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Abstract. Breathing waveform extracted via nasal thermistor is the
most common method to study respiratory function in sleep studies. In
essence, this is a temporal waveform of mean temperatures in the nostril
region that at every time step collapses two-dimensional data into a
single point. Hence, spatial heat distribution in the nostrils is lost along
with valuable functional and anatomical cues. This article presents the
construction and experimental validation of a spatiotemporal profile for
the breathing function via thermal imaging of the nostrils. The method
models nasal airflow advection by using a front-propagating level set
algorithm with optimal parameter selection. It is the first time that the
full two-dimensional advantage of thermal imaging is brought to the fore
in breathing computation. This new multi-dimensional measure is likely
to bring diagnostic value in sleep studies and beyond.

Keywords: Breathing, data visualization, sleep studies, thermal imag-
ing.

1 Introduction

Sleep studies require overnight monitoring of the patient’s breathing function
which is typically accomplished via contact-sensors. A widely used sensor is the
nasal thermistor which extracts the temporal breathing waveform by sensing
the average temperatures in the nostril region at every point in time. The sensor
is placed inside the nostril, a non-comfortable arrangement for patients who
have problems with breathing and sleep in the first place. As an alternative
to this clinical practice, a thermal imaging method has been proposed recently
[1][2]. The method could be characterized as a ‘virtual thermistor’, because it
produces a temporal breathing waveform by averaging emission values in the
nostrils at every time step. The comparative advantage lies only in its non-
contact nature. Although thermal imaging carries inherently spatial information,
this is never recovered and used. Evolution of spatial heat distribution in the
nostrils can reveal subtle breathing abnormalities that may hint at anatomical
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and functional problems. These problems by and large go undetected due to the
averaging nature of the existing measurement methods [3]. Relevant examples
include small nasal polyps that locally affect airflow or hypopnea, where airflow
is curtailed but not totally suppressed [4].

In this article, we describe a method for spatiotemporal reconstruction of
the breathing function via thermal imaging.1 A level set algorithm captures the
spatial evolution of nostril emission, as affected by inspiratory and expiratory air-
flow. A registration algorithm that accounts for nostril motion ensures the mean-
ingful application of the level set computation. The soundness of the method is
verified experimentally. Interestingly, the method captures subtle pathophysio-
logical incidents in the data set that escape detection by the ’virtual thermistor’,
thus, bringing to the fore its potential clinical value.

2 Methodology

2.1 Temporal Registration

Breathing is a physiological process that continuously modulates the spatial heat
distribution inside the nostrils (see Fig. 1). We capture this spatial evolution by
employing the Chan-Vese active contour without edge model [5] (see Section
2.2). Prior this step though, we nullify the subject’s head motion that gradually
translates and rotates the nostril region over time, introducing artifacts in the
spatiotemporal visualization. We correct the motion error by registering the
perinasal region in every frame to a global reference frame. We use the FFT-based
phase correlation algorithm proposed by Reddy et.al [6] for that purpose. The
main advantage of this algorithm is that it computes any amount of translation
and rotation in fixed time for images of the same size. The algorithm has been
designed for visual images where low-level features, such as object boundaries,
are clearly distinguishable. Boundaries in thermal images, however, are fuzzy
because of thermal diffusion. For this reason we support Reddy’s algorithm with
a Laplacian boundary enhancement function.

Translation. Let f represent the thermal image of the perinasal region (see
the insets of Fig 1). Let also the perinasal image f1 be translated by the vector
(x0, y0), producing the image f2 (i.e., f2 (x, y) = f1 (x− x0, y − y0)). As per
the Fourier shift theorem, their corresponding Fourier transforms F1 and F2 are
related via the following equation:

F2 (ξ, η) = e−j2π(ξx0+ηy0)F1 (ξ, η) . (1)

The cross-power spectrum of the images is defined as:

F1 (ξ, η)F
∗
2 (ξ, η)

|F1 (ξ, η)F ∗
2 (ξ, η)| = e−j2π(ξx0+ηy0), (2)

1 Spatiotemporal visualization clips of breathing function from the experimental set
can be accessed at:http://www.cpl.uh.edu/miccai-2012/
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Fig. 1. Spatiotemporal heat distribution at the nostril region

where F ∗ is the complex conjugate of F . Taking the inverse Fourier transform
of this representation will yield an impulse function at the displacement (x0, y0)
and zero everywhere else.

