all six sympathetic channels
in (a) lower and (b) higher scales.

Fig. 9. Wavelet components of the Brt and M signals that correspond to the
respective lower scale energy maxima.

Fig. 10. Phasic components of thermal and GSR signals for subject Sub1.
Phase shift of 180◦ is observed between the phasic component of maxillary and
periorbital signals. The phasic component of the periorbital signal is in phase
with the GSR signal.

are in phase. The wavelet analysis illustrates this relationship
very clearly at the phasic level.

The tonic components of the signals reside at the highest
scales (3300–4000) that span almost the entire timeline. It is
worth noting that the GSR signal has the smallest tonic com-
ponent of all sympathetic channels. This is consistent with the
nature of the GSR channel. The maxillary signal (M), which
is its facial equivalent, has a much stronger tonic component.
In contrast to the GSR signal, the maxillary signal contains not
only local sweat gland activation information, but also thermal
information related to changes in local blood perfusion. In this
sense, the maxillary signal (M) is probably closer to the palm
thermistor (Thr) signal.

In general, adrenergic and cholinergic signal components re-
side in nonoverlapping scales, which makes the adopted mul-
tiresolution approach an ideal analysis tool. A case in point can
be made if we remove the breathing component from the raw
maxillary signal [see Fig. 11(a)] and recompute the wavelet en-
ergy. The curve no longer shows the breathing bulge at lower
scales [see Fig. 11(b)].

The picture emerging from the analysis of the wavelet energy
curves for subject Sub1 remains relevant for all the other nine
subjects in our dataset. Fig. 12 shows the mean energy of tonic,
phasic, and breathing components of the various sympathetic
channels for the entire dataset. All the conclusions extracted
through the example of subject Sub1 still apply for the mean
subject.
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Fig. 11. (a) Maxillary signal in raw (Raw_M) and noise reduced (NR_M)
forms. Noise reduction amounts to the removal of the breathing component.
(b) Wavelet energy curves at lower scales. The wavelet energy curve of the
maxillary channel after removing the breathing component does not feature a
bulge at lower scales.

Fig. 12. Mean tonic, phasic, and breathing energy components for the various
sympathetic channels.

IV. CONCLUSION

The wavelet energy analysis demonstrates quantitatively that
facial sympathetic channels can be used to detect arousal.
Specifically, the novel maxillary channel (M) has enough in-
formation content to localize sympathetic responses almost
as well as the GSR channel. However, as we discussed in
Section II-A, appropriate GSR modeling can enable quantifi-
cation of important subtleties, like habituation. Unfortunately,
the facial signals do not have the almost ideal quality of the raw
GSR signal and direct modeling is difficult [see Fig. 13(a)]. The
presence of multiple contributing thermal factors (e.g., blood
flow, sweat gland activation, and breathing), as well as signif-
icant noise from tracking and segmentation imperfections ren-
ders modeling of the raw facial signals hard. In this context,

Fig. 13. (a) Raw GSR and maxillary (M) signals for subject Sub1. (b) The cor-
responding phasic wavelets with the enveloping waveguides. The occurrences
of the stimuli are marked by the three vertical lines.

wavelet analysis provides a sound way to isolate the various
components and reduce the noise content of the facial signals.
The question then is if detailed arousal quantification, such
as the one achieved through Laplace modeling for GSR, can
be achieved through wavelet analysis for the facial channels.
Fig. 13(b) demonstrates the phasic wavelets of the GSR and
periorbital (P) signals for subject Sub1. The two channels have
almost identical response timing and overall trend. Habituation
in the GSR signal can be computed through the enveloping
waveguides. The same can be accomplished for the periorbital
wavelet. Still, the deleterious effect of residual noise in the pe-
riorbital signal is evident, which for the moment allows only
trend computation and precludes precise estimation that can
scale up in the dataset. Our ongoing research aims to improve
the quality of the facial signals through advancements in tissue
segmentation and tracking technology. Then, detailed annota-
tion of phasic responses (not just detection) will be absolutely
feasible for all three facial channels.
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