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Abstract. The current security infrastructure can be summa-
rized as follows: (1) Security systems act locally and do not
cooperate in an effective manner, (2) Very valuable assets are
protected inadequately by antiquated technology systems and
(3) Security systems rely on intensive human concentration to
detect and assess threats.

In this paper we present DETER (Detection of Events for
Threat Evaluation and Recognition), a research and develop-
ment (R&D) project aimed to develop a high-end automated
security system. DETER can be seen as an attempt to bridge
the gap between current systems reporting isolated events and
an automated cooperating network capable of inferring and
reporting threats, a function currently being performed by hu-
mans.

The prototype DETER system is installed at the parking
lot of Honeywell Laboratories (HL) in Minneapolis. The com-
puter vision module of DETER reliably tracks pedestrians and
vehicles and reports their annotated trajectories to the threat as-
sessment module for evaluation. DETER features a systematic
optical and system design that sets it apart from “toy” surveil-
lance systems. It employs a powerful Normal mixture model
at the pixel level supported by an expectation-maximization
(EM) initialization, the Jeffreys divergence measure, and the
method of moments. It also features a practical and accurate
multicamera calibration method. The threat assessment mod-
ule utilizes the computer vision information and can provide
alerts for behaviors as complicated as the “hopping” of poten-
tial vehicle thieves from vehicle spot to vehicle spot.

Extensive experimental results measured during actual
field operations support DETER’s exceptional characteris-
tics. DETER has recently been successfully productized. The
product-grade version of DETER monitors movements across
the length of a new oil pipeline.
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1 Introduction

The Video Surveillance and Monitoring (VSAM) program
funded by DARPA in 1997–1999 [1–3] pushed the state of
the art to a point where future commercial application of the
technology is no longer unthinkable. No large-scale R&D ef-
fort has been undertaken since then in the area of surveillance.
Although substantial achievements have been demonstrated
during the VSAM program, many R&D challenges remain.
Our work addresses a number of these challenges and makes
headway toward the commercialization of an intelligent mon-
itoring system.

We are interested in monitoring large open spaces like
parking lots, plazas, crossroads, and perimeters of large in-
dustrial structures. We are particularly interested in monitor-
ing human and vehicular traffic patterns. These patterns are
very informative and valuable from the point of view of secu-
rity. For example, an M-type pedestrian trajectory in a parking
lot may signify a potential vehicle break-in activity. This is a
“stroll mode” favorite with vehicle thieves as they look into
the interior of parked vehicles trying to single out the most
appropriate target. Even simpler patterns like an overspeeding
vehicle in a slow-speed parking lot area may be indicative of a
getaway effort. Traffic statistics around a commercial or gov-
ernment building are also valuable from the point of view of
building operations. They may provide an insight into park-
ing lot utilization during different times and days. This insight
can support a functional redesign of the open space to better
facilitate transportation and safety needs.

A comprehensive video surveillance and monitoring sys-
tem depends primarily on two different technologies: com-
puter vision and threat assessment. Computer vision technol-
ogy consists of the optical and system design, object tracking,
and multicamera fusion stages. Threat assessment technology
consists of the feature assembly, offline modeling, and threat
classification stages (see Fig. 1). We will give a brief overview
of each stage and compare our solutions to others proposed in
the literature.

Our system is probably the only one that features a formal
optical and system design stage. Most of the efforts reported
in the literature had as their main objective to demonstrate the
feasibility of a novel idea and paid no attention to the practical
aspects of fielding a surveillance system. There are a number of
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Fig. 1. Architecture of the DETER system

requirements that a surveillance system needs to fulfill to func-
tion properly and be commercially viable. It should ensure full
coverage of the open space, or blind spots may pause the threat
of a security breach. Grimson et al. [4,5] have proposed the
concept of a “forest of sensors” (FoS) to address this problem
without delving into the implementation details of the idea.
The argument is predicated on the fact that video sensors and
computational power are getting cheaper and therefore can be
employed in mass to provide coverage for any open space. The
grand vision of FoS is to drop dozens of cheap small cameras
at random in a zone. FoS, then, would work out the position
of every camera, build up a three-dimensional representation
of the entire area, and begin monitoring activity.

FoS may have some merits under certain military scenar-
ios, but it is inappropriate for commercial applications. Most
of the cheap video sensors still do not have the required resolu-
tion to accommodate high-quality object tracking. Both cheap
and expensive cameras also need to become weatherproof for
outdoor use, which increases their cost substantially. Next is
the issue of installation cost, which includes the provision of
power and the transmission of video signals, sometimes at sig-
nificant distances from the building. The installation cost for
each camera is usually a figure many times its original value.
Even if there were no cost considerations, cameras cannot be
used arbitrarily in public places. There are restrictions due to
the topography of the area (e.g., streets and tree lines) and to
city and building ordinances (e.g., aesthetics). All these con-
siderations severely limit the allowable number and positions
of cameras for an urban surveillance system.

In addition to optical considerations, there are also system
design considerations including the type of computational re-
sources, computer network bandwidth, and display capabili-
ties. In Sect. 2, we provide a detailed account of our method of
addressing all the relevant optical and system design issues.

The computer vision component of DETER consists of a
moving-object segmenter, a tracker, and a multicamera fusion
module. A variety of moving-object segmenters have been re-
ported in the literature. There are two conventional approaches
to moving-object segmentation with respect to a static cam-
era: temporal differencing [6] and background subtraction [7].
Temporal differencing is very adaptive to dynamic environ-
ments but generally does a poor job of extracting all the rele-
vant object pixels. Background subtraction provides the most
complete object data but is extremely sensitive to dynamic
scene changes due to lighting and extraneous events. Most

researchers have abandoned nonadaptive methods of back-
grounding, which are useful only in highly supervised, short-
term tracking applications without significant changes in the
scene. More recent adaptive backgrounding methods [8] can
cope much better with environmental dynamism. However,
they still cannot handle bimodal backgrounds and have prob-
lems in scenes with many moving objects. Grimson et al.
[9] have proposed a more advanced object-detection method
whereby each pixel’s color channel (R, G, B) is modeled by a
mixture of Gaussians. This method features a far better adapt-
ability and can handle even bimodal backgrounds (e.g., sway-
ing tree branches). The secret is in the powerful representation
scheme. Each Normal reflects the expectation that samples of
the same scene point are likely to display Gaussian noise dis-
tributions. The mixture of Normals reflects the expectation
that more than one process may be observed over time.

Our method is similar to Grimson’s method in the sense
that we also use a multi-Normal representation at the pixel
level. However, this is where the similarity ends. We use
an expectation-maximization (EM) algorithm to initialize our
models. In contrast to the K-means approximation or to ran-
dom initialization, our EM algorithm provides strong initial
statistical support that facilitates fast convergence and stable
performance of the segmentation operation. We use the Jef-
freys (J) divergence measure as the matching criterion between
Normals of incoming pixels and existing model Normals. This
is a far superior measure to the fixed value (two standard devia-
tions) used in Stauffer and Grimson [9]. Finally, when a match
is found, the model update is performed using the method of
moments. When a match is not found, the update is performed
in a way that guarantees the inclusion of the incoming distri-
bution in the foreground set.

The method described above allows us to identify fore-
ground pixels in each new frame while updating the descrip-
tion of each pixel’s mixture model. The labeled foreground
pixels can then be assembled into objects using a connected
components algorithm [10]. Establishing correspondence of
objects between frames (tracking) is accomplished using a
linearly predictive multiple hypothesis tracking algorithm that
incorporates both position and size. We describe our object-
tracking method in detail in Sect. 3.

