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Abstract

We propose a novel tracking method that uses a network of independent particle filter trackers whose interactions are modeled using
coalitional game theory. Our tracking method is general, it maintains pixel level accuracy, and can negotiate surface deformations and
occlusions. We tested our method on a substantial video set featuring non-trivial motion from over 40 objects in both the infrared and
visual spectra. The coalitional tracker demonstrated fault tolerant behavior that exceeds by far the performance of single particle filter
trackers. Our method represents a shift from the typical tracking paradigms and may find application in demanding imaging problems
across the electromagnetic spectrum.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The extraction of high-level information from video
through the use of computer vision algorithms has become
increasingly important over the past decade. A diverse
array of applications use this technology including quality
control in the manufacturing sector [1,2], surveillance in the
security industry [3,4], biomedical measurements for
healthcare [5–7], and behavioral analysis [8–10]. Of key
importance to all these computer vision applications is
the ability to detect and track objects in video streams.

The problem of tracking can be cast as guessing how
things change over time. Specifically, tracking involves
modeling how the parameters of the object modulate in
successive input frames by using prior knowledge. When
this is done accurately, it can be useful in a number of
applications where knowing the current state of a given tar-
get object is important.

An intriguing line of computer vision research focuses on
measurements of physiological signals on facial tissue. The
measurements are performed on infrared imagery and are
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used in biomedical [5–7] and behavioral applications [8–
10]. Although, a large body of work has been devoted to
facial tracking research [11–13], we found the existing meth-
ods insufficient to achieve the high degree of accuracy
required in imaging measurements of facial tissue. This
was our initial motivation in exploring a novel tracking
paradigm.
1.1. Prior work

Computer vision tracking has been dominated by sequen-
tial Monte Carlo methods (particle filtering) [14] for the last
several years. Among the most popular particle filter track-
ing methods is the CONDENSATION algorithm, which
was introduced by Isard et al. circa 1998 [15–17].

An interesting tracking methodology based on deform-
able templates was also developed in parallel. Typical
deformable templates focus on tracking object contours
not surfaces [18]. Therefore, they cannot adequately
address out of plane tracking, like the case of left–right
facial rotation.

Alternative tracking methodologies employ specific
models of the target to provide better accuracy [19–21].
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Unfortunately, this increased accuracy comes at the
expense of speed and generality. A noteworthy modeling
approach is known as active appearance modeling and it
takes into account both shape and texture [22,23]. For
example, Dornaika et al. [23] first recover the 3D head pose
using a deformable wire-frame and then, local motion asso-
ciated with some facial features using active appearance
model search. Such 3D active appearance models can
potentially perform quality tracking in demanding facial
imaging applications in the visual spectrum. However, their
performance may break in thermal infrared imagery due to
thermal diffusion and the resulting fuzzy image edges. In
such an environment, appearance models may have a hard
time maintaining 3D–2D correspondences, which are
partly based on thermal gradients.

Tracking in the thermal infrared spectrum is of particular
interest to us because recent research demonstrated that
many vital signs including blood flow [5], pulse [6], and
breathing function [7] can be measured in this modality.
The success of these measurements depends strongly on a
reliable tracking method to register the motion of facial
tissue.

Our method aims to achieve what sophisticated model-
ing methods reportedly achieve, but it is more general
and robust. It does not employ a single explicit 3D model,
but many generic and cooperating 2D particle filter track-
ers, which are spatially distributed over the target’s surface.
Our effort can be seen as a first step towards developing a
tracking methodology that is able to accurately track a
wide array of targets across imaging modalities.

There has been some other work on multiple trackers
that work together to follow multiple objects [24–27]. In
contrast, we employ multiple trackers to track a single

object.
In the remainder of the paper, we first discuss the details

of our tracking approach in Section 2. Then, we outline our
experimental design in Section 3, followed by the experi-
mental results in Section 4. Finally, we present our conclu-
sions in Section 5.
Fig. 1. Overview of the tracking method. Initialization: consists of the followin
video, (b) subdivision of the ROI into the tracking network, and (c) individual
network follow their targets. Target State Estimation: consists of the following
calculated from the winning coalition, and (f) the deformation mesh is used
tracking (arrow 1) to target state estimation (arrow 2) and back to tracking (ar
tracking stage to distribute the inter-tracker influence.
2. Tracking methodology

Our goal is to develop a general tracking methodology
that can accurately monitor the motion of the target’s sur-

face even in the presence of deformation or partial occlu-
sion. Many existing general tracking methods
approximately monitor the target’s outline, not its surface.
This is a different and far easier problem.

We arrived at a fault tolerant surface tracking method
that works both on infrared and visual video without
resorting to explicit modeling. It uses a network of particle
filter trackers that influence each other (see Fig. 1). Each
individual tracker is unreliable at times, but the combina-
tion of many neighboring trackers produces robust perfor-
mance. The inter-tracker influence is modeled as a
coalitional game where each tracker is a player, and the
goal of the game is to propagate one’s influence in subse-
quent frames of video. Within this framework, the winning
coalition of trackers is used to calculate the state of the
tracked object.

2.1. Tracking network

We use a network of trackers to achieve accurate surface
tracking and fault tolerance. Tracking is maintained even if
all but one of the trackers fail in the tracking network. The
trackers are each assigned a different portion of the target’s
surface to track (see Fig. 2). By default the trackers are
configured in a regular grid, although alternative configu-
rations are possible through a feature selection mechanism.
Inter-tracker communication allows trackers that are cor-
rectly tracking the target to ‘‘tip-off’’ other trackers that
have become lost, as to the true location of the target’s sur-
face. This inter-tracker influence is realized within a statis-
tical framework and is managed by the coalitional game
model described in Section 2.2.

