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Figure 1: Visualization of acceleration and the associated arousal of accelarousal-prone driver S07, shortly after her entry onto 
a highway. LEFT: The hyphenated blue circle on the map indicates the position associated with the fgure’s snapshots. MIDDLE: 
Visual images captured from a dash camera and a facial camera show the surrounding environment and the driver’s facial 
expressions, respectively. RIGHT: Thermal facial image, where the red rectangle outlines the tracked region of interest (ROI). 
The preponderance of black dots on the zoomed in thermal ROI (see inset) suggests strong transient activation of perspiration 
pores, a phenomenon associated with the onset of hyperarousal. 

ABSTRACT 
We conducted a daytime naturalistic driving study that involved 
the same 19 km town itinerary under similar light trafc and fair-
weather conditions. We applied a real-time unobtrusive design that 
could serve as template in future driving studies. In this design, 
driving parameters and drivers’ arousal levels were captured via a 
vehicle data acquisition and thermal imaging system, respectively. 
Analyzing the data, we found that about half of the n = 11 healthy 
participants exhibited signifcantly larger arousal reactions to accel-
eration with respect to the rest of the sample. Acceleration events 
were of the mundane type, such as entering a highway from an 
entrance ramp or starting from a red light. The results suggest an 
underlying grouping of normal drivers with respect to the loading 
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induced by commonplace acceleration. The fnding carries implica-
tions for certain professions and the design of semi-autonomous 
vehicles. 
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1 INTRODUCTION 
An important variable that features in most investigations on driver 
style and safety is acceleration. Acceleration is constitutional to 
driving [2]. First, it is the way drivers bring an idle vehicle to a 
target speed in order to reach their destination [15]. Second and 
most important, drivers frequently adjust acceleration throughout a 
drive to cope with dynamic trafc conditions. Diferent drivers have 
diferent acceleration preferences. For example, some drivers prefer 
rapid acceleration changes, a style that in current Driver Assistance 
Systems (DAS) is captured in the Sport drive mode; others prefer 
exactly the opposite, which is captured in the Economy drive mode. 

In addition to style preferences associated with comfort and driv-
ing satisfaction, volitional acceleration profles are also predictive of 
crash propensity [18]. Interestingly, while speed limits are enforced 
by state laws, acceleration limits are not. In lieu of regulation, ag-
gressive acceleration patterns are targeted by telematics-based safe 
driver insurance programs [13]. In this direction, recent research 
eforts focused either on defning operational envelopes of safe ac-
celeration and speed [10] or on developing methods for recognizing 
risky driving behaviors [27]. 

Either as a safety or as a style factor, acceleration has been linked 
to physiological responses both in simulated [18] and test-track ex-
periments [9]. Hence, in addition to subjective ratings, acceleration 
efects on drivers could be objectively monitored via cholinergic 
(e.g., electrodermal activity) or adrenergic (e.g., heart rate) measure-
ments. Dillen et al. [9] found that acceleration positively correlates 
with electrodermal activity (EDA) in passengers’ palms. They also 
showed that palm EDA was predictive of passenger discomfort. 
Alpers et al. [3] demonstrated that palm EDA, respiratory, and 
electrocardiographic measurements difered signifcantly between 
normal drivers and drivers diagnosed with phobias. Our research 
builds upon this prior body of work, aiming to address the following 
research question: 
RQ: How arousal responses of normal drivers relate to acceleration 
and other driving variables in the context of a standard commute? Is 
there any underlying grouping in these responses? 

As acceleration is nearly ever-present and because arousal in-
dicates coping capacity [19], answering the said RQ will not only 
elucidate driving behaviors in current vehicles, but will also inform 
human-centered design in future vehicles with higher levels of 
automation. Indeed, in SAE Level 3 and Level 4 vehicles, where 
driving will interleave between humans and machines [14], one of 
the thorniest issues is safe handover of vehicle control from the 
machine back to the human driver [7]. Knowing when is the best 
time to do this handover is a challenging multi-factorial problem, 
to which our research aspires to make a contribution. For example, 
if the machine knows that the human driver tends to be overloaded 
under certain conditions, this information may beneft the handover 
decision-making process. 

