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Abstract

We propose a novel system that incorporates physiological monitoring as part of the human–computer interface. The sensing element
is a thermal camera that is employed as a computer peripheral. Through bioheat modeling of facial imagery almost the full range of vital
signs can be extracted, including localize blood flow, cardiac pulse, and breath rate. This physiological information can then be used to
draw inferences about a variety of health symptoms and psychological states. Our research aims to realize the notion of desktop health
monitoring and create truly collaborative interactions in which humans and machines are both observing and responding.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Computers are primarily used for information exchange.
They help users to perform a task, solve a problem, be
entertained or educate themselves. Perhaps there is a more
dramatic role for computers. Significant portions of the
population in the developed world spend most of their
daily lives interacting with computers. This is a tremendous
time investment. Thinking in this context, computers may
not give back to their users as much as they should.

We propose to add a new dimension in Human–Com-
puter Interaction (HCI), namely, to monitor the physiol-
ogy of computer users on a sustained basis and take
appropriate actions when warranted. Our research aspires
to use the abundant computing resources at home and
the office in combination with novel sensing, algorithmic,
and interface methods to enhance the user’s experience
and at the same time create a new preventive medicine
paradigm.

Specifically, we collect sensory data through a thermal
camera. This is a high quality Mid-Wave Infra-Red
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(MWIR) sensor (Phoenix model) from FLIR Inc. [1], sen-
sitive in the spectral range 3–5 lm and with noise equiva-
lent detection temperature (NEDT) 0.01 �C. Thermal
imaging is a passive modality, which means that it depends
solely on radiation emitted naturally by the subject. The
thermal camera is connected to the computer as a typical
peripheral and pointed towards the face of the user (see
Fig. 1(a)). Imaging of the face is not only convenient but
also advantageous. The face of the computer user is typi-
cally exposed. It also features a thin layer of tissue, which
facilitates observation in a surface modality such as ther-
mal infrared. Since sensing is done through imaging, it is
contact free.

In a series of conference papers, we have demon-
strated that one can extract a variety of physiological
variables from the facial thermal video through bioheat
modeling. At the moment, we are able to compute super-
ficial blood flow [2,3], cardiac pulse [4], and breath rate
[5]. In typical scenarios a user’s face moves freely, there-
fore successful application of our bioheat models
depends on reliable facial tracking [6]. This initial work
of ours has established the feasibility and laid the foun-
dation for contact-free physiological computation, an
idea we first postulated in [7].
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Fig. 1. (a) Typical setting where a computer user is being imaged through a thermal camera. (b) The relationship between the various components of our
project.
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We use localized blood flow, cardiac pulse, and breath
rate signals to monitor incidents of stress onset, heartbeat
irregularities, and sleep apnea respectively. We have dis-
covered in previous work that instantaneous stress brings
about an increase in the periorbital blood flow [8–10] and
sustained stress is associated with elevated blood flow in
the forehead [11]. Therefore, both stress conditions are
detectable within our framework. In the cases of heartbeat
irregularities and sleep apnea, we did not really discover
new physiological variables for monitoring these patholog-
ical situations. We simply introduce novel ways of measur-
ing the standard vital signs associated with them (i.e.,
cardiac pulse and breath rate).

The computational and biomedical aspects of our work
are meant to facilitate the HCI component of the project
(see Fig. 1(b)). Specifically, we place great emphasis on
using stress as an emotional indicator of frustrated
computer users. Based on the non-intrusive nature of our
methodology and the success forecasted by our pilot stud-
ies, the value of pinpointing sources of computer user frus-
tration cannot be underestimated. We also discuss
appropriate machine responses to alleviate such stress.
Fundamental HCI questions that stem from presenting
and acting upon real-time health information (e.g., inci-
dents of sleep apnea) are also addressed.

The implications of this research may be far-reaching. It
will help to pinpoint and better understand the sources of
frustration for the computer user. At a more general level,
our research leverages novel computer vision technology to
redefine the way people think and practice health care.
Under the new paradigm, part of health care will not be
administered periodically, off-line, and at special locations.
But, it will be administered on a continuous basis, on-line,
in a highly automated fashion, at home and the office.
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Certain aspects of health care may become an integral part
of HCI.

In the remaining paper, we first contrast our work with
the existing body of research (Section 2). Then, we describe
our facial tissue tracking algorithm and the physiological
measurement methods (Sections 3–6). In Section 7 we dis-
cuss the application of facial blood flow measurements to
stress quantification. In Section 8 we describe recent results
from the application of the technology in sleep studies and
the detection and management of sleep apnea incidents.
We conclude the paper in Section 9 where we discuss our
ongoing work on harvesting the interactivity potential of
the technology.

2. Relation to the present state of knowledge in the field

To the best of our knowledge, this is a unique research
effort and there is no previous work with regard to the
totality of the proposed undertaking. Because this work
represents a fundamental shift in the HCI paradigm, the
related literature is massive. For the sake of brevity we will
focus on the most relevant areas: facial segmentation and
tracking; bioheat modeling; health state determination;
and the role of emotion in HCI.

We apply our bioheat computations on the subject’s
face. The face is usually exposed and within the field of
view of the thermal camera attached to the computer.
The face of a typical computer user moves freely all the
time making facial tracking necessary for the meaningful
application of bioheat modeling. Although, facial tracking
is a relatively well researched issue [12,13], none of the
methods reported in the literature is appropriate for the
application at hand. Most of them apply to the visible,
not the thermal infrared band. All of them are meant to
facilitate face recognition or surveillance not physiological
modeling. Typically, in the aforementioned methods,
tracking accuracy can fluctuate, and as long as it is
regained momentarily, the effect on end applications (e.g.,
surveillance) is minimal. However, in physiological moni-
toring applications such as ours, even temporary loss of
tracking creates serious problems. It results in spikes in
the thermal signal of the tracked tissue, which are falsely
indicative of strong physiological responses. Even when
tracking is maintained, its accuracy typically degrades over
time. We have developed a new facial tracker that
addresses to a significant degree the aforementioned prob-
lems and works closely with our bioheat models [6].

Many physiological variables, such as superficial blood
flow and cardiac pulse, are related in some way to the heat
transfer mechanism of the human body. Due to this inter-
relationship, it is possible to compute such physiological
variables from the raw thermal imagery. Relatively little
work exists in the literature towards this direction. The
most relevant reference is [14] where a simple heat transfer
model is proposed for the computation of superficial blood
flow out of thermal video. There are several problems with
the approach in [14]. First, it does not provide for auto-
mated subject registration and tracking. As a result, the
subject has to stand still during the examination, something
out of the question in our case. Second, the bioheat model
is simplistic and introduces a significant error in the pres-
ence of major vessels close to the skin. In contrast, we pro-
pose a novel pair of bioheat models, one for tissue with no
major vessels [2] and one for tissue featuring at least one
major vessel [3]. The models are based on partial differen-
tial equations (PDE). In addition to computing more accu-
rately blood flow, our models allow the measurement of
cardiac pulse [4].

The time evolution of 2D blood flow, cardiac pulse, and
breath rate can reveal important clues about many health
problems. As initial examples, we focus our attention to
stress, heartbeat irregularities, and sleep apnea. In the past,
thermal imaging was used for breast tumor detection often
on an empirical basis [15–21]. In contrast, our approach is
based on rigorous scientific methodology. We screen for a
variety of health symptoms and not the manifestations of a
specific ailment (e.g., cancer). Moreover, our screening is
automated, continuous, and based on rigorous mathemat-
ical modeling not heuristic interpretations [7].

