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Abstract

Automatic signature verification is a well-established and active research area with numerous applications. In contrast,
automatic signature identification has been given little attention, although there is a vast array of potential applications
that could use the signature as an identification tool. This paper presents a novel approach to the problem of signature
identification. We introduce the use of the revolving active deformable model as a powerful way of capturing the unique
characteristics of the overall structure of a signature. Experimental evidence as well as intuition support the idea that the
overall structure of a signature uniquely determines the signature in the majority of cases. Our revolving active
deformable model originates from the snakes introduced in computer vision by Kass et al., but its implementation has
been tailored to the task at hand. This computer-generated model interacts with the virtual gravity field created by the
image gradient. Ideally, the uniqueness of this interaction mirrors the uniqueness of the signature’s overall structure. The
proposed method obviates the use of a computationally expensive segmentation approach and is parallelizable. The
experiments performed with a signature database show that the proposed method is promising. ( 1998 Elsevier Science
B.V. All rights reserved.

Zusammenfassung

Die automatische Verifikation einer Unterschrift ist weitgehend etabliert und ist ein aktives Forschungsgebiet mit
zahlreichen Anwendungen. Im Gegensatz dazu wird der automatischen Identifikation von Unterschriften wenig
Aufmerksamkeit entgegengebracht, obwohl ein weiter Bereich potentieller Anwendungen existiert, in dem die Unter-
schrift als Werkzeug zur Identifikation verwendet werden könnte. In diesem Artikel wird ein neue Annäherung an das
Problem der Identifikation einer Unterschrift präsentiert. Wir führen die Verwendung des drehenden und aktiv
verzerrenden Modells als mächtigen Weg ein, um die eindeutigen Charakteristika der gesamten Struktur einer Unter-
schrift herauszubilden. Experimentelle Beweise und Intutition unterstüzen die Idee, da{ die gesamte Struktur einer
Unterschrift eindeutig die Unterschrift in der Mehrzahl aller Fälle determiniert. Unser drehendes und aktiv verzerrendes
Modell entspringt den Schlangen, die von Kass und anderen in der Computervision eingeführt wurden, aber die
Implementation wurde auf die vorliegende Aufgabe zugeschnitten. Dieses mittels Computer generierte Modell arbeitet
interaktiv mit dem virtuellen Schwerefeld zusammen, da{ von dem Bildgradienten erstellt wird. Idealerweise spiegelt die
Eindeutigkeit dieser Interaktion die Eindeutigkeit der gesamten Struktur einer Unterschrift wieder. Die vorgeschlagene
Methode beugt der Verwendung eines rechenaufwendigen Segmentierungansatzes vor und ist parallelisiert. Die Experi-
mente mit einer Unterschriftsdatenbank zeigen, da{ die vorgeschlagene Methode vielversprechend ist. ( 1998 Elsevier
Science B.V. All rights reserved.
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Résumé

La vérification automatique de signatures est un domaine bien établi, où les recherches sont actives, et qui possède de
nombreuses applications. Par contre, l’identification automatique de signature a rec7 u peu d’attention, malgré le fait qu’il
y ait un large domaine d’applications potentielles qui pourraient utiliser la signature comme un outil d’identification. Cet
article présente une nouvelle approche du problème de l’identification de signatures. Nous introduisons l’utilisation de
modèles déformables actifs pivotants comme un moyen puissant de capturer la caractéristique unique de la structure
globale d’une signature. Des évidences expérimentales de même que l’intuition supportent l’idée que la structure globale
d’une signature la détermine de fac7 on unique dans la majorité des cas. Notre modèle déformable actif pivotant repose sur
les serpents (snakes) introduits en vision par ordinateur par Kass et al., mais son implémentation a été adaptée à la tâche
à réaliser. Ce modèle général par ordinateur interagit avec le champ de gravité virtuel crée par l’image gradient.
Idéalement, l’unicité de cette interaction reflète l’unité de la structure globale de la signature. La méthode proposée
supprime l’utilisation d’approches de segmentation chères en temps de calcul, et est de plus parallélisable. Les expériences
faites avec une base de données de signatures montrent que la méthode proposée est prometteuse. ( 1998 Elsevier
Science B.V. All rights reserved.

Keywords: Signature identification; Revolving active deformable model; Virtual gravity field; Virtual springs; Synchro-
nized string matcher

Fig. 1. Signature identification.

1. Introduction

The recognition of characters, numerals and
graphics by computers, and the automatic verifica-
tion of signatures has been an active research topic
for more than 20 years [1—3,9—11,15—18]. Now-a-
days, we have reached the point where both
graphics and text can be recognized in machine-
generated documents and some research and com-
mercial signature verification prototypes have
demonstrated their feasibility. However, recogni-
tion of highly cursive script still remains a partially
solved problem [9] and automatic signature identi-
fication has been given little attention so far.

