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Physiology-Based Face Recognition
in the Thermal Infrared Spectrum
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Abstract—The current dominant approaches to face recognition rely on facial characteristics that are on or over the skin. Some of these
characteristics have low permanency can be altered, and their phenomenology varies significantly with environmental factors (e.g.,
lighting). Many methodologies have been developed to address these problems to various degrees. However, the current framework of
face recognition research has a potential weakness due to its very nature. We present a novel framework for face recognition based on
physiological information. The motivation behind this effort is to capitalize on the permanency of innate characteristics that are under the
skin. To establish feasibility, we propose a specific methodology to capture facial physiological patterns using the bioheat information
contained in thermalimagery. First, the algorithm delineates the human face from the background using the Bayesian framework. Then, it
localizes the superficial blood vessel network using image morphology. The extracted vascular network produces contour shapes that are
characteristic to each individual. The branching points of the skeletonized vascular network are referred to as Thermal Minutia Points
(TMPs) and constitute the feature database. To render the method robust to facial pose variations, we collect for each subject to be stored
in the database five different pose images (center, midleft profile, left profile, midright profile, and right profile). During the classification
stage, the algorithm first estimates the pose of the testimage. Then, it matches the local and global TMP structures extracted from the test
image with those of the corresponding pose images in the database. We have conducted experiments on a multipose database of thermal
facial images collected in our laboratory, as well as on the time-gap database of the University of Notre Dame. The good experimental

613

results show that the proposed methodology has merit, especially with respect to the problem of low permanence over time. More
importantly, the results demonstrate the feasibility of the physiological framework in face recognition and open the way for further

methodological and experimental research in the area.

Index Terms—Face recognition, biometrics, physiology, thermal infrared, vascular network.

1 INTRODUCTION

IOMETRICS has received a lot of attention during the last
few years—both from the academic and business com-
munities. It has emerged as a preferred alternative to
traditional forms of identification, like card IDs, which are
notembedded into one’s physical characteristics. Research in
several biometric modalities including face, fingerprint, iris,
and retina recognition has produced varying degrees of
success [1]. Face recognition stands as the most appealing
modality, since it is the natural mode of identification among
humans and is totally unobtrusive. At the same time,
however, it is one of the most challenging modalities [2].
Research in face recognition has been biased toward the
visible spectrum for a variety of reasons. Among those is the
availability and low cost of visible band cameras and the
undeniable fact that face recognition is one of the primary
activities of the human visual system. Machine recognition of
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human faces, however, has proven more problematic than the
seemingly effortless face recognition performed by humans.
The major culprit is light variability, which is prevalent in the
visible spectrum due to the reflective nature of incident light
in this band. Secondary problems are associated with the
difficulty of detecting facial disguises [3].

Recently, researchers have investigated the use of near-
infrared (near-IR) imagery for face recognition with good
results [4], [5], [6]. Near-IR imagery like visible imagery is
formed from reflected radiation. Therefore, the imaging
process still requires an external source of illumination. The
added advantage with respect to visibility is that the eye is
not sensitive in this range, and illumination can be used in a
more flexible and possibly covert manner.

As a solution to the aforementioned problems, research-
ers have started investigating the use of thermal IR for face
recognition purposes [7], [8], [9]. However, many of these
research efforts in thermal face recognition use the thermal
IR band only as a way to see in the dark or reduce the
deleterious effect of light variability [10], [11]. Methodolo-
gically, they do not differ very much from face recognition
algorithms in the visible band, which can be classified as
appearance-based [12], [13] and feature-based approaches
[14], [15]. Recently, attempts have been made to fuse the
visible and IR modalities to increase the performance of face
recognition [16], [17], [18], [19], [20], [21].

In this paper, we present a novel approach to the
problem of thermal facial recognition that realizes the full
potential of the thermal IR band. It consists of a statistical
face segmentation and a physiological feature extraction

Published by the IEEE Computer Society
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Fig. 1. Architecture of our face recognition methodology.

algorithm tailored to thermal phenomenology. The physio-
logical vector is formed from the thermal imprint of the
facial vascular network. The closest work to our research is
the use of hand vein structure for human identification [22],
[23]. This is done typically through active near-IR sensing
and is not a standoff modality, as it requires close proximity
to the sensor and the subject’s cooperation.

Prokoski and Riedel [24] anticipated the possibility of
extracting the vascular network from thermal facial images
and using it as a feature space for face recognition. However,
they did not present an algorithmic approach for achieving
this. To the best of our knowledge, this is the first attempt to
develop a face recognition system using physiological
information on the face. Our aim is to promote a different
way of thinking about face recognition in thermal IR, which
carries distinct advantages when compared with other
modalities. An early stage of this research was reported
briefly in the Proceedings of the 2005 IEEE Conference on
Advanced Video and Signal-Based Surveillance [25]. A follow-up
version, where the pose estimation component was added,
appeared in the Workshop Proceedings of the 2006 Conference on
Computer Vision and Pattern Recognition [26].