The idea arose naturally in the effort to address the
problem of facial tissue tracking in the infrared. As the
subject’s head moves (e.g., left and right) part of the facial
g steps: (a) extraction of the user selected region of interest from the input
tracker template creation. Tracking: the individual trackers in the tracking

steps: (d) the winning coalition is produced, (e) the deformation mesh is
to calculate the target state. The method proceeds from initialization to
row 3). In the latter transition, the winning coalition is passed back to the



Fig. 2. Example of a 3 · 3 tracking network on a visual image. Each
tracker in the network is shown in a different color. Each tracker is
tracking a separate part of the target. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of
this paper.)
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surface is occluded at times. Trackers that correspond to
the occluded part of the face are aided by trackers that cor-
respond to the exposed part.

In our implementation, each tracker in the tracking net-
work is an individual particle filter tracker. We denote the
state of each individual tracker i at time t by x

ðtÞ
i and its

associated image observation by z
ðtÞ
i . The target tracker’s

prior, pðxðtÞi jz
ðt�1Þ
i Þ will be formed using intra-samples s

ðtÞ
ði;iÞ

from tracker i and inter-samples s
ðtÞ
ði;jÞ that correspond to

the (inter-tracker) influence of tracker i from tracker j.
The inter-samples s

ðtÞ
ði;jÞ are generated based on the initial

relationship between the trackers involved in the exchange:

s
ðtÞ
ði;jÞ ¼ T

x
ð0Þ
j

x
ð0Þ
i

x
ðtÞ
j ; ð1Þ

where s
ðtÞ
ði;jÞ is the inter-sample generated by tracker j for

tracker i and T
x
ð0Þ
j

x
ð0Þ
i

is the transformation that gives a sample

for tracker i given a state for target j at time t. The transfor-

mation T
x
ð0Þ
j

x
ð0Þ
i

is computed during initialization for every

possible tracker pair ðxð0Þj ; x
ð0Þ
i Þ.
2.2. Coalitional game

The tracking network is a versatile architecture for
tracking objects, but it does not have any intrinsic method
to generate the final target state or to manage tracker inter-
action. The simplest solution would be to allow every
tracker to influence all of the other trackers. Unfortunate-
ly, this is not an optimal solution, because trackers that
have lost their target would be allowed to influence other
trackers in the network that have not gone awry. This also
highlights the problem of determining which trackers in the
network are correctly tracking their targets and which ones
have strayed away. What is needed is a mechanism that can
determine the validity of each of the trackers, compute the
target’s state vector based on the valid trackers, and finally
propagate the influence of the valid trackers to keep the
network correctly tracking the target surface.

There are many optimization algorithms one can use to
manage the network of trackers. We chose to optimize
tracker interaction using a game theoretic solution for
two main reasons: it naturally fits the problem space and
it is relatively simple. Game theory [28–31] has been suc-
cessfully used to analyze topics ranging from simple deter-
ministic games, to complex economic models [32,33], and
even international negotiations [34,35]. Our adaptation
was to view the trackers as players in a cooperative game
[36,37], where the objective was to increase their influence
by forming coalitions with other trackers. The winning
coalition would then be used to compute the state vector
of the target and subsequently propagate its influence onto
the entire tracking network.

Specifically, the members mðtÞj of the winning coalition Ct

influence every other tracker i in the tracking network by
adding inter-samples s

ðtÞ
ði;jÞ. Trackers who are not members

of the winning coalition cannot propagate any influence
at all.

The intuitive affinity of the problem space to coopera-
tive gaming is apparent in the example of facial tissue
tracking. There, the winning coalition is composed mostly
of trackers that correspond to the exposed part of the face.
These are trackers that feature high-quality information
and give a ‘helping hand’ (influence) to the ‘clueless’ track-
ers that correspond to the occluded or deformed part of the
face.

The coalitional form of an N-tracker game is given by
the pair (X,P), where X = {1,2, . . . ,N} is the set of track-
ers and P is a real-valued function, called the characteristic
function of the game, defined on the set of all coalitions
(subsets of X), which has cardinality 2N, and satisfying
P(B) = 0 [28]. In other words, the empty set has value
zero. The size of a coalition C will be denoted from now

on by k, where k 2 {1,2, . . . ,N}, and there are
N
k

� �
coali-

tions of size k. The quantity P(Ck) may be considered as
the value, or worth, or power, of coalition Ck � X when
its members act together as a unit.

The definition of a coalitional game is quite general and
leaves the specification of the characteristic function to the
game designer. We designed a characteristic function for
the tracking game that encompasses four scores. These
scores are calculated from the trackers participating in
the coalition under consideration at time t:

• Template match a(t).
• Geometric alignment b(t).
• Inter-frame projection agreement c(t).
• Inter-frame membership retention d(t).

The characteristic scores support the fact that quality
tracking is characterized by consistency in the content
and geometric configuration of the individual trackers.
Specifically, the template match score rewards trackers that
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maintain consistent imaging content. The geometric
alignment score favors coalitions whose members have
geometric alignment analogous to the original (t = 0)
configuration. The inter-frame projection agreement score
is a continuity constraint. It improves robustness by penal-
izing abrupt (and improbable) changes of the projected
state of the target between successive frames. The inter-
frame membership retention score is also a continuity
constraint. It reflects the tendency of the winning coalition
from the previous time step to retain its members.