The automation of signature verification and
identification has been justified in a number of
papers for financial as well as security reasons

[3,9,16]. Signature identification searches for the
identity of a given signature through a signature
database (Fig. 1). Signature verification verifies
whether a given signature belongs to a specified
individual (Fig. 2). Apparently, the signature identi-
fication problem is more complex than the signa-
ture verification problem and little research effort
has been focused on this area.

It is customary to distinguish on-line from off-line
signature identification and verification systems.
In an on-line system the user has to sign on an
electronic tablet which typically gives a signal
z(t)"[x(t), y(t)]T (i.e., image coordinates as a func-
tion of time). This system enables dynamic informa-
tion such as stroke sequence, acceleration, and in
some cases pressure to be captured in real time. On
the other hand, in an off-line system the user does
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Fig. 2. Signature verification.

not use a tablet but instead he/she signs on a paper
and his/her signature is captured via a camera or
a scanner (static image). Obviously, the dynamic
information that can be so easily extracted in the
on-line method, it is very difficult or impossible to
be recovered in the off-line method. Dynamic in-
formation is of special value to verification systems
since the forger might be able to copy the overall
shape of the owner’s signature but it would be
almost impossible to copy the timing and the
rhythm with which it is written.

The handwritten signature is considered to be
among the best means for an automated personal
identification system. It can be produced nearly
anywhere and unlike passwords or identity cards
cannot be forgotten or lost [3]. It is also advantage-
ous in terms of psychological factors when com-
pared with other biometric methods. Signature
identification appears not to bother people, per-
haps because signing is a common everyday acti-
vity. Quite to the contrary, eye recognition, for
example — both retina scanning, which requires
close contact with the recognition device, and iris
scanning, which can be done from a more comfort-
able distance — disconcerts some people because of
an inherent protectiveness about their eyes.

An intelligent signature identification system, in
which the user does not have to go through the
awkward procedure of laying an identity claim by
punching an ID number (verification) would be of
great value. Instead, the system should be capable
of arriving at a foolproof identification decision
(identification and verification) based solely upon
the signature of the user. Such a system is the
ultimate goal of the line of research we are pursu-
ing. We consider the problem of foolproof signa-

ture identification as a two-stage process. In the
first stage, signature identification through static
image analysis should be achieved. The second
stage should verify that indeed the signature has
been written by the user whose identity has been
recovered in the first stage and not by a skillful
impostor. In this second stage the use of on-line
information would be essential (hybrid system). In
the identification stage, the unique characteristics
of the signature’s overall structure are captured
first. Then, if the system cannot arrive at a definite
conclusion, it should resort to a more detailed
— and more time-consuming — investigation of the
signature’s structure. Experimental evidence [13]
as well as intuition support the idea that the overall
structure of a signature uniquely determines the
signature in the majority of cases. Only for a rela-
tively small percentage of problematic signatures,
the system would need to resort to the detailed
structure analysis module.

In this paper we address the problem of identify-
ing signatures by capturing the unique character-
istics of their overall structure. As will be explained
in subsequent sections, by introducing the use of
the revolving active deformable model, we manage
to capture the signature’s overall shape in such
a way that at the same time it conveys information
about the signature’s internal structure. Thus, while
we maintain the simplicity, the intuitiveness and
the speed of the global methods, we achieve at the
same time descriptional details comparable to that
obtained by localized methods, without resorting
to a computationally expensive and heavily heuris-
tic segmentation approach. Interestingly, speed can
be further increased by exploiting the paralleliz-
ation potential of the algorithm. The organization
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Fig. 3. Block diagram of the signature identification system.

of the paper is as follows. Section 2 presents some
previous work conducted in the area. Section 3
outlines the proposed system. Sections 4—7 describe
in detail the various modules of our system. In
Section 8 the experimental results are presented.
Finally, in Section 9 the paper is summarized and
conclusions are drawn.

2. Previous work

Traditionally, the bulk of the static techniques
can be classified into one of the following three
categories [9]:
f Global approach. In the global approach the fea-

tures are extracted from every pixel that lies
within a rectangle circumscribing the signature.
Typical global techniques include transforma-
tions [11] and image gradient analysis [17].
Although the global methods are easy and insen-
sitive to noise, they deteriorate when significant
distortion and style variations are present and
satisfactory position alignment cannot be
achieved.

f Statistical approach. The statistical features are
derived from the statistical distribution of the
signature’s pixels. The statistical approach is
more tolerant than the global methods to distor-
tion and style variations since it incorporates
a certain amount of topological and dynamic
information [1,2].

f Geometrical and topological approach. The geo-
metrical and topological features describe the
characteristic geometry and topology of a signa-
ture. Geometrical and topological features can

tolerate a high degree of distortion and style
variations, and they can even tolerate up to a cer-
tain degree translational and rotational vari-
ations [9].