Several studies exist in the literature regarding the phys-
iological profile of sleep apnea [22,23] and heartbeat irreg-
ularities [24–26]. None of these efforts, however,
approaches the problem from the angle of continuous con-
tact-free physiological monitoring. Since we can retrieve
the breath rate and the cardiac pulse waveform through
bioheat modeling, we can also incorporate monitoring of
sleep apnea and heartbeat irregularities in the proposed
HCI scheme. Our work may offer not only an elegant
way of screening and monitoring sleep apnea and heartbeat
irregularities but provide a deeper insight into the ailments,
due to the unprecedented volume of information that is
capable of producing.

We have recently developed methods for contact-free
detection of elevated stress levels [8–11]. Such methods
can be integrated in the proposed HCI scheme because they
are based on physiological variables computable from bio-
heat modeling of the face. Stress as an emotional indicator
is of particular importance and relevance to HCI. It is a
widespread belief in the human–computer interaction com-
munity that new computing ideas should focus on human
needs [27] and on the importance of affect and emotion
[28]. The role of emotion in HCI has gained so much atten-
tion that one author recently used the term ‘‘emotion com-
motion’’ to describe the current state of affairs [29]. This
activity is largely driven by the observation that, in spite
of decades of effort refining user interfaces, computers still
routinely anger, annoy, insult, and generally frustrate
users. Early attempts to build more ‘‘friendly’’ and ‘‘help-
ful’’ interfaces, such as the ill-fated Bob and Mr. Clippy

efforts were found by many users to be even more annoying
than the interfaces they replaced. One explanation for this
phenomenon is that these interfaces conveyed apparent
emotion but lacked the ability to detect the emotions of
the user [30]. Inappropriate responses to emotional states
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are worse than no response at all [31,32]. The interest in
emotions is supported by observations that emotions can
be potent facilitators of cognitive processes [33] and that
systems that create a positive affect can improve perfor-
mance [34]. Furthermore, emotional state is an important
contributor to many illnesses. Computers that could assist
in the management of negative emotions could prove
widely beneficial [35].

Before computers can respond adequately, they must
be able to detect the emotions. A number of approaches
have been researched. Nakatsu, Nicholson, and Tosa have
applied neural network approaches to the analysis of
speech input, achieving a 50% speaker-independent recog-
nition rate [36]. Facial affect recognition has been studied
by a number of groups, including Lisetti and Nasoz, who
reported that facial segmentation can improve recognition
rates [37]. A major limitation with both voice and facial-
based approaches is that humans can be quite skilled at
masking emotion conveyed through these modes. A num-
ber of physiological parameters have been explored as
emotion indicators including heart rate, galvanic skin
response [37], blood volume pulse (BVP), and electromye-
lography (EMG) [38]. An advantage of the physiological
emotion indicators is that they are primarily under con-
trol of the autonomic nervous system and are less suscep-
tible to conscious control. A major limitation to current
physiological approaches is the need for sensors in direct
contact with the user, or even implanted [39]. As a result,
such sensors are impractical for most routine user envi-
ronments. Sensor-based approaches have achieved user-
specific accuracy rates of 60–80% in experimental condi-
tions [38]. To be widely deployed, such systems would
need to advance from user-specific to user-independent
modes.

Recognizing the emotional state of the user is only the
first step. The system must also respond appropriately
[35]. As expected, there is considerably less information
regarding this second step in the process. It has been shown
that simply acknowledging the emotion is not adequate
[31]. Picard proposes the ‘‘person-supporting-you test’’
[35]. Put simply, ‘‘How would I want a person who found
me in this emotional state to respond?’’ For situations
where mitigation of a negative emotion is the goal, Klein
and Picard have proposed an eight-step approach [31].
For other situations the answer is likely to be highly appli-
cation and context-dependent.

3. Facial tracking

The core of this research depends on temperature
recordings at specific parts of the human face. The outcome
is 2D time-varying temperature signals. These signals are
used within a signal processing framework or as boundary
conditions in partial differential equations (PDE) for the
computation of vital signs. Typical cases include tempera-
ture recordings on the temporal area for pulse computation
or on the periorbital area for determining the rate of blood
perfusion in the orbital muscle. Obviously, these recordings
need to be done on the same tissue area for a period of time
in order to be meaningful. However, the face is in constant
motion, which makes such a recording task challenging to
say the least. The solution can be provided only through
tracking technology.

In standard computer vision tracking, accuracy can fluc-
tuate. However, in physiological monitoring applications
such as ours, persistent high quality tracking is very impor-
tant. To address this issue, we have introduced the concept
of tandem tracking. Simultaneously with the small facial
region of interest (e.g., temporal, periorbital, or nasal) we
track an extended central facial region that is rich in con-
trasting features. The latter is more invariant to out of
plane rotations. Therefore, the quality of tracking for this
central region is better on average and can be used to cor-
rect the estimate of the regional tracker. This leads to the
extraction of a superior quality temperature signal (see
Fig. 2).

We refer to the central facial region tracker as the tan-

dem tracker (TT) and the specific tissue tracker, where
the physiological measurement is performed, as the mea-
surement tracker (MT). The tandem tracking scheme works
as follows:

(1) The system selects two rectangular regions on the ini-
tial frame of the thermal clip—the central facial and a
specific tissue region. Depending on the physiological
measurement, the specific tissue region may be cen-
tered on the periorbital (blood flow), the forehead
(blood flow), the carotid (blood flow/cardiac pulse),
the temporal (cardiac pulse) or the nostrils (breath
rate).

(2) The central facial and specific tissue regions are
tracked by two independent CONDENSATION
trackers, the TT and MT, respectively. The feedback
measurement for each tracker is based on a template.
In essence, this is a sub-sampling of the tracker’s ini-
tial rectangular region. We have determined experi-
mentally that a surprisingly small sub-sample of the
original area produces the same tracking result as
the full area.

(3) The relative spatial position of the central and specific
regions is established in the initial frame.

(4) In subsequent frames the CONDENSATION track-
ers come up with independent position estimates.
The position estimate of the TT tracker is computed
first and is used to influence the MT tracker. This
combined estimate provides for a robust solution
and helps the MT tracker to overcome local extrema
(see Fig. 3).
3.1. Information fusion

The essence of the tandem tracking mechanism is based
on the notion of information fusion. It uses the informa-
tion from a robust high-level tracker (the TT tracker) to



Fig. 3. Tandem facial tracking. The subject in the thermograph (shown here in gray-scale) on the left has had his periorbital region tracked by both the
solitary (red) and the tandem assisted (green) trackers. The solitary periorbital region tracker has become confused because of a local maximum in the
template match response space. However, the MT tracker in the periorbital region that is assisted by the TT tracker in the tandem configuration has
maintained the proper track. This is because of the suggestion of the TT tracker, which is shown in the graph on the right as the vertical green line. The
response of the template matching along the blue line with endpoints a and b in the thermograph (see the graph on the right) has been generated to
highlight this point. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)

Fig. 2. Example of tandem-assisted tracking resulting in superior temperature measurement. On the graph the green line is the temperature extracted for
each frame using the tandem assisted tracking, and the red line is the temperature extracted for each frame using standard single region tracking. Note the
highlighted portion of the graph where there is a spike at frame 8934 in the temperature extracted from the single region tracker. This is a result of a
tracking failure from the solitary tracker because of an abrupt movement by the subject. The tandem assisted tracking was able to correctly track the
subject through this motion and therefore extract the correct temperature at this frame. The grey scale thermograph on the right shows both the tandem
assisted (green), and the solitary (red) regional trackers. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this paper.)
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boost the stability of another high-level tracker (the MT
tracker). The benefit of the tandem relationship is
enhanced by tuning the dynamics model for the TT tracker
to be more tolerant to large changes in motion (by increas-
ing the stochastic component of its dynamics model), and
tuning the dynamics model for the MT tracker to allow
for more localization (by decreasing the stochastic compo-
nent of its dynamics model).