Fig. 1 shows the architecture of the proposed methodol-
ogy. The goal of face recognition is to match a query face
image against a database of facial images to establish the
identity of an individual. Our system operates in the
following two phases to achieve this goal:

1. Offline phase. The thermal facial images are
captured by an IR camera. For each subject to be
stored in the database, we record five different

poses. A two-step segmentation algorithm is applied
on each pose image to extract the vascular network
from the face. Thermal Minutia Points (TMPs) are
detected on the branching points of the vascular
network and stored in the database (see Fig. 1).

2. Online phase. Given a query image, TMPs of its
vascular network are extracted and matched against
those of the corresponding pose images stored in the
database (see Fig. 1).

In the following sections, we will describe our face
recognition methodology and its performance in detail. In
Section 2, we present the vascular feature extraction algo-
rithm. In Section 3, we discuss the vascular network matching
algorithm. In Section 4, we present the experimental results
and attempt a critical evaluation. We conclude the paper in
Section 5.

2 VASCULAR FEATURE EXTRACTION

2.1 Uniqueness

A thermal IR camera with good sensitivity provides the
ability to image indirectly superficial blood vessels on the
human face [28]. The convective heat transfer effect from the
flow of “hot” arterial blood in superficial vessels creates
characteristic thermal imprints, which are at a gradient with
the surrounding tissue. The pattern of the underlying blood
vessels (and the corresponding thermal imprints) is quite
complex (see Fig. 2). The question is if this complex pattern is
characteristic to each individual and can serve as a useful
biometric signature.
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Fig. 2. Generic map of superficial blood vessels on the face, courtesy of Primal Pictures [27]. (a) Overview of an arterial network. (b) Overview of a
venous network. (c) Arteries and veins together underneath the surface of the facial skin.

In the area of medicine, some very interesting work was
conducted regarding the uniqueness of the facial vascular
network. The primary motivation behind this line of
research was the localization of anatomical features for
reconstructive surgery purposes. For example, Pinar and
Govsa [29] conducted extensive research on the anatomy of
the Superficial Temporal Artery (STA) and its branches.
They studied the STA anatomy in 27 subjects. Among other
things, they found that the bifurcation point of STA (see
Fig. 3) was above the zygomatic arch in only 20 out of the
27 samples. In six samples, the bifurcation was exactly over
the arch and, in one sample, there was no bifurcation at all.
Further variability was observed in the STA branches.
Specifically, in one sample, double parietal branches were
observed. In 21 samples, zygomatico-orbital arteries ran
towards the face, parallel to the zygomatic arch, and
distributed in the orbicularis oculi muscle. One has to take

Bifurcation

Superficial Temporal
Artery (STA)

Fig. 3. Example of the STA and its bifurcation around the zygomatic
arch, courtesy of Primal Pictures [27]. Clinical studies have established
its highly variable topology across individuals.

into account that STA is only one major facial vessel among
many. Assuming that such variability is typical to other
facial vessels and branches, their combination is bound to
produce a very characteristic pattern for each individual.

In another study, medical researchers found implicit
evidence of uniqueness of the cutaneous vasculature in the
high variability of reflex drives [30].

In addition, one has to take into account that the
proposed face recognition method does not depend only
on the topology of the facial vascular network but also on
the fat depositions and skin complexion. The reason is that
imagery is formed by the thermal imprints of the vessels
and not the vessels directly. Even if the vessel topology was
absolutely the same across individuals, still, the thermal
imprints would differ due to variable absorption from
different fat padding (skinny faces versus puffy faces) [31]
and variable heat conductance from different skin complex-
ion (dark skin is less conductive).

Besides the medical evidence, which appears to be
strong, and the supporting heat transfer principles, the
“uniqueness” of the facial vascular network is also
reinforced by experimental investigation. This paper pre-
sents good classification results on a proprietary database
(University of Houston) as well as a publicly available
database (University of Notre Dame [32]). Such experi-
mental investigations constitute the main “proof of unique-
ness” in other biometric modalities (e.g., fingerprint
recognition [33]), and of course, they gain more weight as
the size of the databases increases. In the case of thermal
facial vessel imprints, the size of the databases is still
relatively small, yet statistically significant (several hundred
samples). One particular example that makes a very strong
case for “uniqueness” is the discovery of different thermal
facial vessel imprints even in identical twins [24].

In the last few years, one relevant biometric that has
gained acceptance is the venous structure at the back of the
hand. It is imaged typically with active near-IR light, and
the image is formed due to backscattering. The claim of
“uniqueness” is based primarily on experimental evidence
from database classification efforts. No substantial medical
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Fig. 4. Architecture of feature extraction algorithm.

research was pursued on the uniqueness of the hand’s
venous structure, as reconstructive hand surgery is not as
prevalent as facial surgery. In addition, the venous network
at the back of the hand is not nearly as complicated as the
facial vessel network (see Fig. 2). Yet, it is increasingly
accepted as a legitimate biometric [22] and is used in
practice [23] based mainly on experimental evidence from
database classification efforts.