It is generally accepted in the literature that naturalistic driving 
studies provide the best ecological validity [6]. At the same time, 
however, naturalistic drives pose analytic challenges due to the 
presence of confounding factors [9]. In this respect, we struck a 
careful balance by performing a naturalistic driving study but con-
trolling for itinerary, trafc levels, weather, and driver profles. In 
more detail, we collected physiological, driving, and psychometric 

data from n = 11 young but experienced drivers who drove a 19 
km itinerary in Bryan - College Station, TX not unlike their daily 
commute. The drives took place in the morning under light trafc 
and fair-weather conditions. We quantifed arousal by measuring 
EDA on the driver’s face via thermal imaging - a method with high 
accuracy and ecological validity [22]. The said method circumvents 
the problems associated with palm EDA sensing at the driver’s 
hands, as these are busy handling the steering wheel [9, 25]. 

Extending Dillen et al.’s [9] results for passengers in test-track 
drives, we show that a positive correlation between acceleration and 
EDA levels also exists for drivers in naturalistic drives. Furthermore, 
we show that there is an underlying grouping of normal drivers 
determined by their arousal responses to commonplace acceleration. 
This result is intriguing and, due to the ecological validity of our 
study, it is also promising. It suggests that there is likely a category 
of normal drivers who are hyperaroused during routine acceleration 
events - a phenomenon we call accelarousal (Fig. 1), and which 
carries behavioral and design implications. 

We contribute: 1) Initial evidence that hyperarousal responses 
to acceleration is an innate condition to some drivers, irrespective 
of other contextual factors. 2) An ecologically valid method to 
measure and detect hyperarousal in driving studies. 3) Public release 
of the data [12] and code associated with this paper to ensure 
reproducibility and encourage further research. The fndings of our 
study stand to beneft the design of physiological feedback loops 
for SAE Level 3 and Level 4 vehicles. We envision such feedback 
loops informing machine handover systems to avoid relinquishing 
control during accelarousal conditions - a safety consideration. 

2 DESIGN OF NATURALISTIC DRIVING 
STUDY - NAT1 

Arousal is indicative of the driver’s load [23]. Undue load is linked 
to stressors, leading to deterioration of driving performance and 
experience [20]. Stressors that have been studied extensively in 
the literature are distractions, particularly in the form of texting 
while driving [19]. The main goal of NAT 1 was to explore the 
arousing efect of variables that are constitutional to driving, such 
as acceleration and speed, under the most benign circumstances. 
Accordingly, the study design called for an easy, non-distracted 
town drive in daylight and good weather. 

The experimental protocol was approved by the institutional 
review boards of the universities participating in this study. After 
giving informed consent, the participants completed a biographic 
questionnaire, providing demographic information. Subsequently, 
the participants went through two sessions. 

Baseline session (BL). The purpose of the BL session was to 
establish the baseline arousal level of participants. Baseline 
arousal levels exhibit signifcant inter-individual variability 
in human beings [5], which means that the ‘efective zero 
lines’ vary. Accordingly, in stress studies what matters is not 
the absolute arousal value, but how much the task raised the 
subjects’ arousal level from their respective baseline. Hence, 
by subtracting the corresponding mean baseline levels from 
subsequent phasic arousal measurements, we ameliorate 
measurement bias between participants [1]. To bring par-
ticipants close to their baseline levels, we asked them to sit 
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quietly in the parked experimental vehicle, listening to spa 
music for 5 minutes. A thermal imaging sensor was acquir-
ing participants’ physiological signals in real-time during 
this period. 

Naturalistic drive (NATD). Upon completion of the BL ses-
sion, participants drove a designated itinerary in the Bryan -
College Station, TX area (population about 210,000), using a 
2015 Toyota Sienna. Figure 2a shows this itinerary, which in-
cluded a segment of a highway as well as residential streets. 
The length of the itinerary was 19 km and took participants 
25-35 min to complete it with speeds that ranged from 0 to 
120 kph. Trafc was light in all instances. 