The TT tracker influences the MT tracker’s posterior
density. To describe the influence mechanism in some detail
we need first to proceed with some definitions. Let us
assume that Bn = (b1,b2, . . .,bk)T is the general parameter-
ized representation of the MT tracker at frame n, for
parameters b1, b2, . . ., bk, where k can be as large as neces-
sary to describe the tracker for a given representation. Sim-
ilarly, let us assume that Cn = (c1,c2, . . .,ck)T represents the
TT tracker at frame n. In our representation we model the
tracked regions by their center of mass positions and orien-
tations. The state space S for these is:

S ¼ fðx; y; hÞjx; y 2 R; h 2 ½0; 2pÞg; ð1Þ

where x and y are the coordinates of the center of mass of the
tracked region, and h is the angle of the tracked region with
respect to the x-axis of the image coordinate system. The TT
tracker uses its current state, Cn, coupled with information
derived during initialization, C0 and B0, to derive the infor-
mation about the possible state of the MT tracker Bn:

B̂n ¼ Cn þ ðB0 � C0Þ: ð2Þ

In Eq. (2), B̂n represents the projected current state of the
MT tracker based on the current state of the TT tracker.
B̂n is generated from the maximum-likelihood sample of
the TT tracker. The method uses the maximum-likelihood
sample instead of the k-highest weighted samples in order



Fig. 4. Tandem modifications to the CONDENSATION framework. On the left is the traditional implementation of the CONDENSATION framework,
on the right is the modified version of the CONDENSATION framework. Notice that during the selection step for the modified version, the additional
information is used as the basis for producing new samples, which would have not been spawned if we used the traditional method.
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to exert all the influence of the tandem tracker in one loca-
tion. Thus, it explores the parameterization space around
B̂n to the maximum extent possible by virtue of the stochas-
tic component of the dynamics model.

Once B̂n has been calculated, it must be incorporated
into the CONDENSTATION framework of the MT
tracker. For this purpose, the CONDENSATION frame-
work features a modified selection step to automatically
pre-select a portion of its samples based on the knowledge
of B̂n. The information fusion methodology is depicted in
Fig. 4, where Z is an image and X is the object parameter-
ization; p(Xt�1|Zt�1) is the posterior probability from the
previous time step derived from the sample set
fðsðiÞt�1; p

ðiÞ
t�1Þ; i ¼ 1; . . . ; Ng, where s(i) is one of N samples

with corresponding weight p(i); p(XtjZt�1) is the prior for
time step t; p(Zt|Xt) is the observation density at time step
t; p(XtjZt) is the posterior probability for the current time
step derived from the sample set fðsðnÞt ; pðnÞt Þ; n ¼ 1; . . . ; Ng.

The tandem tracking method assigns a percent weight a
to the additional information from the TT tracker. During
the selection step of the CONDENSATION framework the
method chooses (1 � a)% of the samples normally and a%
based on the additional information. All of the samples
selected using the additional information are set equal to
its suggested state, then during the prediction step only
the stochastic component of the dynamics model is applied
to these samples.
Fig. 5. Creation of the thermal template from the combination of a
3.2. Observation model

We use thermal templating to construct the observa-
tion model of tandem tracking. The fundamental idea
behind template matching is to sub-sample the object
of interest, the template, from the initial frame of video
and then to find the region in subsequent frames that
most closely resembles the template. The underlying
assumption when using templates to represent the object
of interest is that the appearance of the object will
remain relatively constant throughout the course of the
video. For facial physiology this assumption is likely to
hold true only if the monitoring period is not excessively
long (minutes rather than hours).

The thermal template T(c) is extracted from a sub-
region R0 of the initial video frame V(c, 0), which contains
the object of interest. To speed up computation a subset of
the pixels within the initial region of interest is used for the
template. We chose to compose the set of points in our
template T(c) from the union of two subsets, U(c) and
M(c) (see Fig. 5).

The set U(c) is composed of points uniformly distributed
over the region R0. The set M(c) is composed of the coldest
and hottest pixels of region R0. The motivation for com-
posing T(c) as the combination of U(c) and M(c) is to have
both regular and variance spatial information encoded
within the template.
uniform grid of points and a variance maximized set of points.
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4. Blood flow computation

We compute superficial blood flow on the face by using
a pair of bioheat models. One model computes blood per-
fusion in homogeneous tissue regions that are void of large
superficial vessels (perfusion model). The other model com-
putes directional blood flow in a major superficial vessel,
like the external carotid (directional model).

We reported the perfusion model in a number of papers
[2,7,40] and tested it extensively in human experiments with
excellent results. We routinely apply this model in monitor-
ing instantaneous stress, a quintessential operation in the
physiological HCI framework.

We reported the directional model briefly in the 2004
CVPR Proceedings [3]. Since the model measures direc-
tional blood flow in a major vessel, it is related to the heart
output and can yield the cardiac pulse waveform. The role
of this waveform in monitoring heartbeat irregularities
cannot be underestimated. The scant information about
the directional model in combination with its importance
in physiological HCI warrant its more detailed examina-
tion in this article.

In general, bioheat modeling on the surface of the body
starts with the construction of the energy balance equation
on a control volume that extends several millimeters in
depth. The dynamic form of this equation is a PDE with
boundary conditions that are determined by environmental
and other factors, including the sensor output (skin tem-
perature). A major term in the energy balance equation is
convective heat produced by blood flow (perfused or direc-
tional). The solution of the PDE form of the equation
yields the evolution of the blood flow variable.

Specifically, the directional blood flow model assumes
that the vessel acts as a heat source for the surrounding
Fig. 6. (a) Four-layer tissue structure hypothesized by our model along with
position and shape of the vessel. (b) The graph at the top shows the time variati
the PDE model. The graph at the bottom shows the corresponding input
measurements were taken from the carotid or temporal areas of the subjec
measurement device (LaserFlo BPM2, Vasamedics [42]). (For interpretation of
version of this paper.)
four-layer control volume tissue. These layers are succes-
sively, in positive z direction, the skin, the fat, the muscle,
and the core (see Fig. 6(a)). We assume that each layer is
isotropic with respect to thermal conductivity K(z), meta-
bolic heat rate qM(z), density q, and specific heat c of the
tissue. The heat effect of the vessel on the skin temperature
depends on the vessel’s depth and shape as well as the
blood temperature and flow rate.

We consider a single large vessel running along a direc-
tion x parallel to the skin layer (see Fig. 6(a)). The heat
conduction in the tissue surrounding the vessel is dominant
in directions parallel (x) and perpendicular (z) to the skin.
In the remaining y direction we can neglect heat transfer
because of the presence of other vessels, periodically
arranged and similar to that considered. Therefore, we
introduce the following 2D PDE model:

qc
oH
ot
� o

ox
KðzÞ oH

ox

� �
� o

oz
KðzÞ oH

oz

� �
¼ qBLðx; tÞ þ qMðx; zÞ; ðx; zÞ 2 ð0; LÞ � ð0;DÞ; ð3Þ

where qM is the volumetric metabolic heat while qBL is the
heat due to blood flow speed ubl in a vessel assimilated to a
line source z = S(x). H(x,z,t) is the temperature distribu-
tion function in the control volume tissue over time, K(z)
is the thermal conductivity of a particular layer within
the volume, while q and c are the tissue density and specific
heat, respectively.