The template match score aðtÞCk
for a coalition Ck of size k

at time t is given by:

aðtÞCk
¼ 1

k

Xk

i¼1

aðtÞmi
; ð2Þ

where aðtÞmi
refers to the template match score (a number in

[0,1], see Section 2.6) of member mi in the coalition Ck at
time t.

For the second and third scores we first need to define
the function that measures the geometric alignment
between two target projections (see Fig. 3), as are comput-
ed from samples si and sj:

GðFðsiÞ;FðsjÞÞ ¼ GðSi;SjÞ

¼ x� 1� ððSix � SjxÞ2 þ ðSiy � SjyÞ2Þ1=2

Md

" #

þ ð1� xÞ � 1� jSih � Sjhj
Mh

� �
; ð3Þ

where FðsÞ is a function that transforms the tracker sam-
ple s into its corresponding target projection S, (Six,Siy) are
the (x,y) coordinates of the center of target projection Si,
Fig. 3. Geometric alignment of tracker’s target projections. (a) Target
projection at t = 0. (b) Tracker network overlaid on the initial target
projection. (c) Trackers 6 and 7 at a subsequent time t along with their
corresponding target projections. (d) Parameterization of target projec-
tions to facilitate measurement of geometric alignment.
while Sih is the angle of rotation about the center of target
projection Si. Md is set to the maximum movement allowed
by the target in a single frame while Mh is the (positive)
maximum rotation allowed by the target in a single frame.
The weight x penalizes appropriately the center and angle
discrepancies. Ideally, the target projections in Fig. 3(c)
should have coincided (perfect alignment), so that the com-
bined projection of the two tracker samples is reminiscent
of the original target shape. Note that the upper bound
for G(.,.) is 1 (when the two target projections are identi-
cal), but the lower bound is not necessarily 0. This would
have been the case, if we chose Md and Mh to be the max-
imum observed values at time t, but this would have slowed
down the computation. Besides, we do not mind giving
negative scores to some tracker pairs (i.e., penalizing as op-
posed to rewarding them), whose geometric alignment is
very bad.

Having defined the geometric alignment function for a
pair of samples (see Eq. (3)), we use it to compute the geo-
metric alignment score bðtÞCk

of a coalition of size k:

bðtÞCk
¼ f ðkÞ

k

2

� � Xk�1

i¼1

Xk

j¼iþ1

GðSðtÞi ;S
ðtÞ
j Þ; ð4Þ

where S
ðtÞ
i and S

ðtÞ
j are target projections corresponding to

the samples with the highest template match scores for coa-
lition members mi, mj, respectively. Regarding the function
f(k), we have f(1) = 0 and it is non-decreasing for
k = 2,3, . . . ,N. The bðtÞCk

is analogous to the average of
the geometric alignment of all possible tracker pairs in
the coalition. In general, as the size of the coalition k

increases, the average of the geometric alignment function
Fig. 4. Inter-frame projection agreement. (a) Target projection at t = 0.
(b) Tracker network overlaid on the initial target projection. (c) The target
projection at time t � 1 and tracker 6 with its corresponding target
projection at time t. (d) Parameterization of target projections to facilitate
measurement of inter-frame projection agreement.



Fig. 5. Border points of the target projection. The target projection is
shown in white. The deformation mesh is shown in blue and the
deformation mesh points are shown in red. (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this paper.)
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of the members of the coalition decreases. To compensate
for that loss, we introduced the linear function f(k), whose
role is to reward higher order coalitions as opposed to
lower order ones.

We also use the geometric alignment function for a pair
of samples (see Eq. (3)) to compute the inter-frame projec-
tion agreement cðtÞCk

score (see Fig. 4):

cðtÞCk
¼ 1

k

Xk

i¼1

GðSðtÞi ;S
ðt�1ÞÞ; ð5Þ

where S
ðtÞ
i is the target projection corresponding to the

sample with the highest template match score for coalition
member mðtÞi at time t; S(t�1) is the target projection corre-
sponding to the target state at time t � 1 (previous frame).

The inter-frame membership retention score dðtÞCk
for a

coalition Ck of size k at time t is given by:

dðtÞCk
¼ 1

k

Xk

i¼1

D mðtÞi ;C
t�1

� �
ð6Þ

where mðtÞi is the ith member of coalition Ck at time t, Ct�1

is the winning coalition from the previous time step, and D
is defined as:

Dðm;CÞ ¼
�1 if m is not a member of C;

þ1 if m is a member of C;

�
ð7Þ

where m is a tracker and C is a coalition.
Having defined the four scores, we proceed with the def-

inition of the characteristic game function P(t)(Ck):

PðtÞðCkÞ ¼ xa � aðtÞCk
þ xb � bðtÞCk

þ xc � cðtÞCk
þ xd � dðtÞCk

;

ð8Þ

where xa, xb, xc, and xd are the weights (values range in
[0,1] and sum to 1) assigned to the four scores. Note that
because of the function f (k) in the geometric alignment
score, the characteristic score may exceed the value of 1.
This may happen in cases where we have higher order
coalitions and quite good geometric alignment.