After the BL and NATD sessions, the participants completed the 
NASA TLX questionnaire [11] - a subjective workload assessment 
tool that complements the objective assessment of task-induced 
sympathetic arousal; it features the following sub-scales: Mental 
Demand, Physical Demand, Temporal Demand, Own Performance, 
Efort, and Frustration. 

2.1 Participants 
We recruited participants from the communities of Bryan and Col-
lege Station, TX through emails and fyer postings. Participants had 
to have normal or corrected to normal vision and a valid driving 
license. We excluded subjects on medications afecting their ability 
to drive safely. We selected individuals with at least two years of 
driving experience, who commuted daily, and were between 18 
and 27 years of age. Hence, we focused on young but experienced 
drivers to safeguard the power of the pilot study. This is because sys-
tematic diferences between young and old drivers were reported 
in other afective driving studies [19], rendering large age variance 
a potential confounder that would need a bigger study to resolve. 
A total of n = 12 subjects conforming to the inclusion-exclusion 
criteria volunteered for the study. Raw data for one participant 
were not adequately recorded due to technical issues. Raw data for 
n = 11 participants (5 males/6 females, 21.6 ± 1.7 years of age) were 
largely complete, comprising our working set. 

2.2 Experimental Setup Figure 2: Design of NAT 1 Study. [a] NATD itinerary. The 
Facial thermophysiology, facial observations, and frst person ob- white arrows indicate the direction of driving. The superim-
servations were recorded via a thermal and two visual cameras, posed speed heatmap was generated from participant’s S01 
respectively. These video recordings took place during both the driving data. [b] Setup of the thermal, facial, and dash cam-
BL and NATD sessions. All three cameras were located ∼ 1m from eras in the vehicle employed in the study (a specially instru-
the driver, tucked atop the dashboard (Fig. 2b). A data acquisition mented 2015 Toyota Sienna). In the back seat shows the com-
system was capturing several driving variables during the NATD puter screen of the experimenter. 
session. All the sensors were time-synced. 

In more detail, we used a Tau 640 long-wave infrared (LWIR) 
camera (FLIR Systems Inc, Wilsonville, OR) with < 50 mK thermal 

acceleration, brake force, and steering angle. The DAQ also collected resolution and 640×512 pixels spatial resolution. Thermal data were 
GPS data. collected at a frame rate of 7.5 fps and were used for computing 

the driver’s arousal. Visual facial imagery, collected via a webcam, 
3 DATA PREPARATION was meant to be used for qualitative assessment purposes. Another 

webcam was placed on the dashboard, aiming out towards the While driving variables were readily available from the DAQ system, 
front of the vehicle. It was meant to record the itinerary from the the arousal variable was not immediately available, because it was 
driver’s point of view. We also used a Dewetron Data Acquisition embedded in the captured thermophysiological data. Hence, we 
(DAQ) system (Dewerton Inc, East Greenwich, RI) to record driving needed to extract the arousal signals from the facial thermal imaging 
variables from diferent channels. These variables included speed, streams. We also needed to extract feature variables. 
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Figure 3: Extracted raw and noise-reduced perinasal perspiration signals (PP) of participant S12 in the NATD session. TOP: 
Thermal facial snapshots demonstrating natural head motions and other challenging actions during driving (e.g., putting on 
sunglasses). MIDDLE: Details of thermal ROIs outlined by the red rectangles in the thermal facial snapshots. BOTTOM: The 
raw PP signal in grey and the noise-reduced PP signal in red. The algorithm extracts perinasal perspiration values in the vast 
majority of cases. In a few instances where reliable extraction is not possible (e.g., extreme head turn moment at t = 845 s), the 
algorithm does not report a value (NA), thus safeguarding the reliability of the physiological measurement. 

3.1 Extraction of Arousal Signal 
We used the thermal facial videos to extract perinasal perspiration 
(PP) signals, known to commensurate with electrodermal (EDA) 
activity in the palm [22]; thus, PP is a reliable proxy of arousal. As 
the drivers’ heads were moving freely, to ameliorate the efect of 
motion in the PP signal extraction, we used a proven tissue tracker 
reported by Zhou et al. [28]. We initiated the tracking algorithm 
by selecting the participant’s perinasal region in the frst frame. In 
every subsequent frame, the tracker determined the best matching 
section of the thermal clip via spatiotemporal smoothing. In this 
temporally tracked region, activated perspiration pores appear as 
‘cold’ (dark) spots, amidst ‘hot’ surrounding tissue - a phenomenon 
quantifed by a morphology-based algorithm [22], which yields the 
arousal signal (Fig. 3). 

