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W
e have developed a novel method for noncontact measurement
of breathing function. The method is based on the statistical
modeling of dynamic thermal data captured through a highly
sensitive infrared imaging system. The air that is breathed out
has a higher temperature than the typical background of indoor

environments (e.g., walls). Therefore, the particles of the expired air emit at a
higher power than the background, a phenomenon that is captured as a distinct
thermal signature in the infrared imagery. There is significant technical diffi-
culty in computing this signature, however, because the phenomenona has a
very low intensity and is of a transient nature. To address the problem, we use
an advanced statistical algorithm based on multinormal data representation,
the method of moments, and the Jeffreys divergence measure. In experimental
tests, we were able to correctly compute the breathing waveforms in eight
infrared video clips of three subjects at distances ranging 6–8 ft. The results
were compared with ground-truth data collected concomitantly with a tradi-
tional contact sensor. Our experiments demonstrated the promise of this
modality, which may find applications in the next generation of contact-free
polygraphy and in sleep studies.

Monitoring of breathing function has applications in polygraphy, sleep studies,
sport training, early detection of sudden infant death syndrome in neonates, and
patient monitoring.

Various contact measurement methods have been developed for estimating the
breathing rate of a subject. Moody et al. developed a contact modality in which
numerous electrocardiogram (ECG) electrodes and sensors are attached to the
subject [1]. The principle of operation is based on the fact that the heart rate is
typically modulated by breathing, a phenomenon known as sinus arrhythmia [2].
Therefore, a signal corresponding to the heart function contains breath informa-
tion, which is filtered out using band-pass filters.

As an improvement over the ECG method, the BioMatt method [3] was devel-
oped in Finland by a group of researchers who were studying sleep disorders.
BioMatt performs measurements of vital signs, such as breathing and cardiac
activity without electrodes. Initially, BioMatt could not distinguish motion that
was due to breathing versus cardiac activity or body movement. Later, Larson
developed a signal processing technique to separate out the components of the
BioMatt signal [4].

Photoplethysmography (PPG) is a variant method of the ECG, developed to
measure blood volume changes in living tissues by absorption or scattering of
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near-infrared radiation. This modality consists of an infrared
light-emitting diode (LED) and a photodiode that can be
clamped to the ear lobes, thumbs, or toes. It is advantageous
because it is portable, compact, and needs very little mainte-
nance. The measurement of blood volume changes by PPG
depends on stronger absorption of near-infrared light by blood
when compared to other superficial tissues [5]. The amount of
backscattered light corresponds to the variation of the blood
volume. As in ECG, the breath waveform is separated from the
cardiac signal through various methods that have been devel-
oped [6], [7]. However, using heart function as a basis for
acquiring the breathing waveform is unreliable since sinus
arrhythmia is not present in all individuals. Control of cardiac
activity by breathing depends on the age and medications
administered to subjects.

Other contact modalities are capable of directly measuring
the breathing signal. An example of such modality is the
abdominal strain gauge transducer [8], which is strapped
around the subject’s chest and measures the change in thoracic
or abdominal circumference while breathing. Another exam-
ple is a thermistor that measures nasal air temperature varia-
tion as an indication of breathing [9].

The disadvantage of all the aforementioned technologies is
that they require close contact with the subject, which, in cer-
tain cases, may be quite uncomfortable and awkward (e.g.,
abdominal transducer). A contact-free but active technology
called radar vital signs monitor (RVSM) [10] was developed
in 1996 to monitor the performance of Olympic athletes. The
RVSM detects breathing-induced movement of the chest
based on the Doppler phenomenon. It measures breath at dis-
tances of up to 15 ft behind an 8-in hollow concrete or wooden
wall. A radar flashlight [11] was built to make use of this
capability in assisting law enforcement personnel to detect
individuals hidden behind walls. In 2000, RVSM was used in
noncontact polygraphy [12]. The disadvantage of this tech-
nique is that motion artifacts corrupt breath signals, and spe-
cialized frequency filters need to be used to separate them.