Hence, evidence from medical research and reasoning
based on heat transfer principles suggest that the facial
vessel network is characteristic to each individual. This
educated guess has been verified by our classification
results in databases of nontrivial size (see Section 4). Fig. 4
outlines the architecture of our feature extraction algorithm.
It is a case of staged abstraction whereby information is
reduced from the full image to the face, to the vascular
network, and to its bifurcation points (TMPs). These three
major stages of feature extraction are described in some
detail in Sections 2.2-2.4.

2.2 Face Segmentation

Due to its physiology, a human face consists of “hot” parts
that correspond to tissue areas that are rich in vasculature and
“cold” parts that correspond to tissue areas with sparse
vasculature. This casts the human face as a bimodal
temperature distribution entity, which can be modeled using
a mixture of two normal distributions. Similarly, the back-
ground can be described by a bimodal temperature distribu-
tion with walls being the “cold” objects and the upper part of
the subject’sbody dressed in cloths being the “hot” object. The
consistency of bimodality across subjects and image back-
grounds is striking. We approach the problem of delineating
facial tissue from the background by using a Bayesian
framework since we have a priori knowledge of the bimodal
nature of the scene. We first reported our facial tissue
segmentation algorithm in [25], [34], where the interested
reader may find more details.

Fig. 5b visualizes the result of our Bayesian segmentation
scheme on the subject shown in Fig. 5a. Part of the subject’s
nose has been erroneously classified as the background, and a
couple of cloth patches from the subject’s shirt have been
erroneously marked as facial skin. This is due to occasional
overlapping between portions of the skin and background
distributions. The isolated nature of these mislabeled patches
makes them easily correctable through postprocessing. We
apply a three-step postprocessing algorithm on the binary
segmented image. Using foreground (and background)
correction, we find the mislabeled pixels in the foreground
(and background) and reassign them. Fig. 5c visualizes the
result of postprocessing, where all the segmentation im-
perfections have been eliminated.

(b) (©)

Fig. 5. Segmentation of facial skin region. (a) Original thermal facial
image. (b) Result of Bayesian segmentation, where background is
depicted in black. (c) Result of postprocessing.

2.3 Segmentation of Superficial Blood Vessels

Once a face is delineated from the rest of the scene, the
segmentation of superficial blood vessels from the facial
tissue is carried out in the following steps [28], [34]:

Step 1. Process the image to reduce noise and enhance the
edges.

Step 2. Apply morphological operations to localize the
superficial vasculature.

In a thermal imagery of human tissue, the major blood
vessels have weak sigmoid edges. This is due to the natural
phenomenon of heat diffusion, which entails that when two
objects with different temperatures are in contact (e.g., vessel
and the surrounding tissue), heat conduction creates a
smooth temperature gradient at the common boundary
[35]. These weak sigmoid edges can be handled effectively
by using anisotropic diffusion. The anisotropic diffusion
filter is formulated as a process that enhances object
boundaries by performing intraregion as opposed to inter-
region smoothing. One can visualize this clearer in an area
with sparser vasculature than that of the face. Fig. 6 shows
vividly how the application of anisotropic diffusion on the
thermal image of a wrist enhanced the sigmoid edges around
the vessel and, at the same time, helped to remove the noise
formed due to hair.

The mathematical equation that describes this process is

oI(z,1)
ot

In our case, I(z,t) is the thermal IR image, z refers to the
spatial dimensions, and ¢ refers to time. ¢(z, ) is called the
diffusion function. The discrete version of the anisotropic
diffusion filter of (1) is given as follows:

= V(c(z,t)VI(7,1)). (1)

1
Lin(z,y) =1L + 1* lena (2, y) Vv, y)

+ s (2, y)VIsy(z,y) + cp(2,9) VI (z,y) 2)
+ew (2, y) Vi (2, y)].

The four diffusion coefficients and four gradients in (2)
correspond to four directions (that is, north, south, east, and
west) with respect to the location (z,y). Each diffusion
coefficient and the corresponding gradient are calculated in
the same manner. For example, the coefficient along the
north direction is calculated as follows:

_VIZQV,t(x7y)>

eng(z,y) = eXp( 12 (3)

where Iy, = Ii(z,y+ 1) — I(z,y).
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Fig. 6. Anisotropic diffusion on the thermal image of a human wrist.
(a) Segmented wrist image. (b) Profile of the line drawn across the
segmented image (shown in black color in (a)). (c) Result of applying
anisotropic diffusion on (a). (d) Profile of the same line drawn across
diffused image (shown in black color in (b)).

Image morphology is then applied on the diffused image
to extract the blood vessels that are at a relatively low
contrast compared to that of the surrounding tissue. We
employ, for this purpose, a top hat segmentation method,
which is a combination of erosion and dilation operations.
Top hat segmentation takes on two forms: the white top hat
segmentation that enhances the bright objects in the image
and the black top hat segmentation that enhances dark
objects. In our case, we are interested in the white top hat
segmentation because it helps to enhance the bright (“hot”)
ridgelike structures corresponding to the blood vessels. In
this method, the original image is first opened, and then,
this opened image is subtracted from the original image:

Lyn =169 @5,

4
]T,op =1- Iopena ( )

where I, I, and I,,, are the original, opened, and white top
hat segmented images, respectively, S is the structuring
element, and © and @ are the morphological erosion and
dilation operations, respectively. Fig. 7b depicts the result of
applying anisotropic diffusion to the segmented facial tissue
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shown in Fig. 7a, and Fig. 7c shows the corresponding
vascular network extracted via white top hat segmentation.