3. Outline of the system

The geometrical and topological approach gives
the most detailed description of the signature im-
age. Geometrical and topological feature extraction
in conventional methods is primarily based upon
segmentation techniques. Segmentation usually
leads to a heavily heuristic approach and places
a considerable burden on the computational pro-
cess. Our approach departs totally from this mode
of tracing signatures off-line. Instead of segmenting
the signature, we rather follow a holistic approach.

We address the problem of capturing the overall
structure of a signature by using a technique that is
well established in the area of active vision for
tracking objects [5] but has never been tried before
in the field of signature identification and verifica-
tion. We introduce the use of a computer-generated
revolving active deformable model as a powerful
means of capturing the overall structure of a signa-
ture in considerable detail. Our revolving active
deformable model is similar, but not exactly the
same with the snakes introduced by Kass et al. [8]

More specifically, the proposed method consists
of four modules (Fig. 3):
1. Preprocessing. Preprocessing includes a thre-

sholding operation to clear up the image and an
orientation normalization procedure that facili-
tates the identification process.
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Fig. 4. Instance of a revolving active deformable model: (a) initial position; (b) final position.

2. Revolving active deformable model. This is the
main part of the whole procedure. Two-particle
active deformable models are applied to the sig-
nature (Fig. 4). The particles are connected
through an elastic spring that goes through the
center of an enclosing ellipse. The particles lie
initially on the enclosing ellipse 180° apart. Each
pair of particles gets attracted to the signature
edges, locally, under the combined influence of
the virtual spring and of a virtual gravity field
generated by the image gradient. The pairs of
particles are applied in a revolving fashion at
equally spaced angular intervals and at high
resolution (5° apart). Each pair of particles
reaches finally a stable condition leaving a trace
on the signature’s boundary. At the end, the
sequence of all these traces gives an abstraction
of the signature’s structure.

3. Polygonal approximation. The key in signature
identification is to distinguish between the signa-
ture’s habitual parts and those that vary in al-
most every sample of the signature. While the
application of the revolving active deformable
model at high resolution is essential in focusing
on certain important characteristics, like deep,
narrow valleys, at certain signature parts it
gathers excessive information (e.g., like small
fluctuations of almost straight lines, which might
be of some value for verification purposes, but
are rather harmful for identification purposes).
A polygonal approximation algorithm is applied
at this time, to smooth such detrimental detail

out of the set of points gathered from the pre-
vious module.

4. Classification. A string feature vector is com-
posed out of the internal angles of the polygonal
shape reported by the previous module. Then,
classification based upon a novel string match-
ing algorithm (the Synchronized String Matcher
(SSM)), developed specifically for the task at
hand is performed and a unique match between
the signature image and a prototype signature
stored in the signature database is established.
In the case of failure to come up with a clear-cut
match, the system classifies the case as incon-
clusive.

4. Preprocessing

4.1. Thresholding

It is very important for the main processing
module of an identification system to be applied to
a noise-free image. We actually need a binary signa-
ture image where the signature body will clearly
stand out in a perfectly clean background. This is
especially true for the case of active deformable
models, because salt and pepper noise can totally
alter the virtual gravity field of the image. We also
need the thresholded signature image to represent
the sampled signature as faithfully as possible, since
the best identification technique would be useless if
applied to a heavily distorted image.
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The thresholding technique chosen for that pur-
pose is a method devised by [12]. It involves a non-
parametric and unsupervised method of threshold
selection. An optimal threshold is selected, in order
to maximize the separability of the resultant classes
in gray levels. The algorithm utilizes only the
zeroth- and the first-order cumulative moments of
the gray-level histogram and is very fast.

4.2. Normalization

The normalization process involves only an
orientation normalization and not a size nor-
malization. The classifier module later classifies
according to features that are size invariant. More
specifically, a signature is oriented in such a way
that its elongation axis is horizontal. The alignment
of the elongation axis with the horizontal axis (x-
axis) is achieved through the use of second-order
spatial moments [6].

Utilizing only second-order moments for orient-
ing a 2-D shape leaves us with a two-way ambiguity.
The elongation axis has been properly aligned to
the horizontal axis of the coordinate system, but it
is not known if the oriented shape should be ro-
tated by 180° or not (that is, which part should face
east and which should face west). To resolve this
matter we could resort to the determination of the
most distant point from the centroid or alterna-
tively to higher-order moments [7]. Either of these
methods is going to fail for some signatures. The
reason is that some signatures have an almost sym-
metrical shape, that favors slightly sometimes the
northern, sometimes the southern part, some other
times the western or the eastern part, depending on
the ‘mood’ of the signer. These kinds of signatures
render any further orientation processing useless.
The problem has been overcome by processing
both the aligned image yielded by the above ori-
entation algorithm and its flipped (rotated by 180°)
version for each prototype signature image. The
results of this processing are kept into two separate
fields, one for the aligned reference image and one
for its flipped version, and linked with the node of
the corresponding prototype signature database
entry. A test signature image is oriented by using
the second-order spatial moments only, it is pro-

cessed, and the result of processing is matched
against both fields of every reference signature
database entry.