No single camera is able to cover large open spaces, like
parking lots, in their entirety. Therefore, we need to fuse the
fields of view (FOVs) of the various cameras into a coherent
superpicture to maintain global awareness. We fuse (calibrate)
multiple cameras by computing the respective homography
matrices. The computation is based on the identification of
several landmark points in the common FOV between camera
pairs. The landmark points are physically marked on the scene
and sampled through the user interface. The calibration thus
achieved is very accurate, much more accurate than the one
achieved through the matching and fitting of tracked objects
[11]. The trade-off is that setting up and sampling landmark
points is a rather laborious process. Since, however, it is done
only during the installation of the system, it is a perfectly viable
practical solution. A short description of our fusion method is
given in Sect. 4.

The threat assessment portion of DETER consists of a fea-
ture assembly module followed by a threat classifier. Feature
assembly extracts various security-relevant statistics from ob-
ject tracks and groups of tracks. The threat classifier decides in
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real time whether a particular point in feature space constitutes
a threat. The classifier is assisted by an offline threat-modeling
component (see Fig. 1). Section 5 provides details about our
threat assessment methodology.

In Sect. 6 we provide experimental results that demonstrate
the performance of the DETER system. Finally, we conclude
the paper in Sect. 7.

2 Optical and system design

The optical and overall system design for DETER includes
the specification of a camera set arrangement that optimally
covers the HL Minneapolis parking lot. It also includes the
specification of the computational resources necessary to run
the DETER algorithms in real time. Finally, it includes the
specification of the display hardware and software.

The optical design effort, in particular, has the following
objectives:

1. Specify the camera model
2. Specify the camera lens
3. Specify the number of cameras
4. Specify the camera locations

We decided to employ dual-channel camera systems.
These systems utilize a medium-resolution color camera dur-
ing the day and a high-resolution grayscale camera during
the night. Switching from day to night operation is controlled
automatically through a photosensor. The dual-channel tech-
nology capitalizes on the fact that color information in the low
light conditions at night is lost. Therefore, there is no reason
to use color cameras during nighttime conditions. Instead we
can employ cheaper and higher resolution grayscale cameras
to compensate for the loss of color information. We have se-
lected the DSE DS-5000 dual-channel system as the camera
model. The color day camera has a resolution of HD = 480
lines/frame. The grayscale night camera has a resolution of
HN = 570 lines/frame. The DSE DS-5000 camera system
has a 2.8 to 6-mm f/1.4 varifocal auto iris lens for both day
and night cameras. This permits us to vary the FOV of the
cameras from FOV = 44.4 − 82.4◦.

We seek an optimal solution that provides coverage to the
entire parking lot area with the minimum number of cameras
and installation cost. The topography of the area under surveil-
lance imposes practical constraints. For example, we cannot
place a camera pole in the middle of the road, existing poles
and rooftops should be utilized to the extent possible to reduce
the installation cost, and city codes regarding the aesthetics
must be obeyed. Taking into account all these considerations
we can delineate in the computer aided design (CAD) of the
parking lot the possible installation sites. These are usually
only a small fraction of the entire open area, and therefore our
search space is drastically reduced.

The installation search space is reduced even further when
we consider the constraints imposed by the computer vision
algorithms. Specifically:

1. An urban surveillance system such as DETER monitors
two kind of objects – vehicles and people. In terms of size,
people are the smallest objects under surveillance. There-
fore, their footprint should drive the requirements for the
limiting range of the cameras. In turn, the determination

of the limiting range will help us to verify if there is any
space in the parking lot that is not covered under any given
camera configuration.

2. Each camera should have an overlapping FOV with at least
one more camera. The overlapping arrangement should be
done in such a way that we can transition from one camera
to another through indexing of the overlapped areas and
manage to visit all the cameras in a unidirectional trip
without encountering any discontinuity.

3. The overlap in the FOVs should be between 25% and 50%
for the multicamera calibration algorithm to perform reli-
ably. This requirement stems from the need to get several
well spread landmark points in the common FOV for ac-
curate homography. Usually a portion of the overlapping
area cannot be used for landmarking because it is covered
by nonplanar structures like tree lines. Therefore, at times
the common area between two cameras may be required
to cover as much as half of the individual FOVs.

As mentioned earlier, the DSE DS-5000 cameras feature
a varifocal lens with a FOV that can range between 44.4 and
82.4◦. We chose the intermediate value of FOV = 60◦ as
the basis of our calculations. To satisfy the overlapping con-
straints, we may need to increase or decrease the FOV of some
of the cameras from this average value. The camera placement
algorithm proceeds as follows:

1. In one of the allowed installation sites, place a camera
in such a way that its FOV borders the outer edge of the
parking lot.

2. Continue adding cameras around the initial camera until
you reach the next outer edge of the parking lot. Make sure
there is at least 25% overlap in neighboring FOVs.

3. Compute the limiting range of the installed cameras. By
knowing the FOV and the limiting range we can know the
full useful coverage area for each camera.

4. Continue with the next installation site just outside of the
already covered area. Make sure that at least one of the new
cameras overlaps at least 25% with one of the previous
cameras.

5. Repeat the previous three steps until the entire parking lot
area is covered.

6. Make some postprocessing adjustments. These usually in-
volve the increase or reduction of the FOV for some of the
cameras. This FOV adjustment is meant to either trim ex-
cessive overlap or add extra overlap in areas where there
is little planar space (lots of trees).

Of particular interest is the computation of a camera’s lim-
iting range Rc. It is computed from the equation

Rc =
Pf

tan (IFOV )

where Pf is the smallest acceptable pixel footprint of a hu-
man and IFOV is the instantaneous field of view. Based on
our experimental experience, the signature of the human body
should not be smaller than a w × h = 3 × 9 = 27 pixel rect-
angle on the focal plane array (FPA). Clusters with fewer than
27 pixels are likely to be below the noise level. If we assume
that the width of an average person is about Wp = 24 in., then
the pixel footprint Pf = 24/3 = 8. The IFOV is computed
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from the following formula:

IFOV =
FOV

LFPA

where LFPA is the resolution for the camera. For FOV = 60◦
and LFPA = 480 pixels (color day camera), the limiting range
is Rc = 305 ft. For FOV = 60◦ and LFPA = 570 pixels
(grayscale night camera), the limiting range is Rc = 362 ft.
In other words, between two cameras with the same FOV the
higher-resolution camera has the larger useful range. Con-
versely, if two cameras have the same resolution, the one with
the smaller FOV has the larger useful range. During postpro-
cessing we needed to reduce the FOV (FOV = 52◦) in some
of the lower-resolution day camera channels to increase their
effective range limit. Extended tree lines in the HL parking
lot necessitate larger overlapping areas than the anticipated
minimum.

A good optical design is essential to the success of an
urban surveillance system, and many computer vision projects
often ignore this aspect altogether. The principles, algorithms,
and computations we used for the DETER optical design can
be codified and automate the optical design of future similar
security systems in any parking lot or open area.

Our study concluded that seven cameras in the configura-
tion shown in Fig. 2 is the recommended arrangement for our
parking lot. We have assigned one standard PC for the pro-
cessing requirements of each camera. One of the seven PCs
is designated as the server, and this is where the fusion of
information from all seven cameras takes place. The fused in-
formation is displayed in a 44-in. flat panel display along with
all the necessary annotation. This comprehensive high-quality
picture allows the security operator to maintain instant aware-
ness without the distraction of multiple fragmented views.