2.4 Extraction of Thermal Minuta Points

The extracted blood vessel contours differ between subjects.
We call the branching points of the blood vessel contours
TMPs. TMPs can be extracted from the network of blood
vessel contours in ways similar to those used for fingerprint
minutia extraction. A number of methods have been
proposed [36] for robust and efficient extraction of minutia
from fingerprint images. Most of these algorithms describe
each minutia point by at least three attributes, including its
type, its location in the fingerprint image, and the local
ridge orientation. We adopt a similar approach for extract-
ing TMPs from vascular networks. Specifically, our TMP
extraction algorithm proceeds as follows:

1. It estimates the local orientation of the vascular
network.

2. It skeletonizes the vascular network.

3. It extracts the TMPs from the thinned vascular
network.

4. It removes the spurious TMPs.

We define the local orientation function ¥(z,y) as the
angle formed between any blood vessel contour and the
horizontal axis at each pixel (z,y) of the image. This
orientation function provides the basis for capturing the
overall pattern of the vascular network. We adapt the
approach proposed in [37] to compute the orientation
function on the vascular network image.

Next, our algorithm thins the vascular contours down to a
one-pixel thickness (skeleton) [38]. Each pixel in the thinned
map is assigned a value of 1 if it is on the vessel and 0 if it is
not. Considering 8-neighborhood (Ny, Ny, ..., N7) around
each pixel, a pixel (z,y) is marked as TMP if (3" N;) > 2
(see Fig. 8).

The last step of the TMP extraction algorithm is the
removal of spurious TMPs. These spurious TMPs are the
result of imperfections in segmentation and the preceding
image processing. They are of two types: clustered TMPs
and spikes formed from trivially short branches (see Fig. 9).
Such spurious TMPs, if left, will affect seriously the
performance of the pattern recognition algorithm.

Based on our experimentation, the vascular network of a
typical facial image contains between 50 and 80 legitimate
TMPs. The location (z,y) and corresponding orientation
function ¥(x,y) of the cleaned TMP set is stored in the
database. Fig. 10 shows the results of each stage of the feature
extraction algorithm on a thermal facial image.

(a)

(©

(b)

Fig. 7. Vascular network extraction. (a) Original segmented image. (b) Anisotropically diffused image. (c) Blood vessels extracted using white top hat

segmentation.
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Fig. 8. A Thermal Minuta Points extracted from the thinned vascular
network.

3 MATCHING

Each subject’s record in the database consists of five
different poses to account for pose variation during the
testing phase. Since facial images from the same person look
quite different across multiple views, it is very important
that the search space includes facial images with a pose
similar to the pose of the test image. Given a test image, we
first estimate its pose. Then, the task is simply to match the
TMP network extracted from the test image against the
TMP database corresponding to the estimated pose.

3.1 Estimation of Facial Pose

To the best of our knowledge, this is the first time that the
issue of pose estimation in thermal facial imagery is
addressed. However, as it is the case with face recognition
in general, a number of efforts have been made to address the
issue of facial pose estimation in visible band imagery [39],
[40]. We adapt the algorithm proposed in [39] for estimating
head pose in thermal IR imagery. Specifically, we select a
random subset from our thermal facial data set and apply
Principal Component Analysis (PCA) to reduce the dimen-
sionality of the image vector. The training set includes all five
pose images for a number of subjects. Images from the
training set are not used in either gallery or probe sets
introduced in Section 4 so that the matching algorithm is not
biased. Fig. 11 illustrates sample face images from our
training set across multiple views. Then, we train the Support
Vector Machine (SVM) classifier with the PCA vectors of face
samples. Given a probe image, SVM can classify it against one
of the five poses (center, midleft profile, left profile, midright
profile, and right profile) under consideration.

B mun
m
m

(a)

(e) (U]

Fig. 10. Visualization of the various stages of the vascular feature
extraction algorithm. (a) A typical thermal facial image. (b) Facial tissue
delineated from the background. (c) A network of vascular contours
extracted from the thermal facial image. (d) A skeletonized vessel map.
(e) Extracted TMPs from branching points. (f) A cleaned TMP set.

3.2 Matching of Thermal Minuta Points

Numerous methods have been proposed for matching
fingerprint minutiae, most of which try to simulate the
way forensic experts compare fingerprints [36]. Popular
techniques are alignment-based point pattern matching,
local structure matching, and global structure matching.
Local minutiae-matching algorithms are fast, simple, and
more tolerant to distortions. Global minutiae-matching
algorithms feature high distinctiveness. A few hybrid
approaches have been proposed, where the advantages of
both local and global methods are exploited [41], [42]. We

- .
o

(b)

Fig. 9. Spurious TMPs. (a) Clustered TMPs. (b) Spikes formed due to a trivially short branch.
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Fig. 11. Samples from our training set featuring five different poses per subject. From left to right, the views depicted are given as follows: left profile,

midleft profile, center, midright profile, and right profile.

have adapted the hybrid method proposed in [41] to
perform TMP matching.