5. Revolving active deformable model

An active deformable model is a mesh of artificial
massive particles connected to each other by artifi-
cial elastic springs. Each particle interacts with the
signature image through attracting forces created
by high values in the image-gradient map. The
movement of the active deformable model on the
image plane is governed by the laws of classical
mechanics. Our active deformable models are
modeled after the active deformable models used by
Couvignou et al. [5] for visually tracking moving
objects with two notable differences. First, our ac-
tive deformable models are not used in tracking
moving objects but rather in capturing the overall
structure of static signature images. Second, we do
not arrange the mesh of particles in a rectangular
fashion around the signature, but we rather apply
pairs of particles in succession, along the enclosing
ellipse of the signature, at equally spaced intervals
and in a revolving fashion. This mode of active
deformable model application (revolving active
deformable model) not only yielded dramatic
performance gains but entailed the method to be
potentially fully parallelizable.

In more detail, the enclosing ellipse of the signa-
ture is defined as the ellipse whose foci are the
middle points of the left and right edges of the
bounding rectangle. The particles are connected
through an elastic spring that goes through the
center of the ellipse. The particles lie initially on the
enclosing ellipse 180° apart. We chose the starting
positions of the particles to be on the enclosing
ellipse, because it gives us a nice parametric model
to achieve half a revolution around the signature,
and in addition, it circumscribes the signature more
closely than any other simple closed curve, facilitat-
ing a strong interaction with the signature’s gravi-
tational field. The pairs of particles are applied in
a revolving fashion at equally spaced angular inter-
vals (5° apart). Each pair of particles gets attracted
to the signature edges, locally, under the combined
influence of the spring forces and of a virtual
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Fig. 5. Snapshot of a revolving active deformable model in
action — during the initial phase.

Fig. 6. Snapshot of a revolving active deformable model in
action — during the final phase.

gravity field. The pair finally reaches a stable condi-
tion, represented pictorially by small circular traces
on the signature’s boundary (see Figs. 5 and 6).

The particles are moving in the image plane, and
the motion of each ith particle obeys the classical
dynamic equation
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internal force exerted on the ith particle by the jth
particle. External forces are created by the image
gradient magnitude of the signature’s pixels. Inter-
nal forces are spring forces and their main function
is to bring the pair of particles from its initial
position on the enclosing ellipse where the gravi-
tational field is non-existent or weak, closer to the
signature image, where the gravitational field be-
comes stronger and can define the trajectories of
the particles. In our case, the sum of internal forces
is trivialized to F*/5
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since our active deformable

model consists of only two particles.

5.1. Internal forces

Internal forces are created by virtual massless
linear springs with viscous friction. Thus, the par-

ticles are connected together through a mesh of
damped linear springs. In our case, since we use only
pairs of particles, only a single linear spring is
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distance between particle i and particle j. The term
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is the linear stiffness, r0
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is the viscous friction
coefficient, and l
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is the length at rest of the linear

damped spring that connects the particles i and
j together. We have determined experimentally that
best system performance is achieved for the follow-
ing parameter values: i

ij
"0.6, r0

ij
"0.8 and

l
ij
"1.4.

5.2. External forces

The external force F%95
i

on the ith particle m
i
is

created by the image; it is expressed as the sum of
two forces,
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The image gravitational force F'3!7
i

attracts the par-
ticle m

i
to the image contours. Like in [5], we opted

to implement these contour attracting forces
with a gravitational force field proportional to
r/(r2#b2) (where b is a positive scalar constant)
instead of the classical Newtonian form r/r3. This
formulation has been motivated by a computation-
ally efficient implementation, as well as the need to
obtain finite values for the gravity force at r"0,
which is not the case with the Newtonian gravity
field.

Let I(s) denote the intensity at pixel s whose
image coordinates are (x,y). The image gradient is
computed inside a square window ¼(i) centered at
particle i. The best compromise between computa-
tion time and steady attraction was achieved by
a 41]41-pixel window. All pixels s in ¼(i) are
assigned a virtual mass M(s) whose value is the
magnitude of the image gradient:

M(s)"E+I(s)E. (4)
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Fig. 7. Behavior of the revolving active deformable model in
signature gaps — the particles due to the gap are not stabilized in
their image part and under the influence of the spring force tend
to cross to the other image part (e.g., particle 2 moves towards
the upper part of the image); the inter-particle distance is de-
creasing.

Fig. 8. Behavior of the revolving active deformable model in
signature gaps — the particles have crossed to the complement-
ary image parts where they will eventually get stabilized (e.g.,
particle 2 is now in the upper image part and continues to move);
the inter-particle distance is increasing again signaling the detec-
tion mechanism to ignore the traces of the particular pair of
particles.