In a later stage, four more cameras were added to monitor
movement in the vicinity of the building’s air intakes (see
Fig. 3). The placement and type of the air-intake cameras was
determined by the same algorithm we used for the parking lot
scenario. The air-intake cluster of cameras is disjointed from
the parking lot cameras and controlled by the product and
not the R&D version of DETER. It is meant to demonstrate
the application of video-based detection technology in a very
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specific and highly lethal threat scenario: that of chem-bio
attack through the air intakes of commercial buildings. We will
provide more information about this application of DETER in
Sect. 6.

3 Object tracking

3.1 Initialization

The goal of the initialization phase is to provide statistically
valid values for the pixels corresponding to the scene. These
values are then used as starting points for the dynamic process
of foreground and background awareness. Initialization hap-
pens only once, and there are no strict real-time processing
requirements for this phase. We accumulate a certain number
of frames N (N = 70) and then process them offline.

Each pixel X is considered to be a mixture of three time-
varying trivariate normal distributions:

X ∼
3∑

i=1

πiN3 (µi,Σi)

where

πi ≥ 0, i = 1, . . . , 3 and
3∑

i=1

πi = 1

are the mixing proportions (weights) and N3 (µ,Σ) de-
notes a trivariate Normal distribution with vector mean µ and
variance-covariance matrix Σ. The distributions are trivari-
ate to account for the three component colors (red, green, and
blue) of each pixel in the general case of a color camera.

Other similar methods reported in the literature initialize
the pixel values either with random numbers or with the K-
means algorithm. Random initialization results in slow learn-
ing during the dynamic mixture model update phase. Some-
times it even results in instability. Initialization with the K-
means method gives significantly better, but not optimal, re-
sults. K-means is not an optimal method because it commits
each incoming data point to a particular distribution in the
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mixture model. Ideally, each data point should be partially
committed to all of the existing distributions. The level of
its commitment would be described by appropriate weighting
factors. This is how the expectation-maximization (EM) algo-
rithm [12] works. We use the EM algorithm to estimate the pa-
rameters of the initial distribution: πi, µi, and Σi, i = 1, . . . , 3
for every pixel X in the scene. Since the EM algorithm is ap-
plied offline over N frames, that means that for each pixel we
have at our disposal N data points in time. These data points
xj , j = 1, . . . , N are triplets:

xj =

xR
j

xG
j

xB
j


where xR

j , xG
j , and xB

j stand for the measurement we re-
ceived from, respectively, the red, green, and blue channels
of the camera for the specific pixel at time j. These data
x1,x2, . . . ,xN are assumed to be sampled from a mixture
of three trivariate Normals:

xj ∼
3∑

i=1

πiN3


µR

i

µG
i

µB
i

 , σ2
i I


where the variance-covariance matrix is assumed to be di-
agonal with xR

j , xG
j , xB

j , having identical variance within
each Normal component but not across all components (i.e.,
σ2

k �= σ2
l for k �= l components).

Originally we provide the algorithm with some crude es-

timates of the parameters of interest: π
(0)
i , µ(0)

i , and
(
σ

(0)
i

)2
.

We obtain these estimates using the K-means method. Then
we apply the loop described in Appendix 1. The EM process
is applied for every pixel in the camera’s focal plane array
(FPA). The result is a mixture model of three Normal distri-
butions per pixel. These Normal distributions represent three
potentially different states for each pixel. Some of these states
could be background states and some could be transient fore-
ground states. The EM algorithm is computationally intensive,
but since the initialization phase takes place offline, this is a
nonissue. In our experiments, EM has proved a superior ini-
tialization method that caters to fast learning and provides
exceptional stability to the subsequent main stage of object
segmentation. This is especially true when initialization hap-
pens during challenging weather conditions like fast moving
clouds or other cases of multimodal background.

It is worth noting that during both initialization and reg-
ular processing we chose to represent each color component
of a pixel as a mixture of three Normals. We arrived at this
choice after experimenting with a whole set of different mix-
ture schemes. Specifically, we ran versions of DETER fea-
turing mixtures of two, three, four, and five Normals simul-
taneously on the benchmarking video streams (see Sect. 7).
The DETER version featuring three Normals performed better
than any other version. It appears that three Normals per color
channel is a sufficiently rich representation scheme to capture
natural motion and phenomena. Adding Normals beyond that
simply increases the computational load without improving
the quality of foreground-background segmentation.

3.2 Segmentation of moving objects

The initial mixture model is updated dynamically thereafter.
The update mechanism is based on the incoming evidence
(new camera frames). Several things could change during an
update cycle:

1. The form of some of the distributions could change (weight
πi, mean µi, and variance σ2

i ).
2. Some of the foreground states could revert to background

and vice versa.
3. One of the existing distributions could be dropped and

replaced by a new distribution.

At every point in time the distribution with the strongest ev-
idence is considered to represent the pixel’s most probable
background state. Figure 4 presents a visualization of the mix-
ture of Normals model, while Fig. 5 depicts the update mech-
anism for the mixture model.

The update cycle for each pixel proceeds as follows:

1. First, the existing distributions are arranged in descending
order based on their weight values.

0 255

to t1 t2

Fig. 4. Visualization of the mixture of Normals model at the pixel
level. For the sake of simplicity the Normals of only one of the three
color channels are depicted

Initialization

Incoming Evidence

Foreground Separation

0 255

0 255

Fig. 5. Visualization of the mixture model update mechanism. For the
sake of simplicity the Normals of only one of the three color channels
are depicted. The red ellipse marks the pixel area being monitored
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2. Second, the algorithm selects the first B distributions that
account for a predefined fraction of the evidence T :

B = arg min
b

{
b∑

i=1

wi > T

}

where wi, i = 1, . . . , b are the respective distribution
weights. These B distributions are considered background
distributions, while the remaining 3 − B distributions are
considered foreground distributions. We have experimen-
tally established that the optimal value for threshold T is
T = 0.80 (see Sect. 7 for more details).

3. Third, the algorithm checks if the incoming pixel value can
be ascribed to any of the existing Normal distributions. The
matching criterion we use is the Jeffreys (J) divergence
measure and is a key differentiator of our approach from
other similar approaches.

4. Fourth, the algorithm updates the mixture of distributions
and their parameters. The nature of the update depends on
the outcome of the matching operation. If a match is found,
the update is performed using the method of moments.This
is also a key differentiator of our approach. If a match is
not found, the weakest distribution is replaced with a new
distribution. The update performed in this case guarantees
the inclusion of the new distribution in the foreground set,
which is another novelty of our method.

The matching and model update operations are quite in-
volved [13] and are described in detail in the next three sub-
sections.

3.2.1 The matching operation

The Kullback-Leibler (KL) information number between two
distributions f and g is defined as:

K(f, g) = Ef

[
log

(
f

g

)]
=
∫

log

(
f(x)
g(x)

)
f(x) dx

A formal interpretation of the use of the KL information num-
ber given by Fergusson [14] is “. . . whether the likelihood ratio
can discriminate between f and g when f is the true distribu-
tion.”