For each TMP M(z,y, V) that is extracted from the
vascular network, we consider its NV nearest neighbor TMPs
M(zp, yn,¥,), n=1,...,N. Then, the TMP M(z,y, ¥) can
be characterized by a new feature vector:

Ly = {{di, o1, },{do, 2,9:},... . {dn, on,In}, ¥}, (5)

where

dn = \/(xn - x)Q + (yn - y)27
Pn = dlff(\ljm \11)7 (6)

Y, =diff <arctan(y" — y) , \Il>
Ty — T

for n=1,2,...,N. d, is the euclidean distance of TMP
M(z,y,¥) from its nth neighbor. The function diff()
calculates the difference of two angles and scales the result
within the range [0,27). Given a test image I;, the feature
vector of each of its TMPs is compared with the feature vector
of each TMP of a database image with a compatible pose. Two
TMPs M and M’ are marked as a matched pair if the
minimum absolute difference between corresponding fea-
tures {67, 61", 65", 6y} is less than the specific threshold
values {Ty,T,, Ty, Tw}. The threshold values are chosen in a
way that accommodates linear deformations and transla-
tions. The final matching score between the test and a
database image is given as follows:

N UMmalch

Score = ,
ma‘X{ NUMtest ) NUMdatabase }

(7)

where NUMucr represents the number of matched TMP
pairs, and NUM;.ss and NUM jqtapase represent the number

of TMPs in the test and database images, respectively. If the
highest matching score between the test and database
images is greater than a specific threshold, the correspond-
ing database image is classified as a confident match. If not,
the match is considered weak, and the classifier concludes
that the subject does not have a record in the database.

4 EXPERIMENTAL RESULTS

4.1 Experiments on the University of Houston
Database

To evaluate our method, we built a data set of thermal facial
images from volunteers of different sex, race, and age groups.
The data set consists of 7,590 thermal facial images from
138 subjects (55 images per subject) with varying poses and
facial expressions. Five images from each subject (each image
representing one of the five training poses) were used in the
gallery set. From these gallery images, we extracted TMPs
and stored them in the database. The remaining 50 images per
subjectatarbitrary poses were included in the probe set to test
the performance of our algorithm.

All images were recorded in two separate data gathering
efforts about six months apart. Each individual data gather-
ing effort lasted a few days with multiple recordings.
Unfortunately, only a small portion of the original population
participated in the second data gathering effort. Therefore, for
most subjects, the extracted testing images are from the initial
data gathering effort only. For the few subjects (4 out of 138)
for whom we have recordings from data gathering efforts
spaced six months apart, the probe image setis composed half
from the initial session and half from the latter session. The
gallery set is composed of images strictly from the initial
session. The performance of the method was excellent for
those four subjects with multimonth samples, but of course,
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(d

Fig. 12. (a) A test image and (b) its corresponding vascular network.
(c) A midleft profile image picked from the training database by pose
estimation and (d) its corresponding vascular network.

the small size of the set did not allow generalizations
regarding the issue of feature permanence.

The images were captured using a high-quality Mid-
Wave Infrared (MWIR) camera produced by Flir Systems
(Phoenix model) [43]. The camera features a Focal Plane
Array (FPA) made out of InSb and is 640 x 512 pixels large.
It is sensitive in the 3.0-5.0 um spectral range and has a
Noise Equivalent Temperature Difference (NEDT) of
0.01°C. The camera was outfitted with a 50 mm MWIR
lens also from Flir Systems.

Many 2D face recognition algorithms that perform well on
frontal image data sets often have problems when tested on
images with arbitrary poses [2]. Our face recognition
algorithm overcomes this problem by using multiple pose
images in gallery, which allows pose invariance in the probe
image. We found experimentally that the five poses we
included in the gallery set of our face recognition algorithm
are sufficient to accommodate yaw rotations (including tilt
rotations to a certain extent). As shown in Fig. 12, when a
probe that is close to the midleft profile is queried, pose
estimation correctly picks the corresponding mid-left profile
image from the gallery data set to perform matching. The
small variation in the pose that exists between the probe and
gallery images might cause minor position and angle
differences in the corresponding TMP networks. This can be
compensated by choosing appropriate values for thresholds
{T4,T,, Ty, and Ty} as discussed in Section 3.2.

We conducted two experiments on the University of
Houston database to evaluate the performance of our face
recognition method. In the first experiment, we took into
account only frontal pose images. Specifically, we con-
strained the probe set to images with poses between the
midleft and midright profiles. This probe set was matched
against frontal images in the database. In the second
experiment, we used the entire probe set, which includes
images from all five poses and variations in between. This
probe set was matched against the full database galleries that
contains five pose images per subject. Figs. 13 and 14 show the
results of the two experiments. Specifically, Fig. 13 shows the
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Fig. 13. CMC curves of our method for the frontal and arbitrary pose
experiments.
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Fig. 14. ROC curves of our method for the frontal and arbitrary pose
experiments.