The elementary virtual mass M(s) attracts the mass
m
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of the particle i to the pixel s with a force whose
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The damping force F$!.1
i

smooths the motion of
the system in the image plane, as though the whole
set of particles was bathed in a viscous liquid, so
that

F$!.1
i

"!»rR
i
, (7)

where » is the viscous friction coefficient. This
smoothing effect is necessary during the initial
phase of attraction, from the time the active de-
formable model leaves the enclosing ellipse until
the time the gravitational field becomes strong
enough to outweigh all the other factors. The rea-
son is that since the forces (external and internal)
are updated in the current system at the frequency
of 10 Hz, unconstrained spring forces (with no
smoothing factor present) might prove faster-acting
than the update frequency and manage to retract
the particles too far away from the position antici-
pated, before the gravity field becomes strong
enough to dominate the particle’s trajectory. We
have also determined experimentally that the fol-
lowing parameter values produce the best results:
G

0
"0.6, b"10.0 and »"4.3.
The window ¼(i) centered at the particle i within

which the virtual gravity field that affects the tra-
jectory of particle i is computed, it reaches over
time image areas well beyond the outermost edges
of the signature. Thus, the internal structure of
the signature plays a role too in the definition
of the particle trajectories. It is obvious now why
the traces left by the revolving active deformable
model do not merely constitute a polygonal ap-

proximation to the overall shape of the signature
but in addition, they mirror the overall structure of
the signature.

5.3. Gaps in the signature image

The problem encountered with the revolving ac-
tive deformable model is that of significant gaps
found in some signature images, typically, gaps
between the first and last name of the signer. In
those cases, the particles, under the dominant influ-
ence of the spring forces are likely to cross each
other and one or both get stabilized somewhere in
the boundary of the semi-image which is com-
plementary to their original target, due to the ‘hole’
in the virtual gravity field. Thus, the particle from
the lower part of the signature image may end up in
the upper part and vice versa (see Figs. 7 and 8).
This is obviously detrimental to the cause of follow-
ing the signature’s outline. It is also detrimental to
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Fig. 9. Revolving active deformable model applied at 5° resolu-
tion with no subsequent polygonal approximation phase.

Fig. 10. Revolving active deformable model applied at 5° res-
olution with subsequent polygonal approximation phase.

Fig. 11. Revolving active deformable model applied at 30° res-
olution with no subsequent polygonal approximation phase.

the cause of mirroring the signature’s structure
since the behavior of the particles is almost exclus-
ively defined by the spring forces and not by the
image gravitational forces.

A scheme has been developed for the system to
detect the occurrence of gap particle behavior and
exclude the corresponding traces from further con-
sideration. More specifically, the pattern of behav-
ior of the pair of particles in the gaps is that the
particles first approach each other, and thus the
distance r

ij
between them tends to 0, and then they

start getting away from each other as they move
towards the complementary parts of the image,
thus having the inter-particle distance r

ij
increased

again. This pattern of behavior is captured by a de-
tection mechanism and the traces of these particles
are left out of consideration.

6. Polygonal approximation

The points gathered from the application of the
revolving active deformable model define already
a polygonal approximation to the overall shape of
the signature. The question is why do we apply
a specific polygonal approximation algorithm at
this time to further reduce the number of points we
carry, and do not apply the revolving active de-
formable model at lower resolution (say 30°) in
order to achieve the same objective. The answer is
that the application of the revolving active deform-
able model at high resolution is essential in focus-
ing on certain discriminating features of high value,
like deep narrow valleys, that would be skipped
altogether if the revolving active deformable model
is applied at a lower resolution. At the same time,
this high-resolution application of the revolving
active deformable model gives a rather jagged effect
in small, almost straight lines, that renders match-
ing of almost similar polygonal shapes impossible
(see Figs. 9—11).

Fig. 9. shows the result of the application of the
revolving active deformable model at high resolu-
tion (5°) with no subsequent polygonal approxima-
tion phase. One can see the jagged effect which is
especially pronounced along nearly straight lines,
like the end of the signature in the particular figure.
In fact, the very small line segments along the

straight parts of the signature are imperceptible in
the figure because they are covered by the num-
bered vertices of the polygonal shape. Fig. 10
shows the final result after an application of the
revolving active deformable model of equal resolu-
tion as that in Fig. 9 (5°), but with a subsequent
polygonal approximation phase. One can witness
the elimination of the jagged effect, while at the
same time the polygonal shape remains almost the
same. In Fig. 11 the revolving active deformable
model has been applied at a lower resolution (30°)
achieving a reduction in points comparable with
Fig. 10. It should be noted how crucial discriminat-
ing features like the two consecutive valleys be-
tween vertices 8 and 12 in Fig. 10 have disappeared
in Fig. 11.