In 2000, infrared imaging proved its potential in deception
detection when thermal image analysis was used by Pavlidis et
al. to detect facial patterns of stress at a distance [13]. A little
later, Pavlidis et al. used infrared imaging to compute periorbital
perfusion as a replacement of the corresponding polygraph
channel that uses finger contact sensing [14], [15]. The pro-
posed use of infrared imaging for computing breathing function
may also replace the corresponding polygraph channel that uses

the abdominal transducer. Incremental replacement of contact
channels with noncontact ones may prove very effective in the
field of polygraphy, where it is essential that subjects feel as
comfortable as possible during examination. 

Moreover, highly automated, noncontact monitoring of
breathing function may have a significant impact on certain
biomedical applications. For example, in sleep studies, this new
methodology will enable monitoring of sleep apnea with mini-
mal or no wiring of the subject, potentially at his/her home and
not in the lab. This will not only improve the subject’s comfort
but also facilitate much more sustained monitoring than is cur-
rently feasible.

The use of infrared imaging for measuring breathing
function is based on the fact that the exhaled air has a higher
temperature than the typical background of indoor environ-
ments. This creates a discriminating thermal signature that
can be captured through an infrared imaging sensor. The
phenomenon is quasiperiodic and can be quantified using
either statistics or calculus. From the statistical point of
view, one can model the breathing cycles as multinormal
distributions—one with cold temperatures corresponding to
inhalation and one with hot temperatures corresponding to
exhalation. From the Calculus point of view, one can model
the quasiperiodicity of breathing through Fourier analysis.

In this article, we describe a statistically based methodology
for quantifying breathing rate with infrared imaging data.
Alternative methodologies, like Fourier analysis, can be used but
are not addressed in our present work. Our goal is to open a new
line of research by demonstrating the feasibility of monitoring
breathing function in a highly automated and noncontact fashion. 

In this article, we describe briefly the physiology of breath-
ing. Then we refer to the visual tracking mechanism that
enables consistent breathing measurements in the presence of
subject motion. Our breath visualization scheme, which is of
paramount importance during the training phase of our mea-
surement algorithm, is described, and we explain in great
detail the statistical algorithm that performs the breathing mea-
surement on the infrared imaging data. Next, we outline our
experimental design and results, and we finally conclude by
discussing the strong and weak points of our methodology, its
prospects, and our planned work for the future.

Breathing Function
Respiration in a man involves three well-defined stages [16].
The first stage is breathing. It comprises inspiration, taking

oxygenated air into the lungs, and
expiration, discharging air that is
rich in carbon dioxide. The second
stage involves the transport of the
oxygen to the cells of the body using
the heart and the vascular system.
The third stage is called cellular res-
piration; in this stage, oxygen is
used in the process of generating
energy for physiological activities.

In our study, we are interested in
monitoring breathing using
infrared imaging. The breathing
cycle consists of inspiration, expi-
ration, and postexpiratory pause.
During quiet breathing, inspiration
begins due to negative pressure

Fig. 1. Output from a piezo-respiratory belt transducer showing the three breathing
phases during (a) quiet breathing and (b) after exercise.
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created inside the chest cavity by the contraction of the
diaphragm. Expiration is a passive process where the air
flow occurs due to the elastic recoil property of the lungs.
The postexpiratory pause is caused when there is equaliza-
tion of the pressures inside the lungs and the atmosphere.

Breathing cycle is defined as the time interval between the
beginning of inspiration and the end of postexpiratory pause.
During quiet breathing, the breathing rate may vary from
12–20 breaths/min and, after physical activity, 30–40
breaths/min in healthy individuals. Figure 1(a) and (b) shows
typical duration of the three phases during quiet breathing and
after physical activity, respectively.

During quiet breathing, the duration of postexpiratory pause
is comparable to that of inspiration and expiration. After a per-
son undergoes physical exertion, the postexpiratory duration
reduces considerably and, in some cases, this phase may even
cease to exist.

Tracking the Region of Interest
We define as the region of interest (ROI) R the region in the
background, where there is possible presence of respiratory
airflow. It is in this small image region that our statistical algo-
rithm is applied. The ROI is characterized by its size, shape,
and position. Over time, the size and shape of ROI remain the
same, but its position changes to cope with the subject’s
motion (tracking). We have experimented with different ROI
sizes, and we will give more details about the optimal determi-
nation of this parameter later. In this section, we will address
the issues of ROI shape and dynamic positioning.