Cumulative Math Characteristic (CMC) curves of the two
experiments, and Fig. 14 shows the Receiver Operating
Characteristic (ROC) curves based on various threshold
values for the matching score discussed in Section 3.2.

First, one can observe that our face recognition method
performs better in the arbitrary pose experiment rather than
the frontal pose experiment. This is to be expected, as test
cases close to the midleft and midright profiles in the first
experiment may be lost, since only frontal database images
are being used for matching. In the second experiment,
more poses are at play, but also much finer gradation of
pose images in the database galleries.

Second, the results demonstrate the promise, as well as
some problems with our methodology. The CMC curve
shows that rank 1 recognition is over 86 percent, and rank 5
recognition is over 96 percent. This performance puts a
brand-new approach close to the performance of mature
visible band recognition methods. In contrast, the ROC curve
reveals a weakness of the current method, as it requires a
False Acceptance Rate (FAR) over 20 percent to reach a
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(d

Fig. 15. (a) A probe image and (b) its corresponding vascular network
(overlaid over the segmented image). (c) A gallery image of the same
subject exhibiting large facial expression and (d) its corresponding
vascular network (overlaid over the segmented image). Nonlinear
vascular deformations are apparent in the mandible area.

positive acceptance rate above the 86 percent range. To
address this problem, we believe that we need to estimate and
eliminate the incorrect TMPs, as well as nonlinear deforma-
tions in the extracted vascular network caused due to large
facial expressions, and nonlinear pose transformations.
Fig. 15 shows an example of nonlinear deformations caused
in the vascular network between gallery and probe images of
the same subject due to pose and facial expression changes.
Even though the matching algorithm described in Section 3.2
works fine with linear transformations in the vascular
network, it affords a small latitude in the case of nonlinear
transformations.

4.2 Experiments on the University of Notre Dame
Database—Low-Permanence Problem

A major challenge associated with thermal face recognition is
the recognition performance over time [44]. Facial thermo-
grams may change, depending on the physical condition of
the subject. This renders difficult the task of acquiring similar
features for the same person over time. Previous face
recognition methods in thermal IR that use direct tempera-
ture data reported degraded performance over time [13], [20].
However, our method attempts to solve this problem by
extracting facial physiological information to build its feature
space. This information is not only characteristic to each
person, but also remains relatively invariant to physical
conditions. Although, the thermal facial maps of the same
subject appear to shift, the vascular network is more resistant
to change. In imaging terms, the contrast between the
temperatures in the vascular pixels and the surrounding
pixels is relatively invariant, albeit the absolute temperature
values shift appreciably. This is a direct consequence of the
thermoregulatory mechanism of the human body. Our
morphological image processing simply capitalizes upon

this phenomenon and extracts the invariant vascular con-
tours out of the variable facial thermal maps.

Due to the small number of subjects in the University of
Houston database, for which we had images spread over
several months, no statistically significant quantification of
the low-permanence problem was possible. For this reason,
we obtained permission to apply the method on the
database of the University of Notre Dame [32]. This
database has a large collection of facial images acquired
from both visible and long-wave IR cameras. They held
acquisitions weekly, and most of the subjects in the
database participated multiple times.

In more detail, the database consists of 2,294 images
acquired from 63 subjects during nine different sessions
under specific lighting and expression conditions. The
spatial resolution of the images is 312 x 239 pixels (about
half of that featured in the University of Houston database).
They used three lights during data collection: one located at
the center approximately 8 feet in front of the subject, one at
4 feet to the right, and one at 4 feet to the left of the subject.
The subjects were asked to provide two expressions during
acquisition—"neutral” and “smiling.” The database is
divided into four different gallery and probe sets using
the Feret style naming convention [45]:

1. LF (centrallight turned off) + FA (neutral expression),

2. LF(central light turned off) + FB (smiling expression),

3. LM (all three lights on) + FA (neutral expression), and

4. LM (all three lights on) + FB (smiling expression).

The database also contains an exclusive training set
(different from the gallery and probe sets) with samples
collected from several subjects, from which a face space can
be constructed for the PCA recognition algorithm. We did
not use this training set, since our algorithm is feature-
based and, hence, does not require any explicit training.
However, each of the gallery sets (say, LF-FA) can be tested
against the other three probe sets (say, LF-FB, LM-FA, and
LM-FB). This way, we tested our algorithm on 12 different
pairs of gallery and probe sets. In each of these experiments,
the gallery set had one image per subject, and the probe set
had several disjoint images per subject, depending on how
many different acquisition sessions the subject attended.
Fig. 16 shows a sample of the gallery and probe images of a
subject from the University of Notre Dame database.