For every size of coalition k 2 {1,2, . . . ,N} we have
N
k

� �
different coalitions of size k, out of which we select

the one with the highest payoff. To avoid complicating
the symbology, let us continue to denote as Ck the pre-
ferred coalition of size k. Thus, we decide for the winning
coalition Ct at time t to be:

Ct ¼ arg max
Ck

PðtÞðCkÞ: ð9Þ

In coalitional game theory sometimes the characteristic
function is a non-decreasing function of the size of the coa-
lition (i.e., super-additivity) [28]. In our case this is not
desirable because there may exist trackers that have lost
their targets. In other words, the grand coalition (i.e., the
coalition where all players/trackers participate) is not al-
ways the optimal to use. Thus, we need to give rewards
to coalitions in such a way that the winning coalition is
the coalition whose members best approximate the target.
This is achieved by reducing the characteristic function of
the coalition if it acquires poor trackers. Super-additivity
is also related to the f (k) function since if f (k) increases,
say exponentially, then the geometric alignment score bðtÞCk

will dominate the other three scores allowing super-additiv-
ity. In our case, having a linear f (k) worked fairly well.
2.3. Target state estimation

We compute the final target state St from the winning
coalition Ct in two steps. In the first step, we compute
the deformation mesh Mt from the winning coalition.
The deformation mesh Mt is composed of a set of points
A = (a1, . . . ,am), which are distributed over the selected tar-
get region during the initialization step. Each point is
linked to anywhere between 1 and 4 trackers depending
on its spatial location; 1 on the corners, 2 on the borders,
and 4 on the inside. For each point, a transformation
matrix Tcj

ai
is computed that when applied to the center cj

of tracker j, gives the location of the point ai:

ai ¼
1Pni

j¼1

xj

Xni

j¼1

cjx

cjy

� �
Tcj

ai
xj; ð10Þ

where ai is one of the points in the deformation mesh Mt,ni

is the number of trackers linked to the mesh point ai, and
xj is the weight associated with tracker j. If the tracker j

is a member of the winning coalition, the associated weight
is the tracker’s template match score ðxj ¼ aðtÞmj

Þ; otherwise
it is 0 (xj = 0).

Next, the four border points outlining the target
projection in the clockwise direction B = (b1, . . . ,b4) are
computed from the mesh points A (see Fig. 5).



Fig. 6. Example of facial tracking in thermal video with a 3 · 3 tracking
network. The columns show progressive frames as the subject looks left.
The second row shows the individual trackers in the tracking network. The
third row shows the deformation mesh. The fourth row shows the
computed target state.
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bi ¼
1

xtot

Xm

j¼1

ajx

ajy

� �
T

aj

bi
xaj ; ð11Þ

where m is the number of points in the deformation mesh,
bi is one of the border points, aj is one of the points in the
deformation mesh Mt, T

aj

bi
is the transformation from point

aj to bi, xaj is the weight associated with mesh point aj,
which is the summation of each of its nj member tracker
weights:

xaj ¼
Xnj

k¼1

xk; ð12Þ

and xtot is the total weight of all mesh points aj:

xtot ¼
Xm

k¼1

xak : ð13Þ

The second step is to compute the final target state St

from the deformation mesh Mt by using the border points
B. The target parameter vector P = (p1, . . . ,p5), is defined
as follows:

• p1 is the x coordinate of the target center;
• p2 is the y coordinate of the target center;
• p3 is the rotation about the center of the target;
• p4 is the width of the target;
• p5 is the height of the target.

The parameter vector P is computed from the border
points B of the winning coalition Ct as follows:

p1 ¼
1

4

X4

i¼1

bix; ð14Þ

p2 ¼
1

4

X4

i¼1

biy ; ð15Þ

p3 ¼
1

jCj
XjCj
i¼1

cih; ð16Þ

p4 ¼
1

2
ððb1x � b2xÞ2 þ ðb1y � b2yÞ2Þ1=2

þ 1

2
ððb3x � b4xÞ2 þ ðb3y � b4yÞ2Þ1=2

; ð17Þ

p5 ¼
1

2
ððb1x � b4xÞ2 þ ðb1y � b4yÞ2Þ1=2

þ 1

2
ððb2x � b3xÞ2 þ ðb2y � b3yÞ2Þ1=2

; ð18Þ

where jCj is the cardinality of the winning coalition.

2.4. Parameterization scheme

All particle filter trackers in the network are constructed
the same way. Each tracker features 40 particles and per-
forms a single iteration per frame.

The selection of the parameterization for the target is a
compromise between complexity and speed. The parameter
scheme excludes warping and 3D transformations and
allows the remaining set of affine transformations. The
tracking network helps to compensate for this simple
parameterization, because each of the trackers in the net-
work tracks a small portion of the target, and together they
can approximate more complex transformations by the tar-
get (see Fig. 6).

A good analogy for our approach is using many simple
geometric shapes, such as trapezoids, to approximate a
complex area. Similarly, in our parameter selection we
had to find a balance between a complex parameterization,
which would more accurately describe the true range of tar-
get transformations, but would increase computational
complexity exponentially, and a simpler representation,
which would require more sub-division to indirectly
approximate complex target transformations.