For the purpose of our algorithm we need to define some
divergence measure between two distributions so that if the
divergence measure between the new distribution and one of
the existing distributions is “too small,” we will pool these two
together (i.e., the new data point will be attached to one of the
existing distributions). For a divergence measure d(f, g) it is
necessary to satisfy (at least) the following three axioms:

(a) d(f, f) = 0
(b) d(f, g) ≥ 0
(c) d(f, g) = d(g, f)

The KL information number between two distributions f
and g does not satisfy (c), since:

K(f, g) = Ef

[
log

(
f

g

)]
�= Eg

[
log

(
g

f

)]
= K(g, f)

i.e., the KL information number is not symmetric around its
arguments and thus cannot be considered as a divergence mea-
sure.

Jeffreys [15] proposed as divergence measure between two
distributions f and g the following:

J(f, g) =
∫

[f(x) − g(x)] log
(

f(x)
g(x)

)
dx

This divergence measure is closely related to the KL informa-
tion number, as the following Lemma indicates.

Lemma 1.
J(f, g) = K(f, g) + K(g, f)

Proof:

J(f, g) =
∫

[f(x) − g(x)] log
(

f(x)
g(x)

)
dx

=
∫

f(x)log
(

f(x)
g(x)

)
dx +∫

g(x)log
(

g(x)
f(x)

)
dx

= K(f, g) + K(g, f)

The J(f, g) is now symmetric around its arguments since

J(f, g) = K(f, g)+K(g, f) = K(g, f)+K(f, g) = J(g, f)

and also satisfies axioms (a) and (b). Thus, J(f, g) is a diver-
gence measure between f and g.

We will use J(f, g) to determine whether or not the
new distribution matches one of the three existing distri-
butions. The three existing Normal distributions are: fi ∼
N3(µi, σ

2
i I), i = 1, . . . , 3. The incoming distribution is

g ∼ N3(µg, σ
2
gI). We assume that

µg = xt and σ2
g = 9

where xt is the incoming data point. The choice of σ2
g = 9 is

the result of experimental observation about the typical spread
of successive pixel values in small time windows. The three
divergence measures between g and fi, i = 1, . . . , 3 will be
given by the following formula (proof in the Appendix):

J(fi, g) =
3
2

(
σi

σg
− σg

σi

)2

+
1
2

(
1
σ2

i

+
1
σ2

g

)
(µg − µi)

′(µg − µi)

Once the three divergence measures have been calculated we
find the distribution fj (1 ≤ j ≤ 3) for which

J(fj , g) = min
1≤i≤3

{J(fi, g)}

and we have a match between fj and g if and only if

J(fj , g) ≤ K∗

where K∗ is a prespecified cutoff value. In the case where
J(fj , g) > K∗, the new distribution g cannot be matched to
any of the existing distributions.
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(a) (b) (c)

(d) (e) (f)

(g)

Fig. 6. Visualization of the computer vision operation of DETER. The snapshot was taken “live” on April 15, 2002. a Live video feed. b
Segmented moving object. c Dynamically updated background. d Trajectories of the current moving objects. e Centroids of the moving
objects. f Results of the blob analysis. g Cumulative trajectory visualization of human and vehicle traffic for the past hour

3.2.2 Model update when a match is found

If the incoming distribution matches one of the existing distri-
butions, we pool them together to a new Normal distribution.
This new Normal distribution is considered to represent the
current state of the pixel. The state is labeled either background
or foreground depending on the position of the matched dis-
tribution in the ordered list of distributions. The next issue
requiring clarification is how we update the parameters of the
mixture. We use the method of moments. First, we introduce
some learning parameter α, which weighs on the weights of
the existing distributions. So we subtract 100α% weight from
each of the three existing weights and assign it to the incoming
distribution’s weight. In other words, the incoming distribu-
tion has weight α since

3∑
i=1

απi = α

3∑
i=1

πi = α

and the three existing distributions have weights πi(1 − α),
i = 1, . . . , 3.

Obviously for α we need to have 0 < α < 1. The choice
of α depends mainly on the choice of K∗. The two quantities
are inversely related. The smaller the value of K∗, the higher
the value of α and vice versa. The values of K∗ and α are also
affected by how much noise we have in the monitoring area.
So if, for example, we were monitoring an outside region and
had a lot of noise due to environmental conditions (rain, snow,
etc.), then we would need a “high” value of K∗ and thus a
“small” value of α since nonmatch to one of the distributions
is very likely to be caused by background noise. On the other
hand, if we were recording indoors where the noise is almost
nonexistent, we would prefer a “small” value of K∗ and thus
a “higher” value of α because any time we do not get a match
to one of the existing three distributions is very likely to occur
due to some foreground movement (since the background has
almost no noise at all).

Let us assume that we have a match between the new
distribution g and one of the existing distributions fj where
1 ≤ j ≤ 3. Then we update the weights of the mixture model
as follows:

πi,t = (1 − α)πi,t−1 i = 1, . . . , 3 and i �= j

πj,t = (1 − α)πj,t−1 + α

We also update the mean vectors and the variances. If we call
w1 as (1−α)πj,t−1, i.e., w1 is the weight of the jth component
(which is the winner in the match) before pooling it with the
new distribution g, and if we call w2 = α, i.e., the weight of
the new observation, then define

ρ =
w2

w1 + w2
=

α

(1 − α)πj,t−1 + α

using the method of moments [16] we get

µj,t = (1 − ρ)µj,t−1 + ρµg

σ2
j,t =(1−ρ)σ2

j,t−1+ρσ2
g+ρ(1−ρ)(xt−µj,t−1)

′(xt−µj,t−1)

while the other two (unmatched) distributions keep the same
mean and variance that they had at time t − 1.

3.2.3 Model update when a match is not found

In the case where a match is not found (i.e.,
min1≤i≤3 K(fi, g) > K∗), we commit the current pixel
state to be foreground and we replace the last distribution in
the ordered list with a new one. The parameters of the new
distribution are computed as follows:

1. The mean vector µ3 is replaced with the incoming pixel
value.
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2. The variance σ2
3 is replaced with the minimum variance

from the list of distributions. This is in the context of our
philosophy that considers incoming data points as means
of narrow distributions. We have experimentally verified
that in short time windows the distribution of color values
regarding a specific pixel in the scene do not vary greatly. If
the initial distributions prove persistent (i.e., background),
they spread out over time as changes in illumination con-
ditions take effect.

3. The weight of the new distribution is computed as follows:

w3,t+1 =
1 − T

2

where T is the background threshold index. This formula
guarantees the classification of the current pixel state as
foreground. The weights of the two remaining distribu-
tions are updated according to the following formula:

wi,t+1 = wi,t +
w3,t − (1 − T )/2

2

3.3 Multiple hypothesis predictive tracking

In the previous section, we described a statistical procedure
for performing online segmentation of foreground pixels cor-
responding to moving objects of interest, i.e., people and ve-
hicles. In this section, we describe how to form trajectories
traced by the various moving objects. Figure 6 shows a snap-
shot of the output from the various computer vision modules of
DETER. The basic requirement for forming object trajectories
is the calculation of blob centroids (corresponding to moving
objects). Blobs are formed after we apply a standard eight-
connected component analysis algorithm to the foreground
pixels. The connected component algorithm filters out blobs
with area less than A = 3 × 9 = 27 pixels as noise. Accord-
ing to our optical computation in Sect. 2, this is the minimal
pixel footprint of the smallest object of interest (human) in the
cameras’ FOV.