The authors of the University of Notre Dame database
compared the performance of face recognition in visible
and IR modalities from both same-session and time-gap
data sets [20], [13]. They used a PCA-based face recogni-
tion algorithm for these studies. They found that both
visible and IR modalities performed well on same-session
experiments, and none of them is significantly better than
the other. However, in time-lapse experiments, they found
that the PCA-based recognition using IR images had poor
performance. This is an expected outcome, since PCA is an
appearance-based face recognition algorithm that directly
uses temperature values to project the query image onto
face space. The thermal facial map may be different
between gallery and probe images depending on the
ambient and physical conditions, which may cause the
PCA algorithm to fail.
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Fig. 16. Sample images of a subject in the University of Notre Dame
database. The images were acquired over the span of several months.
(a) Visible images (not used here). (b) Corresponding thermal IR
images. Differences in the thermal facial maps can be visually
appreciated. (c) Vascular annotation after the application of our feature
extraction algorithm.

We compared the performance of our method with a PCA-
based recognition algorithm to test the robustness of features
extracted from the facial vascular network. Table 1 sum-
marizes the rank 1 recognition results using our algorithm
versus the PCA algorithm on each of the 12 possible
experiments. Each entry in the left column of Table 1
corresponds to a gallery set, and each entry in the top row
corresponds to a probe set. From the results, it can be clearly
seen that our method yields better recognition results despite
the presence of time and temperature variations inherent in
this database. This is a clear indication that by abstracting
away the thermal facial map to a physiological feature vector,
the low-permanence problem can be addressed more
adequately.

4.3 Parameter Optimization

The proposed face recognition method depends on the
selection of several threshold values. To rationalize the choice
of these threshold values and optimize performance, we
pursued sensitivity analysis. First, we investigated optimal
values for T, T,, and Tj, which are the distance and
orientation thresholds regulating the matching of corre-
sponding minutia points (see Section 3.2). We selected two
facial thermal images for 20 subjects. For each of these

TABLE 1
Rank 1 Recognition Performance of Our Algorithm (University of
Houston) versus the PCA Algorithm on Each of the
12 Experiments on the University of Notre Dame Database

Probe
Gallery FA—LF FA—LM FB—LF FB—LM
FA—LF 82.65% (UH) | 80.77% (UH) 81.33% (UH)
78.74% (PCA) | 76.83% (PCA) | 75.77% (PCA)
FA—LM | 81.46% (UH) - 79.38% (UH) 80.25% (UH)
79.23% (PCA) - 75.22% (PCA) | 73.56% (PCA)
FB—LF | 80.27% (UH) | 81.92% (UH) 80.56% (UH)
74.88% (PCA) | 76.57% (PCA) 74.23% (PCA)
FB—LM | 80.67% (UH) | 82.25% (UH) | 79.46% (UH) -
69.56% (PCA) | 74.58% (PCA) | 78.33% (PCA)

subjects, we manually labeled the matching minutia pairs
between the corresponding images, as depicted in Fig. 17.
Fig. 18 shows the resulting graphs. We chose as an optimal
threshold value a number that is barely greater than the vast
majority of the values given by the sample individual pairs. In
all three cases, this corresponds to separating relatively
compact clusters from small sets of outliers. Based on this
experimental analysis, we found that the optimal minutia
matching thresholds are 7;; = 10, T}, = 30, and Ty = 70.

As we explained in Section 3.2, a total matching score is
computed based on the number of accepted (after threshold)
matching minutia pairs. This computation repeats for all
possible matches between the incoming image and the
database images. The database image that scores the highest
is the candidate recognition result. This result is admissible
only ifitis greater than a threshold value T,,.. Otherwise, the
recognition is considered iffy, and it is discarded. We
determined the optimal value of T, based on the Equal
Error Rate (ERR). This is the rate at which both FAR and False
Rejection Rate (FRR) are equal. To find the ERR, we used
500 thermal facial images from 50 subjects (10 images per
subject). Fig. 19 shows the FAR and FRR curves for different
values of Ti.o.. As canbe seen in Fig. 19, the system has EER at
Ts‘core = 65.

4.4 Operational Limitations

Major operational limitations to the current feature extrac-
tion method fall into the following two categories:

1. Glasses are opaque in the thermal IR spectrum; hence,
they block important vascular information in the
periorbital area. Also, thick facial hair (for example,
beard) reduces significantly the radiation emitted
from the surface of the skin and may cause failure,
even at the face segmentation stage. Fig. 20 shows
examples of face segmentation where parts of the face
containing glasses and hair are segmented out.

2. The robustness of the method degrades when there is
substantial perspiration. This results in a highly
nonlinear shift of the thermal map that alters



BUDDHARAJU ET AL.: PHYSIOLOGY-BASED FACE RECOGNITION IN THE THERMAL INFRARED SPECTRUM 623

Fig. 17. Selection of matching minutia pairs from two images of the same subject.

radically the radiation profile of the face. For the
moment, this should be considered as the operational
limit of the method. A practical scenario where such a
case may arise is when a subject is imaged after a
strenuous exercise that lasted several minutes. An-
other possible breakdown may arise when the subject
remains in a very hot environment, heavily dressed,
for a substantial amount of time.