For simplicity, R was chosen to be a rectangular region.
Typically, subjects are breathing through the nasal cavity,
which results in a downward airflow profile. Breathing through
the mouth is less prevalent and results in horizontal airflow
profile. In our dataset, we observed downward airflow profiles
[Figure 2(a)] in seven video clips and a horizontal profile
[Figure 2(b)] in one video clip. Hence, we chose a rectangular
region R arranged in a longitudinal fashion to closely match the
prevalent downward profile of airflow. Our experiments have
also shown that this shape still worked quite well on the video
clip featuring the horizontal airflow profile (97.74% accuracy). 

The respective aims of the initial positioning and tracking
algorithms are to provide the user with an approximate posi-
tion of the ROI in the vicinity of the nasal-mandible region
and follow it automatically throughout the breathing rate
computation process. Technical details of the initial position-
ing and tracking algorithms can be found in [17]. The initial
positioning algorithm locates the tip of the subject’s nose and
places the ROI underneath it, in a position that is between
the nostrils and the mouth (Figure 3). This placement works
for the typical monitoring scenario of a subject imaged at a
side view. For different monitoring scenarios, the above
heuristic approach tends to place R incorrectly. But, the
graphical user interface (GUI) gives options to move the ROI
around the image so it can be placed within the airflow with
just a mouse click. In such adjustments, the user is aided by
the breath visualization tool. Hence, the initial positioning of
ROI is semiautomatic; the algorithm gives the approximate
position of R, and then the user may need to move it to a bet-
ter position within the field of the airflow. By contrast, the
tracking algorithm is completely automatic since it tracks R
with respect to the tip of the nose in subsequent video frames
without any feedback from the user.

Visualization of Breath
Visualization is important for, among other reasons, adjusting
the initial ROI position and for training the statistical algo-
rithm. Since the thermal signature of breath is not very strong,
we have to apply image processing techniques to visually per-
ceive breath in infrared video frames. Specifically, we apply
the following operations on the video clip frames: 

1)   Otsu’s adaptive thresholding [18]
2) differential infrared thermography (DIT) [19]
3) image opening [20].
Otsu’s adaptive thresholding is applied to segment the skin

region from the background. Then, in the background region,
we apply DIT to generate a breath mask of all pixels whose
temperature has increased beyond a preset threshold. This
operation makes sure that the colormap is applied only to
expiration frames in which DIT senses an increase in ROI
pixel temperatures above the preset value. The result is a highly
contrasting effect of no color during inspiration versus vivid
color during expiration [see Figure 3(a) and (b)]. As a final
step, an image open operation is applied on the output binary
mask of DIT to improve breath visualization.

The visualization scheme works well only for a limited
period, as the temperature distributions of inspiration and
expiration tend to drift over time for physiological and other
reasons. DIT cannot handle this distribution drift well. If it
did, it could have also been used to measure breathing rate in
the place of the more sophisticated statistical algorithm (see
the following section). However, the short time window of
good visualization performance is adequate for adjusting the
initial ROI position and training the statistical algorithm. 

Statistical Methodology
Integral to breathing rate computation using infrared
imaging is the labeling of frames as expiratory and

Fig. 3. Visualization of breath during (a) nonexpiration and (b)
expiration. The ROI is anchored just under the subject’s nose tip.
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Fig. 2. Respiratory airflow profiles: (a) downward and
(b) horizontal.
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nonexpiratory. For this purpose, we have adopted a statis-
tical methodology based on multinormal distributions, the
method of moments, and the Jeffreys divergence measure
[21]. We identify two phases in the statistical method:
training and testing. We describe both phases in subse-
quent sections. 

First, we ascertain the normal nature of the temperature
distributions in the ROI for the various breathing stages
(Figure 4). Therefore, we can represent ROI distributions by
their mean µ and variance σ 2 only. Our method combines
inspiration and postexpiratory pause phases, since the ther-
mal signatures of these two are almost identical. We desig-
nate the combined stage as nonexpiratory phase.