The heat produced by the terms on the right hand side
of Eq. (3) conducts through the control volume tissue
and fluctuates over time as expressed by the spatial and
time derivatives respectively of the left hand side. The
structure of the PDE model clearly reveals its energy bal-
ance origin.
the coordinate system convention. The red curve represents the assumed
on of the blood flow speed in a major superficial vessel, as it is computed by
to the model, that is, the time variation of the skin temperature. Such
ts at a distance of 10 ft and were validated with a traditional contact

the references to color in this figure legend, the reader is referred to the web
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We impose the following boundary conditions:

Hðx;D; tÞ ¼ Hcore; x 2 ð0; LÞ; ð4Þ
Hðx; 0; tÞ ¼ Hskinðx; tÞ; x 2 ð0;LÞ; ð5Þ
oH
oz
ðx; 0; tÞ ¼ kðHðx; 0; tÞ �HairÞ þ qir; x 2 ð0; LÞ; ð6Þ

oH
ox
ð0=L; z; tÞ ¼ 0; z 2 ð0;DÞ: ð7Þ

k is the convection heat transfer coefficient, which depends
on air flow. According to [41]: k = 2.7 + 7.4(vair)

0.67(W/
m2K), where vair is the air speed in (m/s). qir is the radiation
heat flux: qir ¼ r�ðH4

skin �H4
wallÞ, where r is the Stefan-

Boltzmann constant and � is the skin emissivity. Hwall is
approximated by the temperature of the air.

The heat source term associated with blood flow is
assumed to have the decomposition qBL = ubl(t)r(x,z),
where ubl is the unknown blood flow speed in the vessel.
We assume that the vessel is centered on the curve
z = S(x). Then, we take for r(x,z) the modified bell
function:

rðx; zÞ ¼ l exp �ðz� SðxÞÞ2

pm2
app

 !
:

mapp is the apparent radius of the vessel seen as a heat
source. l is defined as follows:

l ¼ qblcbl

A
V
ðHvesselðx; z; tÞ �Hðx; z; tÞÞ ðJ=m4Þ; ð8Þ

where qbl and cbl are the density and the specific heat of
blood, respectively, A is the vessel cross section, and V is
the control volume of tissue. We assume that the tempera-
ture of the blood in the vessel is the same as the core tem-
perature Hvessel = Hcore.

The mathematical problem is to retrieve the blood flow
speed ubl(t) from the skin temperature Hskin obtained with
a thermal infrared camera. We can make educated assump-
tions about all the other parameters involved in Eqs. (3)–
(7) based on physiological facts [3]. In extensive direct sim-
ulation and limited application of the inverse solution on
real data (two subjects) the model behaved impeccably [3]
(see Fig. 6(b)). The inverse solution correlated very well
with ground-truth data collected through a contact blood
flow meter from Vasamedics [42].

By observing the normalized waveforms in Fig. 6(b) one
may understand why it could be beneficial from the image
analysis point of view to operate on the blood flow domain
versus the thermal domain. The blood flow operational
range is at least an order of magnitude larger than the ther-
mal operational range. In addition, the patho-physiological
meaning of normalized unit measurements of superficial
blood flow have been extensively studied and understood
in the context of oximetry. Therefore, by transforming
thermal to blood flow signals, one may capitalize upon this
rich body of knowledge. Still one may choose to use the
direct thermal measurements and his conclusions would
be of some relevance, as heat dissipation at the surface of
the body is strongly correlated to blood flow and perfusion.

5. Cardiac pulse computation

In addition to the amplitude of the blood flow waveform
as computed by Eq. (3) we can compute the frequency of
the blood flow pulsation (cardiac pulse). Both amplitude
and frequency are important in potential applications of
this technology, like desktop monitoring of heartbeat irreg-
ularities. Our method is based on the assumption that tem-
perature modulation due to pulsating blood flow produces
the strongest thermal signal on a superficial vessel. This sig-
nal is affected by physiological and environmental thermal
phenomena. Therefore, the resulting thermal signal that is
being sensed by the infrared camera is a composite signal,
with the pulse being only one of its components. Our effort
is directed into recovering the frequency of the component
signal with the highest energy content. This is consistent
with our hypothesis of pulse dominance in the thermal field
of a superficial vessel.

We reported briefly a contact-free pulse measurement
methodology in the Proceedings of CVPR 2005 [4]. In the
present article, we elaborate further, as cardiac pulse is a
vital sign and quintessential to the proposed desktop health
monitoring system. A prerequisite to accurate pulse mea-
surement is proper localization and motion tracking. We
select the pulse taking location in the first frame of the ther-
mal video on a major facial superficial vessel (usually car-
otid or temporal). The selection is performed by a mouse
point and drag operation along the length of the vessel’s
thermal imprint. This results in a measurement line, which
is the virtual equivalent of taking the pulse by placing the
index finger on the vessel.

To maintain consistently the pulse measurement line
over the course of time, one needs to track the facial tissue
as it moves due to natural head motion. We use our tan-
dem tracking methodology described in Section 3 to this
effect. The MT tracker is focused on the vessel’s region of
interest grown symmetrically around the selected measure-
ment line. Based on the outcome of Fourier analysis an
estimation function computes the cardiac pulse. Fig. 7 illus-
trates the general steps of our methodology.

Considering that the blood vessel is a long, narrow
structure, the pulse propagation phenomenon causes slight
phase shift on the temperature profiles along the blood ves-
sel. This may weaken the signal if we use conventional sig-
nal recovery methods in the time domain. Each pixel along
the blood vessel has a unique periodical temperature pro-
file, which is shifted with respect to the others. As Fig. 8
shows, averaging these temperature profiles may weaken
the signal. Although, the temperature profiles of the pixels
along the blood vessel are shifted in the time domain, their
frequency should remain the same (unshifted). Therefore,
by operating on the frequency domain and combining
appropriately the power spectra of these temperature pro-
files we can reinforce the signal instead of weakening it. We



Fig. 7. Pulse measurement methodology. The white line along the carotid vessel is the measurement line selected by the operator.

Fig. 8. Temperature profiles of three different pixels along the exposed
blood vessel compared to the average temperature profile.
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apply Fourier analysis in a novel manner to capitalize upon
the pulse propagation effect and extract the dominant pulse
frequency:

First step. We name L the straight segment selected by
the operator along the center line of a large superficial
blood vessel (e.g., carotid). The algorithm expands sym-
metrically L into an elongated rectangle R. The width of
this rectangle depends on the width of the vessel on the
thermal imagery. For a subject imaged at 6 ft with a 50-
mm lens the rectangle’s width is 3–7 pixels. By convention,
Fig. 9. Schematic diagram of the first three steps in th
we place the x axis of our coordinate system along the
width and the y axis along the length of the vessel (see
Fig. 9).

Second step. We record the time evolution of the pixel
matrix delineated by rectangle R for N frames (N = 256
or 512). Thus, we produce a 3D matrix A(x,y,t), where
0 6 x 6 Rx,0 6 y 6 Ry is the spatial extent of rectangle R

and 0 6 t 6 N � 1 is the timeline.
Third step. We average the pixel temperatures along the

x dimension. Thus, we derive a 2D matrix:

A0ðy; tÞ ¼ 1

Rx

XRx

x¼0

Aðx; y; tÞ ð9Þ

where 0 6 y 6 Ry, 0 6 t 6 N � 1. This reduces the noise
and ‘‘shrinks’’ the rectangular vessel region R into an effec-

tive line, upon which the signal measurement will be
performed.

Fourth step. For each effective pixel on the measurement
line we obtain the time evolution signal of its temperature:

8y : SyðtÞ ¼ A0ðy; tÞ; 0 6 t 6 N� 1: ð10Þ

We apply the fast fourier transform (FFT) on each of these
signals to obtain the respective power spectra:

8y : Py ¼FðSyðtÞÞ: ð11Þ
e Fourier analysis of the vessel temperature signal.
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Specifically, we apply a classical decimation-in-time (Coo-
ley and Tukey) 1D base-2 FFT method given in [43].

Fifth step. We average all the power spectra computed in
the previous step into a composite power spectrum:

�P ¼ 1

Ry

XRy

y¼0

Py : ð12Þ

We still refrain, however, from finding the dominant fre-
quency in power spectrum �P and declare it as the pulse
frequency.
5.1. Adaptive estimation function

A fundamental question is what we report as the effec-
tive pulse along the timeline. The instantaneous computa-
tion described in Section 5 is not to be trusted literally
since it may be affected occasionally by thermoregulatory
vasodilation [44] and creeping noise. To address this prob-
lem we use an estimation function that takes into account
the current measurement as well as a series of past
measurements.