A multiple hypothesis tracking (MHT) algorithm is then
used that groups the blob centroids of foreground objects into
distinct trajectories. MHT is considered to be the best approach
to multitarget tracking applications. It is a recursive Bayesian
probabilistic procedure that maximizes the probability of cor-
rectly associating input data with tracks. Its superiority against
other tracking algorithms stems from the fact that it does not
commit early to a trajectory. Early commitment usually leads
to mistakes. MHT groups the input data into trajectories only
after enough information has been collected and processed.
In this context, it forms a number of candidate hypotheses re-
garding the association of input data with existing trajectories.
MHT has shown to be the method of choice for applications
with heavy clutter and dense traffic. In difficult multitarget
tracking problems with crossed trajectories, MHT performs
very well as compared with other tracking procedures such
as the nearest neighbor correlation and the joint probabilistic
data association [17].

Figure 7 depicts the architecture of our MHT algorithm.
In the following subsections we will describe the function of
each module .

Blob Centroid

PREDICTION

HYPOTHESIS
GENERATION

HYPOTHESIS
EVALUATION

VALIDATION

Fig. 7. Architecture of the MHT algorithm

3.3.1 Prediction

An integral part of any tracking system is the prediction mod-
ule. Prediction provides estimates of moving objects’ states
and in the DETER system is implemented as a Kalman filter.
Kalman filter predictions are made based on a priori models
for target dynamics and measurement noise.

The state vector describing the motion of a foreground ob-
ject (blob) consists of the position and velocity of its centroid
expressed in pixel coordinates, i.e.,

xk =
(

xk ẋk yk ẏk

)T

The state space model is a constant velocity model given
by:

xk+1 = Fkxk + uk

with transition matrix Fk :

Fk =


1 dt 0 0
0 1 0 0
0 0 1 dt

0 0 0 1


The process noise is white noise with zero mean and covari-
ance matrix:

Qk = E[ukuT
k ] =


dt3

3
dt2

2 0 0
dt2

2 dt 0 0
0 0 dt3

3
dt2

2

0 0 dt2

2 dt

 q

where q is the process variance. The measurement model de-
scribes how measurements are made and is defined by

zk = Hxk + vk

with

H =

(
1 0 0 0
0 0 1 0

)
and a constant 2 × 2 covariance matrix of measurement noise
given by

Rk = E[vkvT
k ]
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Based on the above assumptions, the Kalman filter pro-
vides minimum mean squared estimates x̂k|k of the state vec-
tor according to the following equations:

Kk = Pk|k−1HT [HPk|k−1HT + Rk]−1

Pk|k = [I − KkH]Pk|k−1

Pk+1|k = FkPk|kFT
k + Qk

x̂k|k = x̂k|k−1 + Kk[zk − Hx̂k|k−1]
x̂k+1|k = Fkx̂k|k

3.3.2 Validation

Validation is a process that precedes the generation of hypothe-
ses regarding associations between input data (blob centroids)
and the current set of trajectories (tracks). Its function is to
exclude, early on, associations that are unlikely to happen,
thereby limiting the number of possible hypotheses to be gen-
erated. The vector difference between measured and predicted
states νk is a random variable characterized by the covariance
matrix Sk:

νk = zk − Hx̂k|k−1

Sk = HPk|k−1HT + Rk

For every track from the list of current tracks there exists an
associated gate. A gate can be visualized as an area surround-
ing a track’s predicted location (next move). In our case, a
gate is an elliptical shape defined by the squared Mahalanobis
distance:

d2 = νT
k S−1

k νk

An incoming measurement (blob centroid) is associated
with a track only when it falls within the gate of the respective
track. Mathematically this is expressed by

d2 ≤ Dthreshold

The result of validating a new set of blob centroids takes the
form of an ambiguity matrix. An example of an ambiguity
matrix corresponding to a hypothetical situation of an exist-
ing set of two tracks (T1 and T2) and a current set of three
measurements (z1(k), z2(k), and z3(k)) is given in Eq. 1.

TF T1 T2 TN

Ω =

 0 1 0 0
0 0 1 0
0 0 0 1

z1(k)
z2(k)
z3(k)

(1)

The columns of the ambiguity matrix denote the current set
of tracks, with the first and last columns being reserved for
false alarms (TF ) and new tracks (TN ), respectively. The rows
correspond to the particular measurements of blob centroids
made on the current frame. Nonzero elements of the ambiguity
matrix signal that the respective measurements are contained
in the validation region of the associated track. It is important
to note that we further constrain the assignments in the am-
biguity matrix by allowing each measurement in the current

scan to be associated with only one track. Furthermore, we as-
sume that a track is paired with at most one measurement per
iteration. We therefore limit the number of nonzero elements
in any row or column (barring the first and last columns) to
one. We thus make the ambiguity matrix a cost matrix as it is
defined in linear assignment problems [18]. This formulation
makes the ambiguity matrix a representation of a new set of
hypotheses about blob centroid-track pairings.

3.3.3 Hypothesis generation

Central to the implementation of the MHT algorithm is the
generation and representation of track hypotheses. Tracks are
generated based on the assumption that a new measurement
may:

1. belong to an existing track,
2. be the start of a new track, or
3. be a false alarm.

Assumptions are validated through the validation process
described in Sect. 3 before they are incorporated into the hy-
pothesis structure. The complete set of track hypotheses can
be represented by a hypothesis matrix as shown in Table 1.
The hypothetical situation in Table 1 corresponds to a set of
two scans of two and one measurements made, respectively,
on frame k = 1 and k + 1 = 2. Some notation clarification
is in order. A measurement zj(k) is the jth observation (blob
centroid) made on frame k. In addition, a false alarm is denoted
by 0, while the formation of a new track (TnewID) generated
from an old track (ToldID) is shown as TnewID(ToldID). The
first column in this table is the hypothesis index. In our exam-
ple case, we have a total of four hypotheses generated during
scan 1, and eight more are generated during scan 2. The last
column lists the tracks that the particular hypothesis contains
(e.g., hypothesis H8 contains track nos. 1 and 4). The row
cells in the hypothesis table denote the tracks to which the
particular measurement zj(k) belongs (e.g., under hypothesis
H10 the measurement z1(2) belongs to track no. 5). A hypoth-
esis matrix is represented computationally by a tree structure
as it is schematically shown in Fig. 8. The branches of the
tree are in essence the hypotheses about measurement-track
associations.

Table 1. Complete set of track hypotheses with the associated sets of
tracks

Hypothesis z1(1) z2(1) z1(2) Track no.

H1 0 0 – 0

H2 1 0 – 1

H3 0 2 – 2

H4 1 2 – 1,2

H5 1 0 3(1) 3

H6 1 2 3(1) 2,3

H7 0 2 4(2) 4

H8 1 2 4(2) 1,4

H9 0 0 5 5

H10 1 0 5 1,5

H11 0 2 5 2,5

H12 1 2 5 1,2,5



38 V. Morellas et al.: DETER: Detection of events for threat evaluation and recognition
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Fig. 8. Formation of a hypothesis tree

3.3.4 Hypothesis evaluation

As is evident from the above example, the hypothesis tree
can grow exponentially with the number of measurements.
We apply two measures to reduce the number of hypotheses.
Our first measure is to cluster the hypotheses into disjoint
sets [19]. In this sense, tracks that do not compete for the
same measurements compose disjoint sets, which in turn are
associated with disjoint hypothesis trees. Our second measure
is to assign probabilities on every branch of hypothesis trees.
The set of branches with the Nhypo highest probabilities are
only considered. The derivation of hypothesis probabilities is
beyond the scope of this paper. However, the interested reader
is referred to [19] and [20]. Suffice it to say simply that a
recursive Bayesian methodology is followed for calculating
hypothesis probabilities from frame to frame.