Training Phase
The algorithm runs through a training phase to generate esti-
mates of the expiration and nonexpiration distributions from
the first few video frames. These estimates are then used to
label pixels as expiratory or nonexpiratory in the initial video
frame of the testing phase.

We use a variant of the K-means clustering algorithm [22]
to generate training data. Our objective is to form K = 2 rep-
resentative distributions through an iterative process; a hot one
for expiration and a cold one for nonexpiration. Initially, we
specify as the expiration distribution De,0 the one with the
hottest mean temperature µe,0 in the training set; we specify as
the nonexpiration distribution Di,0 the one with the coldest
mean temperature µi,0 in the training set:

Fig. 4. Experimental temperature distributions for expiration,
postexpiratory pause, and inspiration. The normal nature of
the distributions and overlapping between postexpiratory
pause and inspiration are evident.
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µe,0 = max
1≤ j≤M

{µj}, (1)

µi,0 = min
1≤ j≤M

{µj}, (2)

where N(µj, σ
2
j ), 1 ≤ j ≤ M is the set of temperature distribu-

tions for ROI R corresponding to the first M = 100 training
frames of infrared video. We sort the distributions in ascending
order with respect to their means in order to facilitate the itera-
tive process. 

On every step j, 1 ≤ j ≤ M, we find the statistical distance
of distribution Dj ∼ N(µj, σ

2
j ) from De, j−1 and Di, j−1. For this

purpose, we use the Jeffreys divergence measure as follows:
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The Jeffreys divergence measure is a symmetric form of the
Kullback-Leibler divergence measure. It is a function of the
means and standard deviations of the two distributions being
compared. Hence, it is an appropriate distance measure for
bivariate distributions. We choose the winner distribution
Dw, j−1(w = e or i) at step j as the one whose Jeffreys distance
from the training population Dj is the smallest. The mean and
variance of the winning distribution are then updated at each
step as follows:

µw, j = µw, j−1 + µj

2
, (5)

σ 2
w, j =

σ 2
w, j−1 + σ 2

j

2
. (6)

The loser distribution retains its previous values. 
We iterate this process for all the training populations except

those that were marked as initial clusters. At the end of the
process, we obtain the estimates of the two distributions corre-
sponding to the expiration and nonexpiration phases of the
breathing cycle. Figure 5 depicts our K-means training method.

Testing Phase
During the testing phase, we represent at frame t each pixel xt

in region R as a mixture of two distributions:
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f(xt) ∼ πe,tN
(
µe,t, σ

2
e,t

) + πi,tN
(
µi,t, σ

2
i,t

)
, (7)

where fe(xt) ∼ N(µe,t, σ
2
e,t) is the normal expiration distrib-

ution, fi(xt) ∼ N(µi,t, σ
2
i,t) is the normal nonexpiration dis-

tribution, and πe,t and πi,t are their respective weights in the
mixture satisfying the criterion

πe,t + πi,t = 1.

In the beginning of the testing phase (t = 0), the distribu-
tions for nonexpiration and expiration are equiprobable with
πe,t = πi,t = 0.5 and are parameterized by the respective
means and variances that we computed during the training
phase. Therefore, every pixel in region R is represented as
having the following starting distribution:

f(x0) ∼ 0.5 N
(
µi,0, σ

2
i,0

) + 0.5 N
(
µe,0, σ

2
e,0

)
. (8)

At time t > 0 and for pixel xt, we compare the incoming
temperature value from the sensor with the estimated distrib-
ution from the previous frame at time t–1. For this compari-
son to be effective, we consider that the incoming
temperature θxt can be associated to a normal distribution
g(θxt) ∼ N(µg,t, σ

2
g,t) , where µg,t = θx,t and σg,t = NEDT.

For the camera model that we use, NEDT = 0.01 ◦C.

We compute the Jeffreys divergence measures between the
incoming distribution g(θxt) and the existing nonexpiration
fi(xt−1) and expiration fe(xt−1) distributions, respectively.
Specifically,
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We consider that the incoming distribution is closer to the
existing distribution that features the minimum Jeffreys diver-
gence measure. We call this the winning distribution fw(xt−1)

and the other the losing distribution fl(xt−1). Based on this
information, we update the parameters of the mixture follow-
ing the method of moments. Specifically, we update the
weights for both distributions and the mean and variance of
the winning distribution only. The mean and variance of the
losing distribution remain the same.