A simple splitting algorithm which has been
widely used [14] has been chosen in order to carry
out the polygonal approximation phase. The toler-
ance E

.!9
has been tuned to 5 pixels. Experimental
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Fig. 12. Computation model for the internal angles. At vertex
k!1, the cross product of its directional edges (dashed arrows)
indicates a clockwise turn (convex curve), while at vertex k, it
indicates a counterclockwise turn (concave curve).

runs with our current signature database, con-
firmed that E

.!9
"5 yields the best results (i.e., it

smooths out the jagged effect without compromis-
ing the accuracy of the polygonal representation).

7. Classification

7.1. Similarity measure

The points produced by the polygonal approxi-
mation algorithm represent an approximation of
the signature’s overall shape. At the same time,
these points, as was explained in Section 5, convey
information about the internal structure of the sig-
nature. All this information in order to be useful for
matching purposes needs to be transformed into
another more appropriate form. The internal
angles of the polygonal shape have been chosen as
its defining feature. The computation of each inter-
nal angle is achieved through the use of the dot and
cross products of its sides. More specifically, start-
ing from the initial vertex 0 of a polygon with
n vertices, as we walk counterclockwise around the
shape, at each vertex k (k"0,2,n!1), we com-
pute first the unit vectors starting from the vertex
and lying along its polygonal sides and sub-
sequently we compute the dot and cross products
of these vectors. The dot product yields an angle
u

k
which happens to be the internal angle h

k
when

the cross product indicates a clockwise turn or in
other words a convex curve (see Fig. 12). In case the
cross product indicates a counterclockwise turn or
differently speaking a concave curve (Fig. 12), then
the internal angle is h

k
"360°!u

k
.

Angles are coded into one of 18 possible symbols
A,2,R, corresponding to 20° increments; i.e. A:
0°(h)20°; B: 20°)40°;2R: 340°(h)360°.
The strings formed in this way constitute the fea-
ture vectors of the signature images. Suppose that
two polygonal fits, D and E, of two signature im-
ages, are coded into strings following the above
scheme and let us denote those strings as d

1
d
22

d
n

and e
1
e
22

e
m
, respectively. There are two kinds of

matches that may occur between the symbols of the
two strings: a full match and a half match. A full
match occurs if d

k
"e

j
, where k and j may be

different in the general case. A half match occurs if

d
k
!1"e

j
or d

k
#1"e

j
, where again k and

j might be different in the general case too. Let
H represent the number of credit points accrued
from the matches between the two strings accord-
ing to the following scheme: a full match gathers
two credit points and a half match gathers one
credit point. Half matches account, basically, for
the high variability factor found in some signatures
of the same individual. A perfect match would
accrue 2*DDD"2*DED credit points, where DargD is the
length (number of symbols) in the string representa-
tion of the argument. Thus, a non-perfect match
differs

J"2*max(DDD,DED)!H (8)

credit points from a perfect match. Of course, J"0
if and only if DDD and DED are identical. The similarity
measure between D and E according to which clas-
sification is done is the ratio

Q"

H
J
"

H
2*max(DDD,DED)!H

. (9)

Hence, Q is infinite for a perfect match and zero
when none of the symbols in D and E match (H"0
in this case). Due to implementation restrictions, in
perfect match cases Q is set to the maximum integer
available on the machine. Because matching is
done symbol by symbol, the starting point on each
boundary is important in terms of reducing the
amount of computation. This is the reason that an
orientation normalization stage preceded this mod-
ule. The starting point is always the left trace left
from the very first application of the revolving
active deformable model.
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Fig. 13. Reference signature image.

Fig. 14. Test signature image corresponding to the reference
signature image of Fig. 13.

The system is trained by using one sample signa-
ture of every individual we consider as a user of the
system. The feature vectors of both the aligned and
the flipped version of each such reference signature
are established and stored in the system database
along with the corresponding id. Then, the system
tries to match the feature vector of each test signa-
ture with one of the feature vectors of the reference
signatures using the similarity measure Q. The lar-
gest value of Q signifies the best match. The value of
Q should be above a certain threshold in order for
the match to be successful.

7.2. String matching

The usual string matching strategy followed in
pattern recognition problems is a sequential one.
Starting from the starting symbol, symbols are
compared one by one until we run out of symbols
for the shortest string. This technique does not
work very well in signature identification and per-
haps is not quite suitable for other pattern recogni-
tion problems of similar difficulty. The reason is
that due to the variability factor typically present in
the signatures of the same individual, the corre-
sponding polygonal approximations may differ lo-
cally at some areas, although they maintain pretty
much the same shape overall.