The current power spectrum �P0 of the temperature sig-
nal is being computed over the previous N frames (N = 256
or 512) by applying the process outlined in Section 5. We
convolve the current power spectrum with a weighted aver-
age of the power spectra computed during the previous M

time steps. We chose M = 60, since at the average speed of
30 fps sustained by our system, there is at least one full
pulse cycle contained within 60 frames even in extreme
physiological scenarios. Therefore, the historical contribu-
Table 1
Ground truth (GT) and thermal imaging (TI) pulse measurements

Subject No. Video file Time length (s) Vessel Status

Subject 01 D005-001 132.3 Carotid N/A
Subject 01 D005-002 121.4 Carotid N/A
Subject 01 D005-003 123.3 Radial No pr
Subject 01 D005-011 120.7 Radial No pr
Subject 01 D005-012 210.4 Radial Pressu
Subject 01 D005-013 240.5 Radial After
Subject 02 D005-016 120.7 Carotid N/A
Subject 02 D005-017 120.7 Carotid N/A
Subject 02 D005-018 120.6 Radial No pr
Subject 02 D005-019 180.7 Radial Pressu
Subject 02 D005-020 180.6 Radial After
Subject 02 D005-040 120.2 Carotid N/A
Subject 03 D005-041 122.5 Carotid N/A
Subject 03 D005-042 120.7 Radial No pr
Subject 03 D005-044 123.7 Radial After
Subject 03 D005-046 122.1 Temporal N/A
Subject 03 D005-060 125.1 Carotid N/A
Subject 04 D005-062 121.0 Radial No pr
Subject 04 D005-063 180.8 Radial Pressu
Subject 04 D005-064 181.3 Radial After
Subject 04 D005-066 183.4 Temporal N/A
Subject 04 D005-079 120.9 Carotid N/A
Subject 05 D005-080 117.1 Carotid N/A
Subject 05 D005-081 120.8 Radial No pr
Subject 05 D005-085 188.6 Radial After
tion to our estimation function remains meaningful at all
times.

Specifically, the historical frequency response at a par-
ticular frequency is given as the summation of all the cor-
responding frequency responses for the M spectra,
normalized over the total sum of all the frequency
responses for all the historical M spectra:

Hðf Þ ¼
XM

i¼1

�Piðf Þ=
XM

i¼1

XF

j¼1

�PiðjÞ: ð13Þ

Finally, we convolve the historical power spectrum �H with
the current power spectrum to filter out transient features.
We then designate as pulse the frequency fpulse that corre-
sponds to the highest energy value of the filtered spectrum
within the operational frequency band.
5.2. Experimental results of pulse measurements

We have used a high quality thermal imaging system for
data collection [1], to rigorously quantify the performance
of the pulse measurement method. We recorded 25 thermal
clips from five subjects while resting in an armchair. Con-
comitantly we recorded ground-truth pulse signals with
PowerLab/4SP from AD Instruments featuring an MLT
1010 piezoelectric pulse transducer [45]. The data set fea-
tures subjects of both genders, different ages, and with
varying physical characteristics.

Although, the emphasis of our effort is on facial mea-
surements, we attempted a few measurements on the wrist
(radial artery), because it was easy to alter the pulsative
of pressure on forearm GT (bpm) TI (bpm) % accuracy

63.7 63.1 98.28
60.3 60.8 99.22

essure 62.1 62.9 98.68
essure 67.9 68.0 99.88
re 61.3 61.7 99.43
pressure 62.7 62.9 99.66

82.7 80.5 98.01
73.3 73.8 99.37

essure 75.7 75.7 99.92
re 74.8 74.6 99.76
pressure 78.5 78.2 99.72

68.0 68.6 99.11
65.6 66.5 98.68

essure 63.8 64.3 99.32
pressure 68.2 68.3 99.34

67.4 67.8 99.34
67.3 67.2 99.76

essure 65.2 64.4 98.72
re 63.7 64.7 98.54
pressure 72.1 71.1 98.66

66.8 67.3 99.27
76.2 76.1 99.83
72.6 71.9 99.03

essure 70.7 71.7 98.67
pressure 73.2 73.5 99.59



Fig. 10. Thermal snapshot of expiration. The Measurement Region Of
Interest (MROI) is depicted as a polygon next to the nasal-mandibular
region.
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blood flow and test the robustness of the method under
various physiological conditions. Specifically, we have
taken wrist measurements before, during, and after the
application of a forearm cuff. We have found no significant
differences in the accuracy of the thermal imaging measure-
ments among these scenarios.

Because our thermal imaging system and the PowerLab/
4SP data acquisition system have different frequency of
sampling and perform measurements on a vastly different
theoretical basis, we normalized the experimental data
from the two modalities in order to compare them.

The PowerLab/4SP data acquisition system (ground
truth) collects 100 samples per second, while our thermal
imaging system acquires 30 frames per second. We aver-
aged the ground truth output data every ten samples while
the thermal imaging data every three samples (frames).
Based on this normalization, we compared the average car-
diovascular pulse rate computed by our imaging method to
that reported by the ground-truth instrument for all the
subjects in our data set.

Table 1 shows the detailed profile of our comparative
experiment and the average pulse measurements reported
by the two modalities. The overall agreement between the
two measurement methods is 98%. To quantify the linear
correlation between the two measurement modalities, we
have used the high Pearson product moment measure Pc

[46]. By applying the Pearson formula on the data of Table
1, we find that Pc = 0.994, which indicates a strong degree
of correlation.

6. Breath rate computation

Human breathing consists of expiration and inspiration
phases. In expiration, air that was heated through its con-
tact with the lungs flows via the nostrils to the environ-
ment. Conversely, in inspiration environmental air flows
via the nostrils to the lungs. This creates a periodic thermal
signal in the vicinity of the nostrils that oscillates between
high (expiration) and low (inspiration) values [47]. In tradi-
tional pulmonary studies a thermistor is attached near the
nostrils to capture this phenomenon and produce a repre-
sentative breath signal. The thermal imager can be viewed
as a virtual thermistor, since it captures the same phenom-
enon, but at a distance [48]. Fig. 10 shows a thermal snap-
shot of a subject during the expiration phase. One can
observe the contrast between the hot expired air, next to
the nasal area and the lower intensity surrounding back-
ground. During the inspiration phase, the hot expired air
is absent.

We reported briefly a contact-free breath rate measure-
ment methodology in the Proceedings of EMBC 2005 [5].
In the present article, we elaborate further, as breath rate
is a vital sign and quintessential to the proposed desktop
health monitoring system. As in the case of pulse, a pre-
requisite to accurate breath measurement is proper locali-
zation and motion tracking. We select the breath
Measurement Region Of Interest (MROI) in the first frame
of the thermal video near the nasal-mandible area. We
compute the mean temperature within the MROI in each
frame. Along the timeline, this produces a periodic thermal
signal, which is indicative of the breathing function. As we
explained previously, this imaging type of sensing is the
equivalent of a virtual thermistor. To maintain the virtual
thermistor in place over time, one needs to track the facial
tissue as it moves due to natural head motion. We use our
tandem tracking methodology described in Section 3 to this
effect.

As a periodic signal, the breath signal can be analyzed
through Fourier transformation. Since we operate on the
discrete domain we use FFT. We perform FFT analysis
on sliding segments (windows) of the normalized breath
thermal signal. We adjust the size of the window as the
timeline evolves. Initially, the window size is small, but
then it expands as time permits. The goal is to start report-
ing breath rate as soon as possible, while incrementally
improving the computational accuracy over time.