Another consideration is if we should use the direct
parameter vector P (see Eqs. (14)–(18).) or a higher order
derivative of it (see Fig. 7). To decide which parameteriza-
tion model to use, we implemented both and performed an
experiment using a simulated dataset in the thermal infra-
red (see Section 3.1 for more details). The implementation
and comparative experimental results indicated that direct
and derivative based modeling methodologies have their
respective strengths and weaknesses. Direct parameter
modeling, for example, allows for more global search in
the target state space (see Fig. 7(c)). The downside is that
direct modeling requires an explicit dynamics model. In
contrast, derivative parameter modeling allows more
detailed localized search (see Fig. 7(d)) but has poor



Fig. 7. Direct versus (first order) derivative parameter modeling propa-
gation. The direct samples are shown as yellow points while the derivative
samples are shown as yellow vectors. The previous state of the target St�1,
is shown as a red point. (a) and (b) show the direct and derivative samples,
respectively, at frame t overlaid on top of the image observation Zt. The
sample with the highest probability st is shown in cyan. (c) and (d) show
the direct and derivative samples, respectively, at frame t + 1 overlaid on
top of the image observation Zt+1. The direct and derivative parameter
models have been set to the same initial state in (a) and (b) and allowed to
propagate freely in (c) and (d) to highlight the model differences. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this paper.)

Fig. 8. Direct versus (first order) derivative parameter modeling for
particle filter trackers. The performance curve of the directly parameter-
ized tracker is shown in green while the derivative parameter one in blue.
Both trackers were composed of a single particle filter tracker and were
used to track the same target in 20 identical tracking trials involving target
translation, scaling, and rotation. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
paper.)

Fig. 9. Recovery grid of trackers. (a) The target object is selected in the
initial frame (blue rectangle). (b) The spawning positions for each of the
recovery grid’s trackers are shown in red. (c) The recovery grid trackers
after 10 frames, with the tracker featuring the highest response sample
drawn in white. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this paper.)

J. Dowdall et al. / Computer Vision and Image Understanding 106 (2007) 205–219 211
recovery capability if the target is temporarily lost. Howev-
er, the increased accuracy that derivative parameter model-
ing offers in non-catastrophic cases (see Fig. 8) is very
important to certain applications (e.g., physiological mea-
surements in infrared). For this reason, we opted to use
the first order derivative parameterization scheme.
2.5. Target recovery

To compensate for the poor recovery capability of our
derivative parameterization scheme in the event of cata-
strophic loss of the target, we implemented an ancillary
reset mechanism. Such a catastrophic loss of the target
may happen due to extreme object deformations (e.g., a
face turning away from the camera) or total occlusions.
Our detection method uses a number of independent parti-
cle filter trackers that feature the direct parameterization
model to facilitate global search in the target state space.
The parameter set contains only the translation and rota-
tion parameters for computational efficiency reasons. This
is much simpler with respect to the parameter vector P (see
Eqs. (14)–(18)) we use in the main game-based tracker.

The trackers are distributed uniformly in the image
plane during initialization in the so-called spawning posi-
tions (see Fig. 9). Each tracker is then allowed to track
for a specified number of frames before being reset to its
spawning position. The recall interval is different for differ-
ent trackers in the recovery grid. By recalling the trackers
to their spawning positions in a staggered manner, we are
trying to maximize coverage in the current ‘hot’ areas with-
out allowing degeneration over time.

The state vector of the best sample from the recovery
grid is used to influence the game-based tracking network.

2.6. Template matching

We opted to use a variant of the well-known technique of
template matching [38], as the measurement vehicle for the
particle filter trackers. Template matching is applicable to
both visual and thermal band imagery [12]. The fundamental
idea behind template matching is to create the template
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and then to find the region in subsequent frames of video that
most closely resembles the template. In our case, the tem-
plate is a sub-sampling of pixels from the target object. The
underlying assumption when using templates to represent
the object of interest is that the appearance of the object will
remain relatively constant throughout the course of the
video. This limits the effectiveness of template matching in
visual imaging under dynamic lighting conditions, unless
more complex methods are employed to compensate, such
as updating the template [39], or using model based light
mapping [40]. Our main focus for this paper was tracking
in thermal infrared video. Therefore, we opted not to imple-
ment one of these methods, and to simply constrain our
visual band input to static lighting conditions.

In our framework we work with an input video function
V(c, t), where c = (x,y)T are pixel locations on the image
plane and t is the time of the frame. In the case of thermal
video we associate each pixel c = (x,y)T with a temperature
while in the case of visual video we assign red, green, and
blue values to it. Therefore, the video function V(c, t) maps
to a 3D matrix of temperatures in thermal infrared versus a
3D matrix of 3-tuples in visual imagery. Correspondingly,
the template function T(c0) maps to a 2D matrix of temper-
atures in thermal infrared versus a 2D matrix of 3-tuples in
visual imagery. The template function T(c0) is formed by
sub-sampling the target region in the initial video frame
V(c, 0) (see Fig. 10).
Fig. 10. Thermal template creation process. (a) The target object selected
by the user. (b) The target selection is sub-divided into the individual
trackers of the tracking network (c) The sub-sampling locations for the
tracker outlined in yellow, are superimposed on the target object. (d) The
temperatures extracted from the sub-sampling locations of the ‘‘yellow’’
tracker. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this paper.)
The warp transformation matrix for the template pix-
els is W(p0; s, t),where p0 is the original parameter state
vector (t = 0) and s = (sx, sy, sh, sw, sh)T is the parameter
vector of sample s at time t for a tracker in the network
(see Section 2.3). It is important to note that every
tracker is associated with multiple samples (40 to be
exact) at each time cycle, as part of its particle filter oper-
ation. We assume an approximately planar object and an
affine warp transformation. The warp matrix W(p0; s, t)
maps pixel c0 from the template T(c0) to a pixel c in vid-
eo frame V(c, t):