Although PP signal extraction is robust, PP values still contain 
high-frequency noise stemming from tracking imperfections [28]. 
We used a low-pass Fast Fourier Transform (FFT) flter with thresh-
old f = 1/2.5 to suppress such noise [24]. Figure 3 shows superim-
posed the PP signals of participant S12 before and after applying 
FFT fltering. 

In order to ameliorate bias due to signifcant inter-individual 
variability of baseline arousal levels among participants, we ad-
justed their PPNATD signals by subtracting their corresponding 
mean PPBL signals. Efectively, this normalization allows analysis 
to be performed on the participants’ diferential arousal induced 
by the driving task, rather than the absolute arousal, which may 
be deceptively high or low, depending on the baseline level from 
which participants started. Please also note that because PP signals 
are of exponential nature [22], we apply a logarithmic correction 
to comply with normality assumptions in subsequent analytic cal-
culations. Equation (1) shows the formula we used to compute the 
corrected normalized arousal of participant Si at time t of NATD. 

∆PPNATDi (t) = ln(PPNATDi (t)) − ln(PPBLi ). (1) 

3.2 Feature Extraction 
A key issue in the operationalization of analytic investigations in 
driving studies is the choice of the past and future time windows. 
Here we follow the lead of prior research in aggressive vs. non-
aggressive driving, where acceleration and other driving variables 
play a key role; this research has documented that a past window 
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of 30 seconds is sufcient for robust predictions 5 to 10 seconds out 
[18]. We settled on a 5 second future window, taking into account 
the time constant of cholinergic responses, which ranges between 
2 and 5 s [26]. 

Accordingly, we performed feature extraction using a sliding 
past → f uture time window of 30 s → 5 s. This windowing 
applied to all the models described in the present paper. Assuming 
the currently examined time is t , we compute driving features 
in [t − 30, t] and arousal features in (t , t + 5]. The features are 
of statistical or correlative nature. Statistical features include the 
mean and standard deviation of speed, acceleration, brake force, 
and steering for the last 30 seconds. Statistical features also include 
the mean (corrected and normalized) driver arousal in the next 5 
seconds. The said features provide information about the variables’ 
distributions in the time window of interest. Correlative features 
include the Pearson correlation among driving statistical features in 
the window [t − 30, t] and arousal features in the window (t , t + 5]. 
Hence, correlative features capture the relationship between driving 
variables in the recent past and driver state in the immediate future. 
We computed the correlation strength between all feature pairs 
and found that the brake force features are highly collinear with 
the features of other driving variables (correlation coefcient up 
to r = ±0.8). For this reason, we will exclude break force features 
from subsequent analytical models. 

4 ANALYTIC METHODS AND RESULTS 
The R scripts that implement the analytic methods described in 
this section reside in GitHub (Huynh, T. & Pavlidis, I. Accelarousal-
Study-Methods. GitHub https://github.com/UH-CPL/Accelarousal-
Study-NAT1-Methods). These scripts operate on the study’s cu-
rated data, which are freely available on the Open Science Frame-
work (OSF) [12]. In more detail, the OSF repository holds bio-
graphic/psychometric data, quantitative data, and ancillary media. 
The quantitative data include physiological and driving signals, 
while the ancillary media feature video recordings from the facial 
and dash cameras. 

4.1 Linear Regression Model 
First, in Eq. (2) we constructed a mixed efects model to check if 
statistical features of driving variables over 30 second increments 
in the past, can account for the drivers’ arousal responses 5 seconds 
into the future. The dependent variable ∆PPNATDi (t , t +5] indicates 
the mean corrected and normalized arousal response for participant 
i , 5 seconds out. As the time t shifts for participant i , mean (x ·) 
and standard deviation (s ·) predictors are computed over the past 
t −30 seconds for speed, acceleration, and steering. The fxed efects 
term ∆PPNATDi denotes the overall mean corrected and normalized 
arousal of participant i , while 1|S indicates the incorporation of 
random efects and ϵ is white noise. 