One would think that the breath signal analysis may be
very similar to the pulse signal analysis as both signals are
periodic thermal undulations. However, breath signal anal-
ysis can be simpler and faster, as breath is a sharp on (expi-
ration) and off (inspiration) phenomenon in contrast to the
gradual thermal fluctuation produced by pulsation.

Indeed, in breath signal analysis the only pre-processing
step we apply is down-sampling of the raw stream to 10 fps,
as a way to reduce high frequency noise and fix a constant
rate for FFT application. Then, we produce the FFT
power spectrum for each sliding time window. From the
resulting power spectra we remove responses correspond-
ing to frequencies outside the range 5–40 cpm (cycles per
minute). We consider frequencies outside this range unli-
kely to occur in our experimental scenarios, where individ-
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uals are either at rest or undergoing mild aerobic exercise.
We select the dominant frequency in the power spectrum of
each sliding window as the likely breath rate at the time.
Fig. 11 illustrates the major steps of our methodology.

We define as Vi[t], t 2 [0, � � �,N], the down-sampled
breathing thermal signal framed in sliding window i. We
normalize the signal Vi[t] as follows:

V0i½t� ¼
Vi½t� � li

ri
; ð14Þ
Fig. 11. (a) Normalization of windowed signal. (b) Power density
spectrum. (c) Breath rate signal.
where li and ri are the mean and standard deviation of
Vi[t], respectively. The normalization transforms signal
Vi[t] to V0i[t] that features mean l0i = 0 and standard devia-
tion r0i = 1 (see Fig. 11(a)).

We apply FFT on the autocorrelation sequence /V0iV
0
i
½t�

of signal V0i½t�, to compute the power density spectrum:

UV0iV
0
i
ðejxÞ ¼

X1
t¼�1

/V0iV
0
i
½t�e�jxt: ð15Þ

In Fig. 11(b), we present the power spectrum density of sig-
nal V0i½t� that corresponds to the window ending in frame
t = 2024. The cut-off lines exclude the portion of the power
spectrum that corresponds to uninteresting frequencies
(outside the 5–40 cpm range). The dominant frequency of
18.16 cpm is indicated in the diagram.

Sliding window i = 1 applies to the normalized signal
V01½t�, t 2 [0, � � �,N1]. We set N1 = 28 = 256 samples, which
means that breathing rate is reported for the first time after
25.6 s, since the down-sampled frame rate is 10 fps. After
that, breathing rate is reported every 0.1 s, as the window
slides one sample to the right with every incoming frame.
The window maintains the size N1, until the total number
of processed frames becomes N2 = 2 * N1 = 29 = 512,
which is the next power of two. Then, it automatically
adjusts to the larger power size. The size of the window
adjusts one final time when the total number of processed
frames reaches N3 = 2 * N2 = 210 = 1024 and retains this
value for the remaining monitoring period. Therefore, the
method achieves top accuracy after 102.4 s of operation.

6.1. Experimental results of breath rate measurements

As in the case of pulse measurements, we used a high
quality thermal imaging system and a ground truth appara-
tus to rigorously quantify the performance of the breathing
measurement method. The ground-truth apparatus con-
sisted of a PowerLab/4SP from AD Instruments [45] fea-
turing a respiratory belt transducer. The transducer was
fitted around the subject’s chest wall. By measuring the
up and down movement of the thoracic cavity, the sensor
formed the ground-truth breath signal and sent it to the
computer through the PowerLab/4SP unit. Equivalently,
we could have used a thermistor as a ground-truth sensor,
but this may had interfered with the imaging measurement,
as it had to be attached in the subject’s nostrils.

We recorded 19 thermal clips of 9 subjects. Seventeen of
the clips were recorded while the subjects were at rest. The
remaining 2 clips were recorded after the subjects under-
gone 2 min of moderate aerobic exercise. For many sub-
jects we recorded more than one clip at different times.
All the thermal clips are �5 min in length.

Table 2 shows the detailed experimental results for all
the thermal clips and all three windowing stages of the
FFT-based computation. The imaging results are juxta-
posed with the corresponding ground-truth measurements
obtained through the respiratory belt transducer.



Table 2
Comparison of ground truth (GT) and thermal imaging (TI) breath rate measurements

Video file Time length (s) Stage 1 Stage 2 Stage 3

GT (cpm) TI (cpm) % accuracy GT (cpm) TI (cpm) % accuracy GT (cpm) TI (cpm) % accuracy

D005-007 302.60 19.67 18.75 95.32 15.73 17.71 87.41 16.50 17.28 95.27
D005-008 302.60 7.96 11.30 85.95 6.74 7.64 95.91 4.96 5.39 96.91
D005-010 300.80 13.89 16.53 86.98 14.73 15.23 97.92 11.69 13.27 90.23
D005-012 304.00 13.57 15.08 84.19 15.96 16.34 92.34 14.12 14.81 97.78
D005-016 300.80 37.16 37.50 98.58 32.03 34.65 88.80 27.10 28.97 99.57
D005-017 302.20 14.17 11.93 58.04 10.83 10.00 86.65 9.02 8.82 91.33
D005-019 315.60 26.68 27.06 36.13 21.79 24.23 91.40 21.11 21.20 97.07
D005-021 306.70 20.43 22.03 22.68 20.77 20.75 71.12 24.28 24.81 93.59
D005-022 310.40 16.44 18.75 80.99 18.11 18.85 96.61 17.78 18.33 86.48
D005-023 305.40 4.76 7.80 88.28 9.42 8.61 94.96 7.52 7.74 87.43
D005-024 305.90 10.86 12.45 82.81 10.93 11.81 86.45 11.92 12.03 90.98
D005-026 307.00 14.93 16.40 99.09 15.54 16.40 91.82 15.99 16.37 93.10
D005-027 305.20 19.83 21.09 88.87 20.38 21.00 97.62 19.91 21.43 95.11
D005-028 306.32 16.59 18.75 71.13 17.33 17.69 83.88 14.63 16.06 98.24
D005-029 305.40 16.90 18.88 92.17 16.87 17.72 99.90 13.60 15.31 97.82
D005-033 360.80 19.91 23.43 85.36 21.34 22.65 91.95 21.04 20.05 99.08
D005-037 401.00 4.41 7.82 90.15 4.64 5.98 94.47 6.40 5.99 97.62
D005-038 306.20 16.00 18.75 93.65 13.95 15.84 96.96 12.20 13.30 92.37
D005-039 325.60 10.91 14.06 82.32 10.30 11.96 93.86 10.79 10.98 95.29
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We can observe that the imaged breath rate in stage 3 is
closer to ground-truth than that in stages 2 and 1. In turn,
the imaged breath rate in stage 2 is more accurate than that
in stage 1. The breath rates corresponding to clips D005-
016 and D005-019 are higher, since these clips were
recorded after the subjects undergone moderate aerobic
exercise.

We use the Pearson product measurement R [46] to eval-
uate the linear correlation between the imaged breath rate
(Y) and the ground-truth breath rate (X). The higher the
value of R, the stronger the correlation of X and Y is.
Fig. 12. Linear correlation of ground-truth breath rate and imaged breath
rate. Stage 1: R = 0.9810, p = 1.52E�013; stage 2: R = 0.9895,
p = 1.52E�016; stage 3: R = 0.9906, p = 3.68E�017.
We also compute the p-value to test the hypothesis of no
correlation. If the p-value is small, normally less than
0.05, then the correlation R is significant. Fig. 12 illustrates
the linear correlation of ground-truth and imaged breath
rate, based on the results listed in Table 2.