c ¼Wðp0; s; tÞ � c0: ð19Þ

This produces a warped 2D temperature matrix Ts(c),
which is the projected template for the sample. Such warp
transformations (Eq. (19)) are computed from all samples s

of an individual tracker. To find the parameter vector of
the optimal sample for the tracker we use:

pt ¼ arg min
s

X
c

½TsðcÞ � Tðc0Þ�2: ð20Þ

The template match score of the tracker in question is com-
puted then as:

at
p ¼

X
c

½TpðcÞ � Tðc0Þ�2: ð21Þ
2.7. Optimization

We have used a profiler to find computational bottle-
necks in our tracking algorithm. We have found that most
of the computational time is spent in the template measure-
ment function. Based on this finding, we have adopted the
following optimization strategy:

1. We eliminate as many measurements as possible.
2. We parallelize the measurements that could not be

eliminated.

For thermal tracking involving skin, we employ a sim-
ple skin detector to eliminate the need to measure samples
that are not on the skin. We use a k-means clustering
algorithm [41] to separate the thermal frame into two
clusters, the ‘hot’ and ‘cold’ ones. We assume that the
skin would belong to the hot cluster, an assumption that
holds true for our dataset (faces in front of walls). The
same technique could be applied in different scenarios
with application specific selection of the number of clus-
ters and target cluster.

Let us assume that we are interested in tracking the face
of a human subject in thermal infrared for the purpose of
measuring vital signs. A given frame at time t is composed
of several columns of pixels. For each column we compute
the mean temperature of all its pixels. We expect columns
that cross the facial area to have elevated mean tempera-
tures compared to background columns, which are
typically cooler. By applying the k-means algorithm to



Fig. 12. Multi-threading performance enhancement. The experiment was
first performed using a single-threaded version of the algorithm (Red).
Then, the experiment was repeated with a version that multi-threaded
everything except the measurement of the samples (Green). Finally, the
experiment was run with a fully multi-threaded version (Yellow). The 4
processor usage curves for the three experiments are displayed on the left
hand column. The right hand column shows both the percent CPU usage
and the speed (frames/s) for each experiment. (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this paper.)

Fig. 11. Skin segmentation. (a) A typical thermal frame from the dataset.
(b) Visualization of the hot and cold zones after the application of the k-
means algorithm on the thermal frame.
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these mean values we can cluster the columns into two
zones: ‘hot’ and ‘cold’ (see Fig. 11). Then, all the samples
of the individual trackers in the network that fall in a cold
zone are automatically dropped from consideration.

The stochastic nature of the particle filter algorithm pro-
vides quite a few samples that can be easily ruled out from
the reward calculations by the fast segmentation scheme
described here. This significantly speeds up the trackers’
performance. We could have implemented a skin color
model [42] for facial tracking in the visual band to achieve
a similar effect.

The distributed architecture of the tracking network
lends itself particularly well to parallelization. Specifically,
each measurement modifies only data local to the individ-
ual tracker while it performs read operations on the shared
input image. Therefore, we can enhance performance by
assigning each tracker to a separate working thread (mul-
ti-threading).

We gauged the effect of multi-threading on the perfor-
mance of the tracking algorithm on a dual CPU computer
with hyper-threading. Hyper-threading adds a virtual CPU
for each physical processor, for a total of 4 processors. As
can be seen in Fig. 12, the fully multi-threaded algorithm
performed the fastest, with the most even distribution
among the 4 processors. The result was an overall 32%
extra processor usage for a gain of 4 frames per second,
which represents a 33% increase in tracking speed. An
intermediate performer was the partially multi-threaded
algorithm, where we parallelized the selection and predic-
tion (but not the measurement) steps of the individual par-
ticle filter trackers.

Finally, searching the full set of possible coalitions
proved time consuming. Thus, we optimized the search
by applying a greedy approach, which is linear to the num-
ber of trackers. Although, greedy search does not guaran-
tee a global optimum, like a full search, it works well in
practice. As the experimental results show (Section 4) it
did not adversely affect the accuracy and robustness of coa-
litional tracking, while it reduced the time complexity by an
order of magnitude. Specifically, the adopted search prun-
ing algorithm works as follows:

(a) It selects the particle filter tracker with the best tem-
plate match score.
(b) For each of the remaining trackers in the network it
takes its sample with the best template match score,
pairs it with the sample from step #a, and computes
the characteristic function (see Eq. (8)) of the, respec-
tively, formed coalition.

(c) The best coalition from the previous step is then
paired with each of the remaining trackers’ best sam-
ples, and the characteristic function for each expand-
ed coalition is computed.

(d) The algorithm repeats step #c until a coalition is
formed, which contains as many members as there
are trackers (grand coalition).

(e) The algorithm takes the best coalition of each size
(number of members), and finds the global best
among these. This is the winning coalition.



Fig. 13. Error and stability analysis of single particle filter (green) versus
coalitional tracking (red). Both trackers were used to track the same target
in 20 identical trials using the simulated tracking environment. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this paper.)
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3. Experimental design

An important consideration in our experimental
design was exact quantification of the tracker’s perfor-
mance. For this we needed an environment that would
provide automatic ground-truthing. The cornerstone of
our experimental design, however, was the provision
to test our tracking method on video input from at
least two different bands of the electromagnetic spec-
trum, one reflected and one radiated. The motivation
was to demonstrate that the methodology is general
enough to handle both. To satisfy this specification
we performed experiments using visual band video
(reflected) and mid-wave infrared video (radiated).
The underlying implication being that if the tracker
worked on both visual and mid-wave infrared video,
then the tracker would be general enough to be adapt-
ed to other radiated bands, such as long-wave infrared,
as well as other reflected bands, such as the near-
infrared.

