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Abstract
Walking is a fundamental human activity and its
diminution a potential morbidity factor. Recent
developments in mobile computing have enabled
ubiquitous monitoring of walking activity via the
smartphone accelerometers. Typically, walking apps map
accelerometer values to caloric values through calibration
algorithms. However, these calibration algorithms assume
a flat surface, which is not always true and can introduce
significant errors. In this paper, we outline a novel
calibration method that estimates surface inclination for
uphill walking, thus, improving the caloric estimation in
walking apps.

Author Keywords
Inclination measurement; energy expenditure; walking
activity; walking activity monitoring; smartphone
accelerometer; iPhone

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g.,
HCI)]: Miscellaneous.

Introduction
Sedentary lifestyle is linked to the onset of chronic diseases
such as diabetes and cardiovascular ailments [10]. One of
the factors contributing to sedentary lifestyle is diminution
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of walking. Walking is becoming less pervasive in our
daily routine. Many walking monitoring apps are available
to make the users aware about their walking behavior.
Typically, these apps estimate energy expenditure by
mapping the smartphone accelerometers’ readings to
caloric values [4][5][6][8]. The mapping assumes that the
walking surface is leveled. This assumption is valid for
walking scenarios in cities established in plain fields.
However, for cities situated on hilly (e.g., San Francisco,
CA) or mountainous grounds the mapping algorithm
significantly underestimates the energy expenditure.

Table 1 demonstrates this limitation. It summarizes
energy expenditure results of a pilot experiment that we
conducted to study the mapping error in a walking
monitoring app (iBurnCalorie). A participant was asked to
walk on a treadmill at two different speeds (2 mph and 3
mph) and at four different surface inclines (0%, 10%,
20%, and 30%) for each speed. Each walking session was
3 min. Energy expenditure was measured through a
respiration gas analyzer [1], a high-grade treadmill [3],
and the iBurnCalorie app [4]. The respiration gas analyzer
measures energy expenditure in Respiratory Exchange
Ratio (RER) and is the gold standard for metabolic
measurements. The results show strong agreement
(correlation coefficient, R = 0.95) between the treadmill
estimations and the RER values. This validates the
treadmill’s energy estimation.

The app’s energy estimations for the 2 mph walking and 3
mph walking on the leveled surface (0% incline) are on
par with the treadmill’s estimations. However, estimation
differences increase with the rise in surface incline. The
culprit is the app’s insensitivity to inclination changes.

Speed
[mph]

Incline
[%]

RGA
[RER]

Treadmill
[calories]

iBurnCalorie
[calories]

2

0 12.427 11 9
10 14.434 24 10
20 14.528 39 9
30 18.582 51 9

3

0 12.425 14 12
10 12.988 30 12
20 18.623 51 13
30 21.663 67 13

Table 1: Energy expenditure of treadmill walking measured
through a respiration gas analyzer (RGA), a treadmill, and a
walking monitoring app (iBurnCalorie).

Kane et. al. investigated this issue for the Nike+ device
[8]. They measured energy expenditure at 3 mph treadmill
walking having surface incline of 0%, 5% and 10%. They
reported that the Nike+ device was unable to detect
increased energy expenditure for increased inclination.

An alternate approach is to extract elevation information
from the web in real-time (e.g., Google Elevation). The
major limitation of this approach is the gross spatial
resolution. Google elevation offers an accuracy range of
±30 m. Also, it allows only 2500 free URL calls per 24
hour period. Additionally, the URL calls consume the
user’s data plan. Therefore, the web-based approach does
not appear to be a practical solution.

In this study, we propose a linear model to estimate
surface incline from accelerometer readings. The
computed surface incline is factored into the energy
expenditure estimation as described in [9]. We simulated
various uphill walking scenarios in a lab experiment to
construct the model.
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Experimental Design

Figure 1: The experimental
setup. The inset image shows the
iPhone attachment.

A total of n = 9 participants (4 normal weight, 4
overweight, and 1 obese) volunteered for the experiment.
Their ages ranged between 23 and 34 years
(µ± σ = 26.77± 3.59) and their Body Mass Index (BMI)
ranged between 22 and 32 kg.m−2 (µ±σ = 25.95±3.30).
The experiment has been approved by the University of
Houston Institutional Review Board.

Figure 1 shows the experimental setup. A treadmill’s
surface incline is measured as the percentage rise in height
for every 100 m distance. Standard treadmills incline only
by 15%. We used a high-end treadmill (Incline Trainer
from FreeMotion) that inclines up to 30%. Each
participant’s body movement was recorded via the
accelerometer embedded in the iPhone 5. The iPhone was
attached to the participant’s thigh location in a portrait
orientation to minimize oscillation. The attachment was
randomized between right thigh and left thigh to ensure
unbiased data recording.

The experiment featured a warm-up session of 3 min
followed by eight exercise sessions of 1.5 min each. Each
walking session was followed by a 4 min relaxation period
where participants rested in a comfortable chair. In the
warm-up session, the participants walked on the treadmill
at 3 mph with 0% surface incline. The exercise sessions
included two different speeds (2 mph and 3 mph). For
each speed, the participants walked at four different
surface inclines: 0%, 10%, 20%, and 30% corresponding
to 0o, 5.74o, 11.53o, and 17.45o elevation angles,
respectively. We randomized the order of the exercise
sessions for each participant to minimize confounding
factors.

We recorded the accelerometer data during all the
exercise sessions. Thus, we collected a total of 72 (9
participants x 8 recordings/participant) accelerometer
signals in this study.