Fig. 5. Iterations in the K-means training data acquisition method. The resulting expiration and nonexpiration distributions at the
end of the M=100th iteration are used to jump-start the testing phase.
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The weights of the winning and losing distributions are
updated as follows:

πw,t = (1 − ρ)πw,t−1 + ρ, (11)

πl,t = (1 − ρ)πl,t−1. (12)

The mean and variance of the winning distribution are updated
as follows:

µw,t =(1 − ρ)µw,t−1 + ρµg,t, (13)

σ 2
w,t =(1 − ρ)σ 2

w,t−1 + ρσ 2
g,t

+ ρ(1 − ρ)(µg,t − µw,t−1)
2. (14)

The parameter ρ is a learning parameter
that is computed from the following formula
[23]:

ρ = e
− 1

2

[ 1
2 (µg,t − µw,t−1)

σw,t−1

]2

. (15)

Figure 6 is a visualization example of how
the incoming distribution may affect the exist-
ing distribution. The updated data acts as the
new estimate for the corresponding pixel in
the next incoming frame.

The pixel xt is given the label of the distrib-
ution with the highest updated weight. A count
is kept of the number of expiration Ce and
nonexpiration Ci pixels in region R at time t.
Once all the pixels in region R are processed,
the frame gets the label of the most frequently
occurring pixel label. For example, if Ci > Ce ,
the frame is labeled as nonexpiration; other-
wise, the frame is labeled as expiration. Figure
7 shows the flow of control and data through
the statistical algorithm.

The breathing rate computation algorithm
keeps track of the frame labels and continu-
ously updates the time of the current breath-
ing cycle Tc by using the current timestamp
Tn and the previous timestamp Tn−1 . The

Fig. 6. Comparison of a training distribution before and after
the application of the method of moments.
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Fig. 7. Overview of the statistical methodology for labeling infrared video
frames as expiration or nonexpiration. 
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initial run of similar frame labels (Figure 8) is skipped since
the testing phase might have started in the middle of a cycle.
The algorithm keeps track of the two subcycles in the
breathing cycle, and once it detects the beginning of the
next cycle, the breathing rate of the current cycle is comput-
ed in cycles/min using the formula

Rate = 60

Tc
cycles/min. (16)

Experimental Setup
We used a cooled midwave infrared Phoenix camera
with a spectral range of 3.0 − 5.0 µm (Indigo
Systems, Goleta, California) equipped with a 50-mm
lens (Figure 9). The focal plane array of the camera is
FPA = 640 × 512 pixels in size and has thermal sen-
sitivity NEDT = 0.01 ◦C. An external black body
(Santa Barbara Infrared, Santa Barbara, California)
was used to calibrate the camera. Infrared video
frames were acquired at a rate of 31 frames/s.

We captured the profile view of the subject’s face
and respiratory airflow from a distance of 6–8 ft
(Figure 10). A piezo-strap transducer [Figure 11(a)]
wrapped around the subject’s diaphragm measured
the thoracic circumference during expiration and
nonexpiratory phase. The transducer sent its signal
to a PowerLab data acquisition system [ADI
Instruments, Australia—Figure 11(b)]. This was the
gold standard that we used for benchmarking the
infrared imaging measurements.

Experimental Results
In this section, we investigate experimentally different aspects
of the breathing function and our method’s parameters. We
also describe the performance of our noncontact methodology
against ground-truth measurements taken by the
PowerLab/4SP ADI instrument. 

When air is breathed in, it gets warmed up during its pas-
sage into the respiratory system and during its brief stay in the
lungs. Figure 12 shows the plot of mean ROI temperature

along the timeline for one of the subjects in our dataset. From
the plot, we observe that the ROI temperature increases by
around 0.1 ◦C during expiration. Figure 13 shows the plot of
ROI variance along the timeline for one of the subjects in our
dataset. From the plot, we observe that the ROI variance dur-
ing expiration is quadrupled. This is because within the ROI,
there are clusters of hot air molecules interspersed with cold

Fig. 11. (a) The piezo-strap transducer and (b) the
PowerLab data acquisition system.