The breath rates from the two modalities are highly cor-
related in stage 3, with R = 0.9906 and p = 3.68E � 017.
Even in stages 1 and 2 the correlation is strong, but not
as strong as in stage 3. Thus, by applying multi-stage
FFT analysis on the breath temperature signal, we obtain
greater accuracy as the window size increases. Further-
more, the methodology appears to perform well either
the subject is at rest or in an elevated metabolic state.
7. Applications—desktop stress monitoring

The technology of computing vital signs at a distance in
a highly automated manner can be applied to monitoring a
variety of chronic or transient health conditions including
stress, heartbeat irregularities, respiratory problems, and
others. This monitoring can typically take place at the
desktop or at home. So far, we have used the contact-free
blood flow measurement (see Section 4) as the basis of a
stress monitoring method. The importance of detecting ele-
vated stress levels in HCI cannot be underestimated, since
this emotion is often provoked by computer usage itself.

We have found that during mental stress, there is an
increase in blood flow to the forehead region of a subject.
The increase in blood flow is centered on the frontal vascu-
lature of the forehead at and just above the corrugator or
‘‘frowning muscle.’’ For each subject we select a Region
of Interest (ROI) in the forehead that includes the frontal
vessels (see Fig. 13(a)). Our tracking algorithm (see Section 3)
registers this ROI throughout the course of experiments.



Fig. 15. Screenshot of the Stroop test application. The boxed word
indicates to the subject which color to report, irrespectively of how the
word is spelled [50]. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this paper.)
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Tracking allows meaningful application of physiological
computations despite subject motion. The computation is
performed on the 10% of the hottest pixels in the selected
ROI. We have found experimentally that this typically
coincides with the frontal vessels in the forehead ROI
(see Fig. 13(b)). We compute the mean temperature of
the 10% hottest pixels on the ROI for every frame in the
thermal clip. We thus produce a forehead temperature sig-
nal (see Fig. 14). We then use the bioheat model we
described in Section 4 (Eq. 3) to compute the blood flow
on the frontal vessels based on the dynamic thermal input
from the ROI.

7.1. Experimental design for stress monitoring

To evaluate our stress monitoring methodology, we
induced stress in 12 subjects and we measured accordingly.
For this study, we utilized the computerized version of a
psychological tool called the Stroop Color Word Conflict
Test [49,50]. The Stroop test is a well-established method
for inducing stress. During the Stroop, the user is presented
with the names of colors that are displayed in a discordant
coloration. For example, if a word is spelled as ‘‘BLUE,’’
but is colored green, then the subject is expected to report
green as an answer (see Fig. 15). As the Stroop test pro-
gresses, the time allotted to report a color for an answer
is reduced. The diminished time acts to artificially induce
stress by decreasing the required response time and increas-
ing the error rate of the subject in reporting the colors.
Fig. 13. (a) Region of interest (ROI) on the subject’s forehead. (b) The frontal
of the references to color in this figure legend, the reader is referred to the we

Fig. 14. Forehead tem
Every subject underwent two sequential test sessions. In
the first session we outfitted the subject with a metabolic
rate measurement device to gauge Energy Expenditure
(EE). In the second session we recorded the subject’s face
with our thermal imaging system. Every session included
a baseline part (10 min) where the subject was at rest and
a supervised Stroop testing part (10 min). We have
included the EE measurement session as a validation stan-
dard for our novel thermal imaging approach to stress
vessels (10% hottest pixels in ROI) are marked in pink. (For interpretation
b version of this paper.)

perature signal.
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quantification. It has been documented in the literature
that EE is a reliable stress indicator [51]. Ideally, we should
have carried out thermal image recording of the face and
EE measurement simultaneously on every subject. How-
ever, this was impractical due to the gas masks worn by
the subjects in the EE measurements (see Fig. 16) and
can cause spurious noise to be interjected into the measure-
ment collection process.

We quantified EE by analyzing the subject’s respiratory
activity using a cardiopulmonary stress test device, the
Vmax Spectra from SensorMedics. The measurement is
Fig. 16. (a) Monitoring the energy expenditure of a subject during Stroop tes
testing.

Fig. 17. (Top) Original forehead temperature signals. (Middle) Blood flow sig
session while blue for the baseline session. (For interpretation of the references t
paper.)
based on the premise that the volume of oxygen consumed
by a subject is proportional to the current EE of the indi-
vidual. We express the EE, or metabolic rate measurement,
in Calories. For the facial thermal image recording, we
used the same thermal imaging system as in all other
experiments.

7.2. Experimental results of stress monitoring

The experimental subject set included 12 individuals of
varying ethnicity and distributed between 7 males and 5
ting. (b) Recording thermal facial information of a subject during Stroop

nals. (Bottom) Blood volume signals. Red denotes signals for the Stroop
o color in this figure legend, the reader is referred to the web version of this
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females. The room temperature at the time of the experi-
ments was measured between 19.4–22.2 �C.

For each subject, we produced six curves, three curves
for the baseline and three curves for the Stroop measure-
ments: temperature, blood flow, and blood volume. We
used the resultant blood volume curves to compute the
thermal stress indicators (see Fig. 17). Due to the differ-
ences in units for the EE and the thermal imaging measure-
ments, the results have been normalized for comparison
(see Table 3 and Fig. 18). In all but one subject, the com-
parison metric showed a difference no greater than 16
points from the respective ground truth metric; that is the
corresponding EE. In most cases the difference was within
8 points (subjects 1, 2, 3, 4, 5, 6, 8, 9, and 11). The correla-
tion of the thermal infrared information to the ground
truth data can be found and quantified by computing the
Pearson correlation factor, r, (�1 6 r 6 1) [46]. For all sub-
jects, the Pearson correlation value is r = 0.52. If the one
outlier subject (subject 12) is excluded from our computa-
tion, the correlation value becomes r = 0.91. The results
indicate that the thermal imaging methodology correlates
very well with the ground truth EE data for typical sub-
Table 3
Ground truth (EE) data compared to thermal imaging (TI) data

Subject Ground truth (EE) Thermal imaging (TI)

1 48 47.750770
2 4 10.427090
3 30 22.554500
4 60 56.136000
5 21 24.208160
6 9 6.267478
7 28 17.334160
8 19 16.778860
9 33 40.234130

10 19 3.3304120
11 34 27.127570
12 80 14.692870

Fig. 18. Comparison bar graph of the difference measures indicating
relative stress levels measured using the ground truth EE and the novel
thermal methodology, respectively.
jects. The blatant outlier drives the correlation sharply
downwards due to the small size of the set.

We do not have a good explanation for the outlier. The
most probable scenario is human error by the clinical tech-
nician who was operating the instrument at the time. There
is some indication of improperly calibrated thermal values
in the field of view for that subject. No such incidence has
occurred since then in numerous stress experiments which
were performed as part of the interactivity work (see Sec-
tion 9). In fact, what we measure is metabolic activation
of the corrugator muscle, which is concomitant to mental
processes. This appears to be in accordance with the obser-
vation theories of Paul Ekman, who coded this facial
action unit in his FACS scheme of primitive non-verbal
communications, as thought driven [52]. In other words,
our stress quantification work can be viewed as the physi-
ological support of certain visual FACS observations.

8. Applications—sleep studies

Recently and in cooperation with the Sleep Lab at the
University of Texas Medical School, we started to investi-
gate the application of the technology in the detection and
management of incidents of sleep apnea. This time, the
thermal imaging sensor is fixed above the bed of the subject
and communicates with the desktop computer via the
Ethernet. We continue to benchmark the performance of
the image-based breath rate quantification algorithm
against a ground-truth sensor (respiratory belt).

Several subjects have been processed so far and the per-
formance of the system appears to exceed expectations.
First, the thermal signal produced in the vicinity of the
nasal area is detectable when subjects are at sleep and with
help form the tracker is recovered in pristine form. In
Fig. 19(a) one can observe in the encircled region of inter-
est, how the temperature fluctuates between expiratory
state (green color in the nostril) and inspiratory state (red
color in the nostril). This produces the periodic breath sig-
nal using the method described in Section 6. This signal is
depicted in Fig. 19(b) and is in perfect sync with the
ground-truth breath signal. In contrast to what is reported
in Section 6, the measurement is performed on the nasal-
mandible tissue itself and not in the environmental vicinity.
For this reason the polarity of the signal is reversed. The
measurement region of interest is dictated by the applica-
tion scenario, as the subject’s face is more accessible in
frontal view.