∆PPNATDi (t , t + 5] = βx speed 
xspeedi, [t −30, t ] + βsspeed sspeedi, [t −30, t ] 

+ βx accelxacceli, [t −30, t ] + βsaccelsacceli, [t −30, t ] 
+ βx steer xsteeri, [t −30,t ] + βssteer ssteeri, [t −30, t ] 
+ ∆PPNATDi + βo + ϵ + 1|S . 

(2) 

Coef. Estim. Std. Err. df t-val Pr(> |t|) 
0.000 51 0.000 13 2326 3.894 < 0.001∗∗∗ βx speed 

−0.001 26 0.000 41 2325 −3.045 0.002∗∗ βsspeed 

0.002 28 0.000 65 2326 3.466 < 0.001∗∗∗ βx accel 
0.006 51 0.001 05 2326 6.223 < 0.001∗∗∗ βsaccel 
−0.000 69 0.000 32 2327 −2.155 0.031∗ βx steer 
−0.000 77 0.000 19 2326 4.056 < 0.001∗∗∗ βssteer 

Table 1: Results of linear model (2) instantiated with 30 s → 
5 s window split, between predictors → response, respec-
tively. *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001 

Table 1 shows the results of linear model (2). All driving variables 
account to various degrees for the upcoming arousal state of the 
driver. Acceleration, however, appears to account the most with 
both its moments exhibiting high signifcance (p < 0.001). Further-
more, the positive coefcients βx accel and βsaccel suggest that the 
higher the mean acceleration or the acceleration variance of the 
vehicle, the higher the arousal of the driver. After acceleration, the 
second most predictive variable appears to be speed, followed by 
steering. 

4.2 Hierarchical Clustering - Types of Drivers 
We used a clustering algorithm to identify any underlying grouping, 
which could provide deeper insights into the results of linear model 
(2). For a dataset with a small number of participants, such as the 
NATD dataset, hierarchical clustering is a good methodological 
choice [4]. To maximize the discrimination between clusters, we 
selected the complete linkage function [8] as the linkage criterion. 
All correlative features have a range between -1 and 1, and thus, 
standardization was not necessary [16]. We used Silhouettes [21] 
to determine the optimal number of clusters, which came to be 
c = 2. Table 2 shows the resulting two groups of drivers based 
on clustering the correlative features of driving variables the last 
30 seconds with the drivers’ arousal the next 5 seconds. Drivers 
in the group highlighted in red exhibit consistently signifcant 
positive association of acceleration with arousal, as well as speed 
with arousal. Drivers in the group highlighted in blue are bereft 
of such a pattern. Furthermore, the NASA-TLX scores of the red 
group 32.75 ± 14.43 trend higher than the scores of the blue group 
19.67 ± 9.07 (t-test, p = 0.08) - a psychometric confrmation that 
the red group’s acceleration- and speed-driven hyperarousal is 
accompanied with a sense of overloading. 

We named drivers in the red group accelarousal-prone. One 
could also name them tachoarousal-prone, as speed intensity also 
correlates with their arousal status. However, acceleration appears 
to be the strongest and most consistent factor across all the models 
we employed, that is, linear (section 4.1) and clustering (section 
4.2). Hence, acceleration is likely the primary contributor to this 
phenomenon with speed coming second and as a result of it. Fig-
ure 4 depicts the intensity evolution of driving and arousal vari-
ables along the itinerary for non-accelarousal-prone driver S01 vs. 
accelarousal-prone driver S07. The speed column of panels shows 
that both drivers were speeding in the state highway portion of the 
itinerary. As the acceleration column indicates, this speeding was 
achieved through bouts of acceleration. The arousal column, shows 

https://github.com/UH-CPL/Accelarousal-Study-NAT1-Methods
https://github.com/UH-CPL/Accelarousal-Study-NAT1-Methods
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pi xspeed sspeed xaccel saccel xsteer ssteer 