(a) (b)

Fig. 12. A plot of the mean pixel temperature in the ROI
along the timeline.
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air resident in the room. The hot air molecules are the ones
recently expired through the nostrils.

Our experimental protocol called for measurements during
the following phases:
➤ breathing while the subject rests in a chair
➤ breathing after the subject has stepped on and off a foot

step 30 times in 30 s
➤ breathing after the subject rested for 10 min so that his

physiology reverts back to baseline

➤ breathing after the subject has stepped on and off a foot
step 60 times in 60 s.

We measured the performance of our method on eight
thermal clips captured from three subjects. The thermal
clips were 1,000 frames long. The first 100 frames of each
clip were used for training and the remaining 900 frames for
testing. We were able to perform the infrared imaging
measurements for all four phases of the experimental proto-
col only for Subject 2. For the other two subjects, we had to

discard some of the measurements because of
technical problems in synchronizing the cam-
era with the ADI vital signs monitor.

Since the performance of the method clear-
ly depends on the size of the ROI where the
statistical computation is taking place, we
have experimented with three different ROI
sizes: small (7 × 3 pixels), medium (21 × 9
pixels), and large (63 × 27 pixels). From the
experimental results in Table 1, we observe
that the medium-size ROI outperforms the
other two sizes. The interesting fact is that
there is a clear breakdown in performance
when the ROI size is getting large. In such a
case, a significant number of the ROI pixels
are background and not expiratory pixels. As
a result, they bias the ROI labeling towards
nonexpiration, and the accuracy drops. The
absolute ROI sizes are of course dependent
on the optics. In our specific experimental
scenario, we recorded from a distance of 6–8

Table 1. The accuracy of breathing rate measurements for three different
sizes of ROI. The accuracy was determined by ground-truthing the results
from our algorithm against concomitant measurements recorded with
the ADI vital signs monitor.

Subject Video Clip Small ROI Medium ROI Large ROI

1 1 98.19 94.32 57.71

2 92.59 96.14 83.03

3 97.50 97.74 97.31

2 1 94.76 96.70 67.34

2 97.91 93.36 78.26

3 99.23 99.31 56.65

4 98.06 99.05 97.95

3 1 87.71 94.82 67.62

Average Accuracy (%) 95.74 96.43 75.73

Fig. 14. Breathing rate measurements during the initial resting
phase for Subject 2.
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Fig. 15. Breathing rate measurements after 30 s of exercise for
Subject 2.
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ft with a 50-mm lens, and the ROI sizes we cite are com-
mensurate to this optical arrangement.

Figures 14–17 show the variation of breathing rate com-
puted through the infrared imaging method for the four
phases of the experimental protocol for Subject 2. They
also show the comparison between the mean breathing rate
computed through the infrared imaging method and the
mean ground-truth rate measured by the ADI vital signs
monitor. From the plots, we observe that the breathing rate
increases from 12–20 cycles/min during rest to 30–40
cycles/min after the brief exercise. The accuracy of the
infrared imaging method appears to be consistent during
rest as well as during active periods.

The ground truth signal has output proportional to the
expansion (positive-level signal) and relaxation (zero-level
signal) of the breathing monitor belt during inspiration and
expiration, respectively. The signal computed from the
infrared imaging method has output labeled either as nonex-
piration or expiration. To make the comparison between
ground-truth data and algorithmic results easier, we have
digitized both signals by assigning a zero-level signal to
nonexpiration and a positive-level signal to expiration. In
addition, we have assigned a negative signal level to frames
used for acquiring training data. In Figure 18, we can
observe that the cycles detected by the infrared imaging
method are slightly out of phase with the ground-truth
cycles. This accounts for the small discrepancy that exists
between the measurements of the infrared imaging method
(middle ROI) and the ground-truth instrument.

Three primary factors account for this phase shift:
➤ imperfect (manual) synchronization of the beginning of the

two recordings (infrared video and monitor belt)
➤ mismatch of recording frequencies (our infrared camera

records at 31 frames/s, while the monitor belt samples at
100 times/s)

➤ the monitor belt records ground-truth data at the diaphragm
level, while our infrared imaging method classifies airflow
at the nasal-mandible level. 