4 Multicamera fusion

Monitoring of large sites (such as parking lots) can be accom-
plished only through the coordinated use of multiple cameras.
In DETER, we need to have seamless tracking of humans and
vehicles across the whole geographical area covered by all
cameras. We produce a panoramic view of the HL parking lot
by fusing the individual camera FOVs. Then object motion
is registered against a global coordinate system. In turn, this
global coordinate system is mapped to the CAD design of the
parking lot. The CAD mapping enriches the inference capabil-
ities of the system since it provides awareness about parking
stalls and vehicle and pedestrian pathways.

We achieve multicamera registration (fusion) by comput-
ing the homography transformation between pairs of cameras.
Our homography computation procedure takes advantage of
the overlapping that exists between pairs of camera FOVs.
We use the pixel coordinates of more than four points to cal-
culate the homography transformation matrix. These points
are projections of physical ground plane points that fall in the
overlapping area between the two camera FOVs. We select
and physically mark these points on the ground with paint
during the installation phase. We then sample the correspond-
ing projected image points through the DETER graphical user
interface (GUI). This process happens only in the beginning,

and once the camera cross registration is complete it is never
repeated. In DETER, in order to achieve optimal coverage
with the minimum number of sensors, we place the cameras
far apart from each other and at varying angles. Therefore, we
had to develop a sophisticated warping algorithm to accom-
modate the large distortions produced by the highly nonlinear
homography transformations.

4.1 Homography computation

The homography computation is challenging primarily for two
reasons:

• It is an underconstrained problem that is usually based on
a small number of matching points.

• It introduces inaccuracies in specialized transformations
(e.g., pure rotation or translation).

A very popular and relatively simple method for the com-
putation of the homography matrices is the so-called least
squares method [11]. This method may provide a poor solu-
tion to the underconstrained system of equations due to biased
estimation. It also cannot effectively specialize the general ho-
mography computation in exceptional cases.

We have adopted the algorithm by Kanatani [21] to com-
pute the homography matrices. The algorithm is based on a
statistical optimization theory for geometric computer vision
[22] and cures the deficiencies exhibited by the least squares
method. The basic premise is that the epipolar constraint may
be violated by various noise sources due to the statistical na-
ture of the imaging problem (see Fig. 9).

O1

P(X,Y,Z)Π

p

O2

qp q
∆q∆p

Fig. 9. The statistical nature of the imaging problem affects the epipo-
lar constraint. O1 and O2 are the optical centers of the correspond-
ing cameras. P (X, Y, Z) is a point in the scene that falls in the
common area between the two camera FOVs. Ideally, the vectors−−→
O1p̄,

−−→
O2q̄,

−−−→
O1O2 are coplanar. Due to the noisy imaging process,

however, the actual vectors
−−→
O1p,

−−→
O2q,

−−−→
O1O2 may not be coplanar

In particular, for every camera pair we compute a 3 × 3
homography matrix H such that for a number of world points
Pα(Xα,Yα,Zα), α = 1, 2, · · · , N and N ≥ 4, projected
into the image points pα, and qα the following equation holds:

�̄pα × �H�̄qα = 0, α = 1, 2, · · · , N (2)
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Notice that the symbol (×) denotes the exterior product and
also that the above equation does not hold for the actual image
points �pα and �qα but for the corresponding ideal image points
�̄pα and �̄qα for which the epipolar constraint is satisfied (see
Fig. 9). Equivalently, Eq. 2 can be written as:

( �X(k)
α ; �H) = 0, k = 1, 2, 3, (3)

with:

�X(k)
α = �e(k) × �̄pα

�̄q
T
α , α = 1, 2, · · · , N, (4)

where for any two matrices �A and �B ( �A; �B) = tr( �AT �B)
and �e(1) = (1, 0, 0)T , �e(2) = (0, 1, 0)T , �e(3) = (0, 0, 1)T .
In the statistical framework introduced by Kanatani, homog-
raphy estimation is equivalent to minimizing the sum of the
following squared Mahalanobis distances:

J [ �H] =
1
N

N∑
α=1

3∑
k,l=1

(∆ �X(k)
α ,V( �X(k)

α , �X(l)
α )∆ �X(l)

α )

under the constraints described by Eq. 3. Note that the co-
variant tensor of the matrices ∆ �X

(k)
α and ∆ �X

(l)
α is denoted

by
V( �X(k)

α , �X(l)
α ) = E[∆ �X(k)

α ⊗ ∆ �X(l)
α ]

where ∆ �X
(k)
α = �X

(k)
α − �̄X

(k)

α . The symbol ⊗ denotes ten-
sor product. If one uses Lagrange multipliers, estimation of
the homography matrix �H reduces to the optimization of the
following functional J [ �H]:

J [ �H] =
1
N

N∑
α=1

3∑
k,l=1

(W(kl)
α ( �H)( �X(k)

α ; �H)( �X(l)
α ; �H)) (5)

The (3 × 3) weight matrix Wα( �H) is expressed as

�Wα( �H) = (�pα × �H�V [�qα] �HT × �pα +

( �H�qα) × �V [�pα]( �H�qα))−
2 (6)

The symbol (·)−
r symbolizes the generalized inverse of a ma-

trix (N × N) computed by replacing the smallest (N − r)
eigenvalues by zeroes. The computation process for the opti-
mization of the functional in Eq. 5 proceeds as follows:

1. Initialization begins by setting the parameter c = 0 and the
weights �Wα = I for α = 1, · · · , N .

2. We proceed by computing the following matrices:

M =
1
N

N∑
α=1

3∑
k,l=1

�W (kl)
α

�X(k)
α ⊗ �X(l)

α

N =
1
N

N∑
α=1

3∑
k,l=1

�W (kl)
α V( �X(k)

α , �X(l)
α )

3. We next calculate the smallest eigenvalue λmin of M̂ =
M − cN and the associated eigenvector �Hmin.

4. If λmin → 0, then the estimated homography matrix �̂H =
�Hmin is returned and the program exits.
Otherwise, the weights �Wα are updated according to Eq. 6
and the value of cold is updated according to

cold = cold +
λmin

( �Hmin;N �Hmin)

In this latter case, the computation continues by looping
back through step 2.

5 Threat assessment

Automation is clearly necessary to allow limited and fallible
human attention to monitor a large protected space. The pri-
mary objective of DETER is to alert security personnel to
just those activities that require their scrutiny while ignoring
innocuous use. DETER achieves its objective by processing
the computer vision information through its threat assessment
module.All threat assessment analysis is done after converting
the pixel coordinates of the object tracks into a world coordi-
nate system set by the CAD drawing of the facility (see Fig. 1).
Thus, we can use well-known landmarks to provide content for
evaluating intent. Such landmarks include individual parking
spots, lot perimeter, power poles, and tree lines. The coordi-
nate transformation is achieved through the use of the optical
computation package CODE V.

The feature assembly uses the trajectory information pro-
vided by the computer vision module to compute relevant
higher level features on a per vehicle/pedestrian basis. The fea-
tures are designed to capture “common sense” beliefs about
innocuous, law-abiding trajectories, and the known or sup-
posed patterns of intruders. In the current prototype, the fea-
tures calculated include the following:

• object shape number (computed from blob analysis)
• number of sample points
• starting position (x,y)
• ending position (x,y)
• path length
• distance covered (straight line)
• distance ratio (path length / distance covered)
• start time (local wall clock)
• end time (local wall clock)
• duration
• average speed
• maximum speed
• speed ratio (average / maximum)
• total turn angles (radians)
• average turn angles (radians)
• number of M crossings

Most of these are self explanatory, but a few are not so obvious.
The object shape number in combination with speed help in
differentiating between people and vehicles. The wall clock
is relevant since activities on some paths are automatically
suspect at certain times of day – late night and early morning
in particular.