For a matching process that proceeds in a se-
quential manner once the first significant difference
in the outline between the test signature and the
corresponding reference signature is encountered,
the process is derailed and is unable to catch sub-
sequent parts of great similarity between the two
polygonal shapes. This situation is exemplified in
Figs. 13 and 14. At vertex 4, a sequential matching
algorithm will fail and it will cause a derailment
that will affect all the subsequent matches. Thus,
the comparison between the test image (Fig. 14)
and the reference image (Fig. 13) will accrue very
few or no credits after vertex 3. Alternatively, the
process can continue by advancing the vertex
pointer in the test image of Fig. 14 to vertex 6 and
the vertex pointer in the reference image of Fig. 13
to vertex 5. From there we can obtain successful
matches until the end of the polygonal chain.
A novel algorithm, the Synchronized String Match-

er (SSM), inspired from error recovery techniques
in compiler design, but tailored to the task at hand,
has been developed to cope with the particular
problem.

SSM Description. Essentially, the SSM algo-
rithm tries to resynchronize the matching process
between the reference signature string and the test
signature string, after each derailment, always with-
in a prespecified distance (number of lookahead
symbols) ¸. In order to apply the algorithm we
need to know which string has the minimum length
between the test string and the reference string. Let
minlen be the length of the shorter string and max-
len the length of the longer string. In addition, imin
and imax are two indices pointing initially at the
first symbols of the corresponding strings. In case
the strings have equal lengths, minlen is the length
of the reference string and imin traces the reference
string. Let also º be the number of consecutive
unsuccessful matches since the last successful match
took place. It is also important to note that H is the
number of credit points accrued from the symbol
matches of two strings. Then, the SSM algorithm in
pseudocode form could be expressed as follows:

SSM(¸)
1 ºQ0
2 HQ0
3 while (imin(minlen) and (imax(maxlen)
4 case: Successful match
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Table 1
Trace left by the SSM when applied to the signatures of Figs. 13
and 14

Step imin imax Match
Number of
credit points, H

1 0 0 No match 0
2 0 1 No match 0
3 0 2 No match 0
4 0 3 No match 0
5 1 0 No match 0
6 1 1 Full match 0
7 2 2 Half match 2
8 3 3 No match 3
9 3 4 No match 3

10 3 5 No match 3
11 3 6 No match 3
12 4 3 No match 3
13 4 4 No match 3
14 4 5 No match 3
15 4 6 No match 3
16 5 3 No match 3
17 5 4 No match 3
18 5 5 No match 3
19 5 6 Full match 3
20 6 7 Half match 5
21 7 8 Full match 6
22 8 9 Half match 8
23 9 10 Half match 9
24 10 11 Half match 10
25 11 12 Full match 11
26 12 13 No match 13
27 13 13 Full match 13

5 iminQimin#1
6 imaxQimax#1
7 ºQ0
8 if full match
9 then HQH#2
10 else HQH#1
11 case: Unsuccessful match
12 if (º(¸)
13 then if ((imax!imin)'¸) or

(imax"(maxlen!1))
14 then imaxQimax!º

15 iminQimin#1
16 ºQ0
17 else imaxQimax#1
18 ºQº#1
19 else iminQimin#1
20 imaxQimax!¸

21 ºQ0
22 if (imin!imax)'¸

23 then imaxQimax#1
24 return H

The pseudocode notation we use conforms to the
notation introduced by Cormen et al. [4]. One
could observe that the lookahead search conducted
after each derailment never extends further than
¸ symbols (¸ has been set to 3 in our system). In
addition, the imin and imax pointers are always
kept not further apart than ¸ symbols. This ¸-
symbol barrier ensures that the matching derail-
ment is due to some variation in the signatures of
the same individual and not due to something more
serious, like a signature shape that is only remotely
similar in some parts with our test signature. It also
ensures that the matching parts share the same
orientation, that is, a part in the left upper part of
one signature does not match with a similar part in
the bottom middle part of another signature.
Table 1 shows a trace of the SSM algorithm when
it is applied to the signatures of Figs. 13 and 14.
The imin and imax indices in Table 1 take the
number values of the polygonal vertices that cor-
respond to the string symbols the two indices are
pointing at. The situation is clarified in Fig. 15
where the status of the computation is depicted in
detail during the second step of the trace listed in
Table 1.

8. Experimental results

The user population of the system is currently 60
individuals. The system has been trained with one
sample signature from each individual user. The
system has been tested with 180 test signatures,
three from each user. The test signatures have been
collected at different days and times and no restric-
tions have been applied. The individuals participat-
ing in the experiment were asked to sign on a plain
piece of paper using a pen or a pencil. Plain paper
and not textured paper, like the one used in checks,
was used, to imitate the conditions under which the
final foolproof identification system is intended to
operate. For example, the final form of the system
could be a platform similar to current hand-held
communicators, like the Newtont of Apple, where
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Fig. 15. Computation status during step 2 of the SSM trace shown in Table 1. Because there was no match in step 1, imax advances to
the first lookahead symbol, while imin does not move.