S01 0.174 0.013 0.041 0.061 −0.114 −0.167 

S02 0.045 0.030 0.182 0.432∗∗∗ 0.109 0.259∗ 

S03 0.392∗∗ −0.122 0.313∗ 0.237 0.049 0.187 

S04 0.069 −0.034 −0.002 0.297 −0.019 0.278 

S05 0.483∗∗ 0.201 0.523∗∗ 0.262 −0.211 0.207 

S06 0.066 0.071 0.312∗∗ 0.262∗ −0.042 0.107 

S07 0.062 0.446∗∗ 0.073 0.229 

S08 −0.036 −0.163 0.142 0.100 −0.022 0.073 

S10 −0.338∗∗∗ 0.044 −0.092 0.026 0.182 0.092 

S11 0.365∗∗∗ 0.152 0.420∗∗∗ 0.471∗∗∗ −0.080 0.154 

S12 0.443∗∗∗ −0.004 0.439∗∗∗ 0.314∗∗ −0.217 0.225 

0.388∗∗∗ 0.420∗∗∗ 

Table 2: Clustering results of the correlative features between driving variables and drivers’ arousal with a 30 s → 5 s time 
windowing, respectively. Red text shows cases where acceleration and speed intensity consistently correlate with arousal 
(accelarousal-prone), while blue text shows cases where such a pattern is absent (non-accelarousal-prone). Star notation indi-
cates signifcance level. 

Figure 4: Visualization of driving and arousal variables through the NATD itinerary for non-accelarousal-prone driver S01 and 
accelarousal-prone driver S07. The dotted blue ellipses with the arrows point to the highway portion of the itinerary where 
speeding through bouts of acceleration produce very diferent arousal responses in the two drivers. 

the diferent efects these otherwise similar driving behaviors had 5 DISCUSSION 
on the drivers’ arousal states: The non-accelarousal-prone driver This pilot research demonstrated that normal, young, and experi-
S01 maintains low levels of arousal (dark color in the heatmap), enced drivers are aroused with respect to variables endogenous 
while the accelarousal-prone driver S07 undergoes a hyperarousal to driving, notably acceleration, but also speed. This association 
episode throughout this process (light color in the heatmap). appears to be free of confounders, as it is the result of naturalistic 
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drives on the same itinerary, under the same anodyne conditions, 
that is, light trafc and good weather in daytime. 

As every statistical association, the association found between 
arousal and acceleration is in the mean sense. A key contribution 
of this study is the clustering result that reveals an underlying 
high and low arousal grouping of normal drivers with respect to 
acceleration. The fnding bears implications for certain categories 
of the driving population. We measured that in typical acceleration 
events in NATD, accelarousal-prone drivers experience on average 
46.2% stronger arousals than non-acceleration-prone drivers. For 
the former, if these events happen frequently and on a sustained 
basis, they are likely to have long-term health efects, not unlike 
any other long-term stressor [17]. For instance, drivers who are in 
the business of package delivery, with frequent stop and go, is a 
group of primary concern. 

The study’s fnding also stands to inform the design of vehicles 
with advanced degree of autonomy (SAE Levels 3-4). In such ve-
hicles, handover of vehicle control as well as automated driving 
mode need to take into account the accelarousal-prone condition 
of the driver for safety and comfort reasons. 

EDA is reportedly the best indicator of arousal in afective driving 
studies [9], but measuring EDA at the driver’s palms has obvious 
usability problems [25]. As an alternative, researchers demonstrated 
the value of contact-free EDA in simulated driving studies [19]. The 
current work is the frst to demonstrate the value of contact-free 
EDA in naturalistic driving studies. The method hinges on the use 
of perinasal perspiration. Perinasal perspiration is a cholinergic 
channel that is as sensitive to arousal levels as the palm perspiration 
channel [22], but having the advantage of manifesting on the face 
and measured remotely, via thermal imaging. 

To reduce confounding efects and maintain reasonable power 
in this pilot study, we constrained the type of drivers and the driv-
ing conditions. Using our methodological blueprint, future studies 
should include older drivers and test more advanced naturalistic 
driving scenarios with variable diurnal, environmental, and trafc 
conditions. 
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