The first factor can be addressed by developing a hardware
trigger. The second factor can be addressed by downsam-
pling the ground-truth signal. The amount of phase shift due
to the third factor can be determined and taken into account
by performing further research in this direction. 

Conclusions
Breathing function is one of the major indicators of an indi-
vidual’s health. It can be used to predict various life threat-
ening disorders like sudden infant death syndrome and
heart attacks. It is also used in sleep studies to detect sleep
apnea. Finally, it is one of the psychophysiological chan-
nels in polygraph examinations. Various modalities have
been developed to measure breathing rate. Almost all the
legacy methods require contact; therefore, they compro-
mise the subject’s comfort and mobility. Moreover,
measurements by these methods are corrupted either by
movement artifacts or by their dependence on other physio-
logical variables, like heart rate. We have proposed a
method that is based on infrared imaging and statistical

Fig. 17. Breathing rate measurements after 60 s of exercise for
Subject 2.
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Fig. 16. Breathing rate measurements after 10 min rest for
Subject 2.
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computation to passively measure breathing rate at a dis-
tance. This method achieved an accuracy of 96.43% on a
small set of subjects during rest and after brief exercise. It
has the potential to provide a unique capability for sus-
tained monitoring of chronic or acute breathing problems
and in sleep studies by overcoming the deficiencies of the
existing measurement modalities. It also opens the way for
the next generation contact-free polygraphy that will not
affect the subject’s psychophysiology.

Future Work
Since our method is contact free, it has significant advan-
tages over contact modalities like ECG, PPG, nasal tem-
perature probe, and breathing monitor belt in terms of
comfort. With the use of a simple tracking algorithm, our
method has overcome the drawback of active noncontact
modalities, like the radar vital signs monitor, whose output
gets corrupted by motion artifacts. But, our tracking algo-
rithm cannot deal with situations wherein the ROI fails to
remain in the field of respiratory airflow, which occur when
the subject rotates his/her head towards or away from the
camera (Figure 19) or the source of airflow (either the nose
or the mouth) changes.

The first problem may be addressed by developing an
advanced nasal-mandible tracking algorithm (Figure 20)
along with further research on detecting the respiratory air-
flow signal in frontal views. The second problem can be
addressed by using two ROIs, one each for nasal and
mandible airflow (Figure 21).

In our algorithm, we have made use of the Gaussian
nature of the thermal signature of breath to develop a sta-
tistical algorithm that classifies the frames as expiration
or nonexpiration. An alternative approach would be to
consider the quasiperiodic nature of the thermal signal
(Figures 12 and 13), which renders itself naturally to fast
Fourier transforms. 

Although our system is meant to be used in climate-con-
trolled environments like modern clinics and homes, an
intriguing question is how it will perform in more challeng-
ing environmental conditions. In future studies, we will
study carefully the effect of rapid temperature changes in the
environment on the performance of our method.
Theoretically, the adaptive statistical mechanism of the
method is expected to cope well in most cases. It would be
valuable, however, to establish experimentally the opera-
tional envelope of our system.

Fig. 19. ROI wrongly positioned when the subject turns his
head towards the camera due to the loss of the refer-
ence point.

ROI Position
with Our Tracking

Algorithm

Fig. 20. Likely position of ROI if advanced tracking algorithms
were employed.

Possible ROI
Position with Advanced

Tracking Algorithm

Fig. 21. The problem of a change in source of respiratory air-
flow can be solved by using an ROI each at the nose and
the mouth.

ROI 1

ROI 2

Fig. 18. This plot shows the phase shift between the breathing
signal (Subject 2, Clip 4) computed from the infrared imaging
method and the correponding ground-truth signal. 
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Future studies will be conducted with larger sample
sizes and subjects having undergone various degrees of
physical exertion. Such studies will establish how well the
method scales up to the general population. Although, the
answer to this question is pending, the current work clear-
ly establishes for the first time the feasibility of monitor-
ing breathing function in a contact-free manner and with
totally passive means.
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