Initial skepticism about the accuracy of the imaging-
based method has started to relax. The method appears
to stand on an equal footing with the ground-truth sensing
method. The weak point of this new technology is that the
signal can be lost if the nasal measurement area disappears
from the field of view. Fig. 20 exemplifies this scenario,
where the subject’s face is covered almost entirely by the
blanket. However, we have found that the imaging method
outperforms the ground-truth sensing method when the
subject moves in his sleep. Then, the noise introduced to



Fig. 19. (a) Thermal snapshots during consecutive expiration and inspiration phases of a normal sleep subject. (b) Normal breath waveforms produced by
the thermal imaging system (top) and the respiratory belt (bottom). The waveform between the red lines corresponds to the frame sequence depicted in (a).
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the ground-truth signal is typically much more severe than
the corresponding noise in the imaging signal. In general, it
is impossible to maintain continuous and accurate mea-
surements throughout the sleep session with either method.
The goal is to get accurate measurements most of the time
or some of the time and these are typically enough to paint
the medical picture. From this point of view, the imaging
method appears to perform as well as the ground-truth
sensing method. In fact, the imaging method accurately
recorded incidents of sleep apnea concomitantly with the
ground-truth sensing instrument (see Fig. 21).

Where the imaging method really shines, however, is the
highly automated and totally unobtrusive nature of its
operation. By contrast, Fig. 22 depicts a fully outfitted
sleep studies subject using legacy sensing. The discomfort
caused by the monitoring method may interfere with the
sleep routine of the subject, thus, contaminating the
experiment.

9. The interactivity potential

We have presented three novel methods for quantifying
at a distance three vital signs, that is, blood flow on a
superficial blood vessel, pulse, and breath rate respectively.
The common thread of these three methods is that they
depend on the same sensing modality, which is thermal
imaging. The methods are based on bioheat modeling of
physiological signals embedded in the thermal radiation
emitted from the human face. A robust facial tissue track-
ing algorithm allows the measurements to be taken in the



Fig. 20. Nasal area is blocked by the blanket from the camera’s field of
view.
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presence of natural head motion. The methodology is ideal
for sustained physiological monitoring, since the sensing
element is passive and does not require contact and the
measurements are carried out in a highly automated man-
ner. In fact, the system can operate at the desktop level and
at home and be incorporated into the human–computer
interface.

Analysis of the so measured vital signs can provide clues
about the presence and nature of various health problems
and psychological states. The methodology is ideal for
monitoring chronic conditions that are difficult to diagnose
and monitor otherwise, because they manifest themselves
stochastically. Examples of such ailments are heartbeat
Fig. 21. Abnormal breath waveforms computed though via the imaging syste
sleep apnea incident is manifested in the lengthy flat of the breath waveform
irregularities and sleep apnea that correlate with cardiac
pulse and breath rate correspondingly. Medical studies
are ongoing with our partner lab at Mayo Clinic regarding
heartbeat irregularities. But, we have a clear indication of
the method’s usefulness in sleep studies and the monitoring
of sleep apnea incidents.

Ultimately, this technology may be used at the desk-
top to monitor the computer user’s health and psycho-
logical state and interact accordingly. However, such a
widespread application of the technology is not feasible
in the present time due to the high cost of the sensing
element ($60 K for an entry level camera). Initially, the
technology is expected to find home in specialized HCI
applications where it has distinct advantages and the
high cost can be tolerated.

We have established that our technology can quantify
stress. Stress monitoring is clearly an area where the system
is very appealing. It is not only unobtrusive but also capa-
ble of quantifying stress through unique localized channels
(i.e., blood supply to the corrugator muscle), which are pre-
sumably more predictive. Traditionally, stress is quantified
through global channels, like pulse and breath rate, which
our technology is also capable of monitoring. However,
such systemic vital signs are sometimes non-predictive as
they are affected by patho-physiological conditions that
are non-stress related (e.g., respiratory ailments).

Currently, we are evaluating the interactivity potential
of the technology in driver usability studies. The subject
operates a car driver simulator while is being monitored
by the thermal imaging system. During the course of his
simulated driving is being distracted by conversation initi-
ated by another subject, who emulates a car passenger, cell
m (top) and recorded via the ground-truth respiratory belt (bottom). The
and the instantaneous drop of the breathing rate.



Fig. 22. Patient outfit in classical sleep studies. Courtesy of the Sleep Lab
of the University of Texas Medical School.

Fig. 23. Stress alert based on measurements of the physiological signs on
the face. The alert is delivered through the task bar and the user may
momentarily interrupt his current activity to provide feedback.
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phone calls, music, random noise, and engine and environ-
mental indicators. The purpose of the study is:

(1) Determine the breaking point for the average driver
beyond which he cannot drive effectively and safely.

(2) Find the best ergonomic scheme possible (e.g., posi-
tion and appearance of indicators) to optimize the
average driver’s performance within the limits of tol-
erable mental load.

The test software incrementally adds mental load, con-
sults with the physiological output of our system and if
stress indicators change significantly in response to a new
stimulus (e.g., high RPM indicator), it interacts with the
user and solicits his input (see Fig. 23) Then, it compares
this with his driving score, produced by the car simulator
and reports the results to the study team. The same sce-
nario is repeated for the same subject at a later time but
the stimulus is delivered in a different manner. For example
the RPM indicator is placed in a different position in the
graphical user interface (GUI) and assumes a different
form. The physiological indicators include pulse, breath
rate, periorbital blood perfusion, and blood flow in the
frontal vessels on the forehead that supply the corrugator
muscle. The pulse and breath rate are traditional systemic
stress indicators, which are measured in a novel manner
in our desktop HCI scheme. Their relative weight is small
in our stress scoring system. The periorbital perfusion is
indicative of the ‘fight or flight syndrome’ (surprise) [10]
and the frontal blood flow is indicative of mental stress
(brain icon in Fig. 23). The latter has the most weight in
our stress scoring scheme, as it is highly predictive of the
mental load caused by competing stimuli. Such competing
stimuli were superbly emulated in our experiments via the
Stroop test (see Section 7) and are characteristic of interac-
tive software systems, such as simulators.

The driver usability studies is one application example
for this technology. There are many other potential HCI
uses for stress monitoring. Measurements during conven-
tional usability testing could help identify user interface
features that increase user stress, even if the user is not con-
sciously aware of them. Use of our system during comput-
erized testing could identify questions that are unusually
stress-inducing. Monitoring of software users on a routine
basis, could identify software issues not uncovered by tra-
ditional usability testing. In the future, software or operat-
ing systems could adapt dynamically to the user’s
emotional state, for example, suspending non-essential pro-
cesses when the users are under considerable stress.

In the sleep studies application, we are currently work-
ing towards building a unique interactivity scheme not pos-
sible before the advent of this technology. The computer
processing the thermal data on the subject’s bed may adjust
the sleep number of the mattress automatically, depending
on the apnea scoring through the night. At the same time,
depending on the statistical frequency and severity of the
apnea incidents, the system may determine the recom-
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mended dose of sip-up medication for the next day, based
on the doctor’s guidelines encoded in the software. Medi-
cine dosage is presented as an alert through the task-bar
in our GUI scheme, which we found to be a convenient
way to interact with the user without cluttering his desktop.

In conclusion, the potential benefit to HCI and preven-
tive medicine of this novel and unique technology can be
enormous. We understand that this benefit will be realized
incrementally, starting from specialized usability applica-
tions and ultimately precipitating in widespread desktop
applications only as the cost of the technology drops. At
the same time, we also realize that desktop physiological
monitoring raises privacy and ethical issues, beyond the
scope of this paper [53].
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