We have performed an experiment whereby a subject is

imaged at the following instances:

in a baseline condition (Fig. 21a),

after 1 min of rigorous walking (Fig. 21c),
after 5 min of rigorous walking (Fig. 21e), and
e after 5 min of rigorous jogging (Fig. 21g).

The second column of Fig. 21 shows the corresponding
vessel extraction results. In Fig. 21¢, the metabolic rate of the
subject shifted to higher gear, but perspiration is still not a
major problem. One can find evidence of the higher metabolic
rate by looking at the left temporal area, where the region
around the rich vasculature has become deeper cyan (hotter)
in Fig. 21c with respect to Fig. 21a. This is an example of a
positive linear shift (warming up), which the vessel extraction
algorithm handles quite well (see Fig. 21d versus Fig. 21b). As
the exercise becomes more strenuous and lasts longer,
perspiration increases and introduces a negative nonlinear
shift (cooling down) in the thermal map. This is especially
pronounced in the forehead, where most of the perspiration
pores are. Due to this, some unwanted noise starts creeping in
the vascular map in Fig. 21f, which becomes more dramatic in
Fig. 21h. The performance of the vessel extraction algorithm
deteriorates, but not uniformly. For example, the vessel
extraction algorithm continues to perform quite well in the
cheeks, where perspiration pores are sparse, and the cooling
down effectis not heavily nonlinear. In contrast, performance
is a lot worse in the forehead area, where some spurious
vessel contours are introduced due to severe nonlinearity in
the thermal map shift.

The deterioration of the performance of the feature
extraction algorithm has direct bearing on the performance
of the matching algorithm. Specifically, for the vascular
network in Fig. 21d, the matching score is 83 percent, which
guarantees correct recognition despite the shift in the

thermal map. For the vascular network in Fig. 21b, the
matching score falls to 77 percent, which makes correct
recognition ambivalent. Finally, for the vascular network in
Fig. 21h, the matching score becomes 56 percent, which
makes correct recognition impossible.

5 CONCLUSIONS

We have outlined a novel approach to the problem of face
recognition in thermal IR. The cornerstone of the approach
is the use of characteristic and time-invariant physiological
information to construct the feature space.

Although thermal facial maps shift over time, the
contrast between the superficial vasculature and surround-
ing tissue remains invariant. This physiological feature has
permanence and is very difficult to be altered (under the
skin). Therefore, it gives a potent advantage to any face
recognition method that may use it.

We designed a method that represents the first attempt
to realize this physiological framework for face recognition.
Our main goal was to establish the feasibility and assess the
promise of the overall concept. Since our method is 2D, we
pay particular attention to neutralize the adverse effect of
pose variability in the matching process. Specifically, our
method proceeds as follows: First, it separates the facial
tissue from the background by using a novel Bayesian
segmentation algorithm. Second, it extracts the vascular
contour network from the surface of the skin by using white
top hat segmentation preceded by anisotropic diffusion.
Third, it localizes the TMPs in the vascular network and
uses them as the basis of a feature vector. Fourth, it
performs recognition by matching TMP-based feature
vectors. Our method borrows some ideas from fingerprint
recognition, since the vascular network appears to have
phenomenological similarities with the ridge network.

The most important conclusion of our research so far, is
that physiology-based face recognition appears to be feasible
and have potential, especially as a way of addressing the issue
of low permanence over time. The current method has some
weak points, which, if they are being cured, may propel
physiology-based face recognition to outstanding perfor-
mance. Specifically, the current methodology lacks a rigorous
quality control mechanism when it comes to extraction of
vascular contours. Truly, most of the contours appear to be at
places where superficial vasculature is expected (e.g., carotid
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Fig. 18. Threshold values for selected minutia pairs for each subject.

and temporal), but this is only a qualitative assessment.
Occasionally, the algorithm is fooled by areas of high contrast
(e.g., hairline and skin) and reports them as vascular
contours. Most of these problems are corrected during
postprocessing, but some fake vascular contours remain
and participate in the matching process with deleterious
effects. The current method also fails to take into account
nonlinearities in the deformation of the vascular network.
Finally, the present method features a simplistic threshold-
based classification algorithm that provides binary and not
probabilistic decisions. Our ongoing work is addressing all
these issues.

As with most methods, this method also has some
operational limitations. As such, we identified the presence
of glasses and thick facial hair, as well as substantial
perspiration, which may be the result of exertion of heat.
Substantial perspiration introduces a nonlinear shift in the
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Fig. 19. Plots of FAR and FRR for different values of T.e.

(b)

(d

Fig. 20. (a) A thermal facial image with glasses and (b) the result of
segmentation. (c) A thermal facial image with facial hair and glasses and
(d) the result of segmentation.

thermal facial map that the current feature extraction
mechanism cannot handle well.

It is a credit to the physiological framework that, despite
the deficiencies of the current methodology, the perfor-
mance is good in two nontrivial databases in terms of size
and difficulty (University of Houston and University of
Notre Dame). It is an indication that the method is aided by
the natural uniqueness and constancy of the feature space.
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