3.1. Design of simulated tracking environment

We used a simulated tracking environment to precisely
quantify the tracker’s performance. The environment was
initialized to a frame of thermal video, and then the
tracker was initialized to the target. The target to be
tracked was then translated about the image plane
while simultaneously undergoing transformations.
Because the target transformations were dictated by the
simulated environment, we could measure the true target
state against its state projected by the tracker for
each frame. Every simulated run was 200 frames in
length.

3.2. Design of thermal infrared experiment

For the purpose of testing the tracking algorithm on
thermal infrared video we selected a dataset that was
used in previous publications [12]. It consists of 39 vid-
eo clips, each containing a main human subject under-
going an interview. We chose to track 1000 frames of
video from each of the subject clips, for a total of
39000 frames of video. The chosen video segments fea-
tured a temporary occlusion of the main subject by
another subject who was passing through the field of
view. More importantly, the clips featured out-of-plane
rotation of facial tissue as subjects were rotating their
heads left or right. We chose a single particle filter
tracker [12] to compare against the coalitional tracker.
Both the single particle filter and coalitional trackers
featured identical parameterization. Both the single par-
ticle filter and the coalitional network were tasked to
track exactly the same facial tissue of each subject.
The ground-truthing of this experiment was the recon-
ciliation of the observations of two independent
operators.
3.3. Design of visual experiment

To demonstrate that the tracking methodology can also
be applied to visual band video, we performed experiments
on a series of visual videos, each containing a different type
of target. These targets included faces and cans.
4. Experimental results

4.1. Results of simulated tracking environment

We first measured the accuracy of the coalitional tracker
(see Fig. 13). The coalitional tracker maintained a mean
error of about 1 pixel, which is sufficient for demanding
applications, such as physiological measurements [5].
Moreover, the coalitional tracker exhibited consistent per-
formance over 20 identical trials (see Fig. 13). This is
extremely important because it would be impossible to
extract useful physiological measurements if the tracker
gave inconsistent results each time it was run. However,
due to the stochastic nature of particle filtering, it is very
difficult to altogether eliminate minute variability from
the tracking result.

To determine the operational limits of the tracker we
measured its error under increasingly faster target motion
in the simulated tracking environment (see Fig. 14). The
superior performance of the coalitional tracker in complex
and fast transformations is evident.

The coalitional tracker was also capable of negotiating
out-of-plane facial rotations (see Fig. 15) much more suc-
cessfully than the single particle filter tracker (see Fig. 16).
4.2. Results of thermal infrared experiment

The results from the thermal infrared experiment (see
Fig. 17 and Table 1) clearly show that the coalitional
tracker provides superior tracking over the single particle



Fig. 16. Out-of-plane rotation comparison. The left column shows the
single particle filter tracker (green) and the right column shows the
coalitional tracker (red). (a) Initial frame. (b) and (c) Intermediate frames.
(d) Final frame in a 1 min thermal clip. The poor performance of the single
particle filter tracker is evident. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
paper.)

Fig. 14. Error analysis of single particle filter (green) versus coalitional
tracking using the tracking network (red). Both trackers were used to track
the same target in 20 trials using the simulated tracking environment. Each
trial involved increasingly faster translational and rotational target
motion. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this paper.)

J. Dowdall et al. / Computer Vision and Image Understanding 106 (2007) 205–219 215
filter tracker. The proposed method proved robust in typi-
cal (see Fig. 20) and difficult (see Fig. 21) operational sce-
narios. The few failures of the coalitional tracker were
mainly caused by significant out of plane rotation or sub-
stantial occlusion of the target (see Fig. 22).

A rare case of failure is exemplified in Fig. 18, when the
subject experiences rapid physiological changes on a grand
scale. The subject in the figure underwent facial tempera-
ture increase in excess of 2 �C within 6 minutes due to a
state of high-anxiety.

This problem is due to the template measurement
method, which assumes that the target’s projection will
not change dramatically over time. One possible solution
to this problem is to dynamically update the template as
presented in [39].

We extracted a sample physiological measurement from
the subject in clip #2 and compared it against the respective
Fig. 15. Out-of-plane facial rotation. Any rotation which is not about the
z-axis is considered out-of-plane rotation.
ground-truth signal [12]. The measured signal is the mean
temperature of the subject’s periorbital area through the
course of the video clip. It is evident that the coalitional
tracker enables the acquisition of a signal nearly identical
to the ground-truth (see Fig. 19), an indication of its fitness
for accurate physiological measurements.

4.3. Results of visual experiment

The coalitional tracker performed robustly in several
visual band experiments with various objects (faces and
cans). The template was composed of 3-tuples (red, green,
and blue reflectance values) instead of temperatures. The
motion patterns included translation, rotation, and scaling
(see Fig. 23 and Fig. 24).



Fig. 17. Tracking failure graph for the 39 video clips in the thermal dataset. For each clip the number of single particle filter and coalitional tracking
failures is shown in green and red, respectively. The absence of red bars in some video clip entries indicates perfect performance of the coalitional tracker.
All 39 tracking videos can be viewed at http://www.cpl.uh.edu/html/users/jdowdall/html/Results/CVIU/results.htm.