The turn angles and distance ratio features capture aspects
of how circuitous the path followed was. The legitimate users
of the facility tend to follow the most direct paths permitted by
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Fig. 10. The trajectory of a vehicle as it was recorded by DETER on
the parking lot’s CAD. The snapshot was taken in real time. As is
evident, the vehicle was driven very close to the parking stalls and
went over the pedestrian pavement. The CART classifier flagged this
as an alarming event and issued an alert. For alarming events the
color of the offending trajectory turns red on the CAD display

the lanes. “Browsers” may take a more serpentine course. For
example, the M crossings feature attempts to monitor a well-
known tendency of vehicle thieves to systematically check
multiple parking stalls along a lane, looping repeatedly back
to the vehicle doors for a good look or lock check (two loops
yielding a letter M profile). This can be monitored by keeping
reference lines for the parking stalls and counting the num-
ber of traversals into stalls. An M-type pedestrian crossing
captured by DETER is illustrated in Fig. 11.

The output of the feature assembly module for trajectories
recorded from the site over some period of time is fed into
the offline training module. The goal of offline training is to
produce threat models based on a database of features. In the
current system, we have gathered data by running DETER over
a period of several hours. During this period we staged sev-
eral suspicious events (like M-type strolls) to enrich our data
collection. We then manually labeled the individual object tra-
jectories as either innocuous (OK) or suspicious (THREAT).
In the future, a clustering algorithm will assist in the produc-
tion of more parsimonious descriptions of object behavior.
The complete training data consist of the labeled trajectories
and the corresponding feature vectors. They are all processed
together by a classification tree induction algorithm based on
CART [23]. The trained classifier is then used online to clas-
sify incoming live data as either innocuous or suspicious.

Currently DETER can successfully identify the following
alarming events:
Overspeeding vehicles. This is considered an activity that puts
in danger the safety of people and vehicles in the parking lot. It
may also indicate a getaway effort. Any vehicle with average
speed over 20 mph raises an alarm.
Overrun of pedestrian pavement. This is by definition an un-
safe behavior that requires the immediate attention of the guard
(see Fig. 10).
Running pedestrians. This could be either an innocuous (jog-
ger) or suspicious (getaway effort) activity. DETER cannot
clearly differentiate intent in this case and just issues the alarm,
leaving the interpretation to the guard.Any pedestrian with av-
erage speed over 3 mph raises an alarm.

M-Pattern

Fig. 11.An M-pattern traced by DETER. The snapshot was re-created
offline from the alarm database. The purpose of the offline re-creation
was to replace the continuous red line of the alarming trajectory with
the centroids of the vehicle across the timeline. The fine spacing of the
centroids reveals the high quality of tracking that DETER is capable
of achieving even in nontrivial trajectories such as this

Fig. 12. Live capture of a staged synchronous vehicle attack. The
picture also depicts the overall graphical user interface of DETER
that is used to convey the threats perceived by the CART classifier

M pattern. This refers to pedestrians following a serpentine
course. It is more often than not a suspicious pattern associated
with vehicle break-ins (see Fig. 11).
Multivehicle attack. Vehicles entering simultaneously from
different entries in the parking lot and converging on a com-
mon parking lot lane. This is a pattern often used by gangs
to block access to a parking lot lane while a coconspirator is
breaking into the in-between vehicles. Figure 12 shows the
capture of such a staged event by three vehicles. The figure
also shows the panoramic CAD picture where all seven cam-
eras are calibrated against.
Time zones. Movement of pedestrians and vehicles at certain
times and days. Specifically, we have set as the time zone the
interval from 12:30 am – 5:30 am every day.
Hot zones. Movement of pedestrians and vehicles at certain
designated areas within the perimeter of the building. We call
these areas hot zones. In our case, we have designated as hot
zone the vicinity to the building’s air intakes. (Actually, af-
ter 9/11 the facilities management of our building bought
a product-grade version of DETER to monitor movements
around the air intakes.) The product version of DETER runs
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Fig. 13. Snapshot of a staged chemical attack as recorded automati-
cally by the productized version of DETER. The suspect is carrying
a gas tank near the air intakes. DETER does not clearly understand
the person’s intent. It simply detects an individual close to a hot zone
and relays the information automatically to the guard. It is up to the
guard to further interpret the information and act upon it if necessary

independently of the R&D parking lot version for security rea-
sons. Figure 13 displays a snapshot of a staged chemical attack
as it was recorded automatically by the productized DETER.
Combinations. Combinations of the above scenarios. A by-
product of the threat assessment module is a number of ancil-
lary statistical functions. For example, the system is aware of
the capacity and spatial utilization of the parking lot (Fig. 12).
This is a direct result of the mapping of the fused camera coor-
dinate system to the world (CAD) coordinate system and the
ability of the system to track moving objects and differentiate
between vehicles and people. When the motion of a vehicle
ends in one of the empty parking stalls, this stall is considered
occupied. The stall is labeled as empty again when a vehicle
motion is detected out of its area.

6 Experimental results

As of this writing (April 2002) the DETER system has been
operating for almost 2 years. During this time incremental im-
provements have been made at the algorithmic and software
levels. We use the experience of the building’s guards as the
primary feedback mechanism. This feedback is mostly qual-
itative but is very important since this is how products are
evaluated in the security marketplace.

In addition to the qualitative testing performed by the ac-
tual users, we also performed quantitative testing for bench-
marking purposes. We ran our latest benchmark on a data set
of 16-hr video data. The video data were recorded in half-
hour increments over a period of 6 months (December 2001 –
April 2002). The recording was simultaneous from all seven
parking lot cameras. We selected this data set to fulfill certain
requirements.

1. Sizeable duration (several hours)
2. Scenarios with significant traffic and others predominantly

inactive. Typical busy times that were captured were in the
morning when people arrive at work and in mid-afternoon
when they leave for the day. Typical inactive times were
latenight hours and weekends

3. Inclusion of some alarming events. We have staged most of
these events ourselves in the absence of significant crimi-
nal or threatening activity during the performance period.

4. Challenging weather conditions. We have included a day
with strong winds (0.5 hr), where the swaying of tree
branches posed a strong challenge to the system. We have
included two cloudy days (1.0 hr), three snowy days (1.5
hrs), and four rainy days (2.0 hrs)

We have measured two aspects of DETER’s performance:
quality of trajectory tracking and classification of threats. The
first relates to the performance of the computer vision mod-
ule, while the second relates to the performance of the threat
assessment module. Obviously the performance of the threat
classifier partially depends on the performance of the object
tracker. Table 2 shows the results of DETER’s tracking perfor-
mance. The ground truth was done by indexing back the actual
events on the video clip to the output of DETER. Parking lot
activity included walking and running of a single individual,
simultaneous walking of a number of individuals (following
crossing or parallel paths), driving of a single and multiple
vehicles, and finally a combination of vehicles and humans in
motion.