Data Analysis
From each accelerometer signal, we discarded the first and
last 10 sec of the data. We took this precautionary step
to exclude data collected during the transient period when
the treadmill was gradually reaching its predefined speed
and the participants were adjusting to their walking
rhythm. The portrait orientation of the iPhone’s
attachment in the thigh position situated the
accelerometer’s Y-axis in the direction of the legs’ motion
and the other two axes (X-axis and Z-axis) orthogonal to
the motion (see Figure 1). This arrangement mapped the
vertical component of gravity acceleration to Y-axis, and
its horizontal components to X-axis and Z-axis. Hence,
the vertical component (Gravity Y) captured the
maximum amount of motion. We, therefore, included in
the statistical analysis the gravity readings from the Y-axis
only. If the phone was placed in the landscape orientation,
we would have used the X-axis gravity component. The
phone orientation can be easily calculated via the
smartphone’s operating system (iOS in this case).

Figure 2 shows raw Gravity Y (GY) signals at different
surface inclines. The signals were acquired from
participant P2’s walking sessions at 3 mph. The figure
clearly illustrates that the GY signal’s mean value (µGY )
as well as its spread (σGY ) are gradually increasing with
the rise in the surface incline.
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Figure 2: Y-axis Gravity values from participant P2’s walking
sessions at 3 mph for various surface inclines.

Linearity Tests
Figure 3 shows box-plots of the Gravity Y readings for all
nine participants. Qualitatively speaking, the results
confirm the gradual increasing trend of Gravity Y in both
walking speeds for all nine participants. To validate the
findings, we computed the correlation coefficient (R2)
between the mean Gravity Y (µGY ) and surface incline.
Specifically, we first computed the R2 value per
participant per speed. Then, we computed the mean (µR)
of the R2 values for each walking speed. The results are
reported in Figure 4. Figure 4(a) illustrates strong
linearity (µR = 0.96) between the mean values (µGY ) and
the surface inclines for 2 mph walking. Figure 4(b) also
indicates strong linearity (µR = 0.96) between the mean
values (µGY ) and the surface inclines for 3 mph walking.
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Figure 3: Box-plots of the Gravity Y readings for the entire
dataset.

Significance Tests
Having established the linear relationship between Gravity
Y and surface incline, we explored the specificity property
of Gravity Y. In particular, we investigated if Gravity Y
yields significant differences between two surface inclines
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(10% resolution level). For each walking speed and pair of
surface inclines, we performed a paired t-test on the
corresponding µGY values. The test was run exhaustively
on all surface incline pairs. Table 2 summarizes the test
results (p values) for the 2 mph walking sessions. Table 3
summarizes the test results for the 3 mph walking
sessions. The results show that all pairs have statistically
significant differences (p < 0.05).

Surface Incline 0% 10% 20%
0% - - -

10% 0.0080 - -
20% 0.0023 0.004 -
30% 0.0001 0.0000 0.0006

Table 2: Paired t-test results (p
values) for the 2 mph walking
sessions. n = 9 for all the tests.

Surface Incline 0% 10% 20%
0% - - -

10% 0.0311 - -
20% 0.0003 0.0000 -
30% 0.0008 0.0001 0.0130

Table 3: Paired t-test results (p
values) for the 3 mph walking
sessions. n = 9 for all the tests
except for the 0%-10% pair for
which n = 6.

Linear Modelling
We modelled the bivariate relationship via least-squares
linear regression. Figure 4(a) illustrates strong linear fit
(R2 = 0.99) for the 2 mph walking scenarios.
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Figure 4: Means of Gravity Y per surface incline for all nine
participants walking at (a) 2 mph and (b) 3 mph.

Figure 4(b) illustrates strong linear fit (R2 = 0.96) for the
3 mph walking scenarios. The regression equations shown
in the figure map Gravity Y to surface incline.

Once the surface incline is estimated from the statistical
model, its value is factored in the following equation to
estimate the metabolic consumption of walking [9]:

V O2 = 3.5 + 0.1(speed) + 1.8(speed)(incline). (1)

The speed parameter of this equation can be estimated
from the accelerometer [7]. Finally, the metabolic
estimation (V O2) is mapped to caloric consumption via
the following equation [2]:

E = (V O2 −BMR) ∗ 5/(Body Mass). (2)

BMR in Equation (2) is the basal metabolic rate.

Conclusion and Discussion
In this paper we present an innovative approach for
estimating surface inclination via a smartphone’s
accelerometer. Specifically, we show that the
accelerometer’s gravity component linearly correlates with
the surface incline. Furthermore, we outline a calibration
method that incorporates incline estimation to caloric
mapping algorithms, thus, improving caloric estimation in
walking apps. Although we used the iPhone platform in
this study, the proposed method is generic and can apply
to any smartphone platform.

Admittedly, the thigh location is not the most convenient
site for smartphone attachment. The reason for selecting
the thigh location is because it gives the best results due
to walking kinematics. Currently, we are collecting data
for other body positions. In particular, the arm location
has favorable kinematics and may produce comparable
results, while it is more user-friendly.

This feasibility investigation is limited to uphill walking
only. In the near future we plan to expand the

Work-in-Progress CHI 2015, Crossings, Seoul, Korea

1401



investigation to a full-scale study that will include a larger
participant pool, and a full range of walking speeds (2
mph, 2.5 mph, 3 mph, 3.5 mph) for both uphill and
downhill walking.
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