Table 2
Test results

Correct Inconclusive False

142 or 78.89% 33 or 18.33% 5 or 2.78%

both image data and dynamic information will be
captured simultaneously. The test subjects were
graduate and undergraduate students and various
professionals. Out of 180 test signatures, 142 have
been correctly identified which amounts to 78.89%
success rate, 33 test cases have been signaled as
inconclusive (18.33%), and for the remaining 5 sig-
natures (2.78%) the system gave false recognition.
The test results are summarized in Table 2. Fig. 16
shows sample test signatures (columns b and c) that
were successfully matched with the corresponding
reference signatures (column a). Only signature 1c
was classified as inconclusive since it features
a middle initial that is absent in the corresponding
reference signature. Fig. 17 shows the sensitivity of
the final identification result with respect to the
angular resolution of the snake.

The system uses two kinds of thresholds. One
threshold has been set up to disallow signatures of
individuals who are not registered users of the
system to weakly match some random reference
signature, thus allowing intrusion in to the system.
Experimentation with the current system led us in
characterizing all matches that yield similarity
measures Q(0.9 as weak matches and therefore
rejecting the corresponding test signatures as signa-
tures belonging to invalid users. The other thre-
shold has been set up in order to direct very close
— and thus, questionable — matches to the perspect-
ive detailed structure analysis system for further

investigation. Thus, if the difference of the similarity
measures between the best match and the second
best match, *Q(0.2, the current system classifies
the match as inconclusive.

The main reason for the failures (which is the true
detrimental element of the current system) is that
the signatures of certain individuals exhibit great
variability and as a result their structure differs
noticeably in certain areas. The system, although in
general copes quite well with those problematic
signatures, there is a certain kind of signature varia-
bility that it cannot address successfully. This re-
gards strokes that vary in length from trial to trial
and sometimes cover significant part of the signa-
ture outline while other times do not (see Figs. 18
and 19). Strokes of this type sometimes ‘hide away’
a significant portion of the internal structure of the
signature while they reveal it some other times,
resulting into substantially different feature vectors.
Because the matching is done part by part by the
SSM mechanism, if the part of the signature image
that is not affected by the on—off behavior of
the stroke (invariant) is similar with some part of
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Fig. 16. Signatures successfully identified by the system. Col-
umn a shows the reference signatures while columns b and c the
actual test signatures. Signature 1c is an exception since it was
classified as an inconclusive case.

Fig. 17. Sensitivity of the identification result with respect to the
angular resolution of the snake

Fig. 18. Reference signature image.

Fig. 19. Test signature image differing noticeably from the cor-
responding reference signature image of Fig. 18.

another irrelevant reference signature image, it may
lead to false identification.

The only way to establish a successful match and
avoid a false identification in cases like the above, is
to have the revolving active deformable model ap-
proximate the parts that remain similar in great
detail, so that no valuable points get lost. The
revolving active deformable model, as it stands,
fails to do so sometimes because the spring forces
proved too restrictive. Thus, some features of great
discriminating value like deep narrow valleys may
be represented in the polygonal approximation as
shallow valleys, because the spring forces prohibit
the particles of falling all the way down to the
bottom of the valley. Under-represented discrimi-

nating features in a pattern that is already quite
different from its corresponding reference pattern
may give advantage to roughly similar reference
patterns and lead to false recognition. A way out of
this problem would be to have the spring forces out
of the way once the particles are well within the
range of the image gravity field. In addition, keep-
ing more than one signature samples from each
user in the reference database and building the
reference vector of each user entry by applying an
averaging process upon all the relevant reference
samples would increase the robustness of the system.

It takes the system on average 17.1 s to arrive at
an identification decision on the current implemen-
tation platform (IRIS IndigoTM R4000). Almost the
entire time is spent during the application of the
revolving active deformable model phase. It is
expected that the above time will be drastically
reduced once the system migrates to parallel
hardware and the revolving active deformable
model algorithm is properly parallelized. The dif-
ferential equations that describe the motion of all
the 36 pairs of particles (the number that corres-
ponds to 5° angular resolution) could be solved in
principle in parallel.

9. Conclusion

In this paper, we addressed the question
of whether elastic structures similar to snakes
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introduced by Kass et al. [8] can be of some value
as a first stage classifier in the area of signature
identification and verification. The most important
contribution of this work is the introduction of the
revolving active deformable model as a powerful
mean for capturing the signature’s overall struc-
ture. The experiments confirmed that signatures are
uniquely determined by their overall structure in
the great majority of cases. Identification rates are
satisfactory for a first stage classifier, and the sys-
tem responds reasonably fast. Speed, however, will
increase dramatically once we exploit the parallel-
ization potential of the model.

Future research efforts will focus on diminishing
the false identification rate. This is the most impor-
tant hurdle before we move on to the verification
part of our perspective system, since the verification
process for these false identified cases will be mean-
ingless. We need to transfer as much as possible out
of the false percentage to the inconclusive percent-
age. Then, the perspective detailed structure analy-
sis system will be able to resolve the ambiguity. In
that respect, an increase to the approximating
power of the revolving active deformable model by
utilizing the spring forces only as an initialization
device will help considerably.
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