DETER perfectly detected and tracked all vehicle tracks.
It also detected and tracked 768 out of 800 pedestrian tra-
jectories (96% success rate). All of the 32 missed pedestrian
trajectories were associated with groups of people moving
very close to each other (party of two or more). DETER cor-
rectly detected and tracked the motion but as a single object.
This is partially a camera resolution problem and partially a
problem with our blob analysis algorithm. If we had covered
less area with each camera, the resolution would have been
better and the segmentation of closely spaced moving objects
more accurate. Also, our blob analysis algorithm tended to
compound the problem by merging blobs that appeared to be
very close to each other. The loss of detailed tracking infor-
mation in multipeople groups is not important to DETER’s
current threat assessment function. This loss of information
would have been important only if we had been interested in
monitoring human interaction.

DETER also produced a small number of false alarms.
Twenty of these false alarms were produced on the snowy
days included in the benchmarking data set. The culprit was
accumulated iced snow that was hovering from the top covers
of some of the cameras. The remaining twelve false alarms
were produced by the shadows of pedestrians in exceptionally
bright days. In the case of “thick” shadows, it appears that
DETER multiplies one real pedestrian trajectory to many (real
and shadow). This is the opposite of the problem we discussed
earlier in which many pedestrian trajectories are reduced to
one (group of people). Both of these problems do not have any
bearing on DETER’s current threat assessment capabilities.
Nevertheless, we consider the shadow problem a weak point
in our algorithm and are working toward its solution.

Table 2. Breakdown of tracking results for the 16-hr-long data set

Perfect Perfect False Missed Missed

Vehicle Tracks People Tracks Alarms Vehicle Tracks People Tracks

576 768 32 0 32
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Table 3. Breakdown of classification results per threatening activity

Overspeeding Overrun of Running M Multivehicle Time Hot

Vehicles Pedestrian Pavement Pedestrians Pattern Attack Zones Zones

Number of

Events 16 2 10 2 2 45 54

Correct

Classification 100% 100% 100% 100% 100% 100% 100%

Our data set included several staged and nonstaged threat-
ening events. Table 3 shows the classification results for all the
threatening events (staged and not) that were included in the
benchmarking data set. The CART classifier earned a perfect
score thanks in no small part to the excellent quality anno-
tated trajectories provided by the computer vision module. In
the case of overspeeding vehicles, all but one of the events
were staged. In the case of overruning a pedestrian pavement,
all the events were staged. In the case of running pedestrians,
all but two of the events were staged. The M and multivehicle
attack patterns were all staged. In contrast, all the events in
the time zones occurred naturally. The events in the hot zone
(air-intake area) were recorded by the productized version of
DETER and do not belong to the 16-hr benchmarking data
set. Half of these events occurred naturally and the other half
were staged chemical and biological attacks by a single indi-
vidual. The naturally occurred events had to do with facilities
employees passing by for maintenance reasons. The air-intake
data were gathered over a period of 3 months (January–March
2002).

We have also used the benchmarking data set to fine-tune
two critical parameters of our algorithm: a) the background
evidence T and b) the number of Normals in the mixture. The
background evidence T is very important because it controls
the sensitivity of the algorithm in its perception of foreground
motion. Too low a T value and the algorithm becomes highly
sensitive, detecting all motion but also triggering many false
alarms. Too high a T value and the algorithm is desensitized
to foreground motion. As a result, the number of missed de-
tections increases, but at the same time the number of false
alarms decreases. Therefore, the choice of a value for back-
ground evidence T is a trade-off between high false alarm rate
and high missed detection rate.

We have measured the performance of DETER on the
benchmarking data for different values of T starting with
T = 0.60. Figure 14 shows how tracking rate and false alarm
rate change with respect to T . The false alarm rate increases
dramatically below T = 0.80, while at the same time all the
tracks are perfectly captured. Above T = 0.80 the false alarm
rate remains steady and close to zero. At the same time the
tracking rate is reduced, particularly for vehicles. As the sys-
tem becomes slow in its understanding of foreground motion it
finds it difficult to perfectly track unparked vehicles that move
backwards for a very short time, stop, and then move forward.

To fine-tune the number of Normals n we use in the
mixture, we measured the performance of DETER for n =
[2, ..., 5]. Figure 15 shows the results. Fewer Normals in the
mixture provide less representation power but make for a more
efficient system. It is evident from the figure that for n = 2 we
had the highest false alarm rate and the lowest tracking perfor-

0%

50%

100%

150%

200%

250%

0%

50%

100%

150%

200%

250%

False Alarm Rate

0.950.900.800.60
Background Evidenc e T

Background Evidenc e T

(a)

(b)

70%

75%

80%

85%

90%

95%

100%

70%

75%

80%

85%

90%

95%

100%
Captured P eople Track Rate
Captured Vehicle Track Rate

0.950.900.800.60

Fig. 14. a Effect of background evidence T on the tracking quality
for vehicles and people. b Effect of background evidence T on the
false alarm rate

mance. There is a significant increase for n = 3, a value that
appears to make the system perform almost flawlessly on the
experimental data. For higher values of n we notice a slight
decrease in the performance of vehicle tracking. By adding
more Normals to the mixture we make the system slower and
therefore prone to lose track of the fastest moving vehicles in
the scene. It appears that n = 3 Normals is the golden trade-
off for the composition of the mixture. It provides one Normal
for capturing foreground objects, one Normal for capturing the
dominant background mode, and one more Normal for cap-
turing an alternate background mode. From our experience
during the last 2 years and from the measurable experimental
results, a mixture of three Normals is more than sufficient to
represent the vast majority of naturally occurring foreground-
background events.

7 Conclusions and future work

We have presented DETER, an experimental urban surveil-
lance system for monitoring large open spaces. DETER reli-
ably tracks humans and vehicles both day and night. We have
adopted a tracking approach that is based on a multi-Normal
mixture representation of the pixel processes and the Jeffreys
divergence measure for matching to foreground or background
states. This sophisticated matching criterion results in stellar
dynamic segmentation performance. Tracks are formed using
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a multiple hypothesis tracking (MHT) algorithm, and external
multicamera calibration is achieved through the computation
of homographies. A threat assessment module based on a tree
induction algorithm reports suspicious patterns detected in the
annotated trajectory data.

Our ongoing work focuses on the issue of shadow de-
tection. Additionally, we are working toward improving the
threat assessment module with the inclusion of a clustering
algorithm. The clustering algorithm will help in the partial au-
tomation of the offline training, which is currently performed
manually.

The performance of the prototype DETER system has been
very successful. Over an evaluation period of almost 2 years
(2000–2002) a dozen actual security officers that used the sys-
tem gave it high marks and deemed it reliable. This led to
the productization of DETER by Honeywell Australia. The
first large-scale employment of the DETER product has been
across the length of a new oil pipeline in Russia. Hundreds of
cameras distributed across hundreds of miles send real-time
video information on PC servers that run the DETER soft-
ware. The primary function is to provide automatic alerts to
the central command center about any movement by humans
or vehicles anywhere across the oil pipeline.
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for i = 1, . . . , 3 and j = 1, . . . , N . Then, set k=k+1 and repeat the loop.

Fig. 16. Optimization loop for the EM algorithm

Appendix I

The EM loop for initializing the mixture of Normals in the
scene pixels is shown in Fig. 16. The condition for terminating
the loop is |π(k+1)

i − π
(k)
i | < ε, i = 1, . . . , 3 where ε

is a “small” positive number (10−2). z
(k)
ij are the posterior

probabilities that xj belongs to the ith distribution and form a
3 × N matrix at the kth step of the computation.

Appendix II

Lemma 2. : If f0 ∼ N3(µ0, σ
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