Table 1
Causation of tracking failures in the thermal dataset

Reason for failure Coalitional tracker failures Single tracker failures

Target rotation 1 18
Partial occlusion 2 9
No recovery 1 2
Total 4 29

Fig. 18. Coalitional tracker performance under substantial physiological
changes. (a) Tracker initialization. (b) The subject’s face undergoes a
substantial thermal change in the middle of the video clip. The tracker is
still performing correctly, but the winning coalition is composed of fewer
trackers that are able to follow their targets. (c) Towards the end of the
clip, the subject’s facial thermal profile continues to change dramatically
and the coalitional tracker is off target.

Fig. 19. Physiological signal extracted using coalitional tracking (in red)
versus the ground-truth signal.
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5. Conclusion

We have proposed a novel tracking method. Our
method uses a spatially distributed network of trackers
whose interactions are modeled using coalitional game the-
ory. The output of the method provides pixel level tracking
accuracy, even in the presence of multi-dimensional target
transformation.

We tested our method in thermal and visual video sets
featuring faces and objects. We compared the performance
of the proposed coalitional tracker with that of a single
particle filter tracker. The coalitional tracker exhibited
superior performance in both regular and challenging
tasks. The strength of the method comes from the redun-
dancy that is elegantly encoded in its game theoretic struc-
ture. Detailed quantification and ground-truth verification
indicate that the new method provides accuracy appropri-
ate for demanding medical imaging applications. Equally
important is the fact that the method appears to be general
and flexible enough to be of use in imaging applications
across the electromagnetic spectrum.
5.1. Future work

The particular adaptation of Game Theory to tracking
presented in this paper is but one of many possible
approaches that might be adopted. For example, the prob-
lem of tracking could be alternatively viewed as a non-co-
operative game where the trackers compete with each
other, and the final solution could then be modeled as a
Nash (strategic) equilibrium [29]. Additionally, active
research areas in Game Theory, such as Stochastic and Dif-
ferential Games [43], could potentially be adapted for use
in tracking.

An important area that is amenable to improvement is
the current static template scheme. Although, it works well
in the thermal infrared band, where emission of most
objects does not change dramatically in short observation
periods (e.g., a few minutes), it is potentially vulnerable
in the visual band, where reflected light may change

http://www.cpl.uh.edu/html/users/jdowdall/html/Results/CVIU/results.htm


Fig. 20. Typical facial tracking examples from the thermal dataset. The selected subjects represent different ethnicities and both genders. (a) A Caucasian
male. (b) A Caucasian female. (c) An Asian female. (d) A Black male.

Fig. 21. Successful coalitional tracking in the presence of difficult circumstances in the thermal spectrum. (a) The target is rotating in-plane. (b) The target
is rotating out-of-plane. (c) The target is rotating out-of-plane. (d) The target is partially occluded.

Fig. 22. Tracking failures in the thermal spectrum. (a) and (c) The target has rotated out of plane beyond the tracker’s ability to compensate. (b) The
original target (periorbital area) is largely occluded. (d) The target has undergone extreme physiological changes relative to the initial tracking frame (see
Fig. 18 for more details).

Fig. 23. Example of tracking a face experiencing scaling and translation in the visual spectrum. The frames are shown chronologically from left to right.
The deformation mesh is shown in blue and the white rectangle represents the projected target state. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this paper.)
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dramatically over a split second depending on the angle of
incidence. A dynamic updating mechanism for the template
could potentially eliminate this vulnerability.

The current method is based on deterministic manage-
ment of probabilistic trackers. A future method could be
developed based on probabilistic management of probabi-
listic trackers. This could be realized within a Bayesian
framework where the posterior weight of each tracker in
the coalitional game would be computed from its prior
and an appropriate likelihood function. This would add
probabilistic memory into coalition membership. There-
fore, one could eliminate the membership retention factor
in the current characteristic function, which in essence
crudely plays the same role.



Fig. 24. Example of tracking an object experiencing scaling and translation in the visual spectrum. The frames are shown chronologically from left to
right. The deformation mesh is shown in blue and the white rectangle represents the projected target state. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this paper.)
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[37] M. Mareš, Fuzzy Cooperative Games, Physica-Verlag, 2001.
[38] S. Baker, I. Matthews, Equivalence and efficiency of image
alignment algorithms, in: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, vol. 1, 2001, pp.
1090–1097.

[39] I. Matthews, T. Ishikawa, S. Baker, The template update problem,
IEEE Transactions on Pattern Analysis and Machine Intelligence 26
(6) (2004) 810–815.

[40] Y. Adini, Y. Moses, S. Ullman, Face recognition: the problem of
compensating for changes in illumination direction, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 19 (7) (1997) 721–
732.

[41] J. MacQueen, Some methods for classification and analysis of
multivariate observations, in: Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability, vol. 1, 1967,
pp. 281–297.

[42] M. Jones, J. Rehg, Statistical color models with application to skin
detection, in: Proceedings of the 1999 IEEE Conference on Computer
Vision and Pattern Recognition, vol. 1, 1999, pp. 274–280.

[43] M. Bardi, T. Raghavan, T. Parthasarathy (Eds.), Stochastic and
Differential Games: Theory and Numerical Methods, Annals of the
International Society of Dynamic Games, Birkhaäser, 1998.
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