Rotation. Let the image f1 be translated by the vector (x0, y0) and rotated
by angle θ0, producing the image f2 (i.e., f2 (x, y) = f1 (x cos θ0 + y sin θ0 − x0 ,
−x sin θ0 + y cos θ0 − y0)). According to the Fourier translation and rotation
property, their Fourier transforms F1 and F2 are related by:

F2 (ξ, η) = e−j2π(ξx0+ηy0)F1 (ξ cos θ0 + η sin θ0,

−ξ sin θ0 + η cos θ0) . (3)

The rotation without translation can be represented as a translation displace-
ment in polar coordinates. Using phase correlation, one can find the angle θ0
easily. Let us denote f ′

2 to be the motion corrected image.

2.2 Nostril Segmentation

In this step we localize the left and right nostrils inside the perinasal region
of interest. The nostril region features a non-uniform heat distribution of the
breathing function which evolves over time. This dynamic nature of the spa-
tiotemporal heat distribution poses a modeling challenge to the segmentation
task. In particular, the nostrils’ temperature elevates during the breathing expi-
ration phase because the expired air absorbs heat in the lungs and respiratory
passageways. In contrast, their temperature lowers during the breathing inspi-
ration phase. We have adopted the active contour model framework because it
is suitable for tracking this kind of spatiotemporal dynamic behavior [7]. In par-
ticular, we use the Chan-Vese active contour without edge modeling algorithm
that is appropriate for fuzzy thermal boundaries [5].

Let f ′
1, f

′
2, ..., f

′
n be continuous thermal images of the perinasal region that are

corrected for motion error as discussed in Section 2.1. Given a feature vector I,
the Chan-Vese active contour model is defined by:
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∂φ

∂t
=δε (φ)

[
μ∇ ·
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‖∇φ‖
)
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N
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i

(
Ii (x, y)− c+i

)2

+
1

N

N∑
i=1

λ−
i

(
Ii (x, y)− c−i

)2

−υ] ,

(4)

where c+ and c− are mean values of regions inside and outside the evolving curve
and N is the length of the feature vector. λ+

i and λ−
i are the scaling parameters.

μ controls the smoothness of the contour. υ refines the level of the contour.
We construct a feature vector of size N = 2 that includes the pixel tempera-

ture in the current frame and temporal variation of pixel temperature in previous
frames. Specifically, for a pixel at location (x, y) in frame n, the feature vector
In (x, y) =

(
f ′
n (x, y) , ασ

2
n (x, y)

)
, where α is the weight that we set dynamically

using an exponential decaying function [8]. The decay constant of the function
is set to 0.0743, which takes into account the temperature variation of half the
normal breathing cycle (at the data acquisition rate of 25 frames per second).
This arrangement guarantees that the contour evolution in the current frame
takes into account the most recent temporal changes due to breathing.

2.3 Spatiotemporal Construction

Outcomes from the segmentation step are collected into a 3D array. Each X-Y
plane of the array stores the segmented nostril region. The planes are stacked
along the Z-axis of the array. To comply with sleep study metrics, every 30
seconds of data (i.e., 1 epoch), is stacked into one array. Finally, the 3D sets are
supplied as a time-series model to the Avizo 6.2 software visualization tool.

3 Validation Analysis

3.1 Registration Validation

Thermal imaging records both physical motion (e.g., head motion) and physio-
logical process (e.g., breathing). To find out how well our registration algorithm
corrects the motion error in presence of breathing, we performed a simulation
study. To build the simulation we used as a reference frame the thermal image
of a subject’s face. Within the reference frame we modulated the nostrils’ tem-
perature by applying a spatiotemporal evolution of a normal breathing cycle.
We generated 20 simulated images equidistantly spaced across the breathing cy-
cle. Each image was then translated and rotated by randomly generated values
((x0, y0), θ0). The values were treated as ground truth. The transformed images
were supplied to our registration algorithm for motion correction. The resultant
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images were compared with the corresponding reference frames for qualitative
analysis (see Fig. 2). The translation and rotation parameters estimated through
the algorithm were compared against their respective ground truth values. The
ANOVA test performed on the data shows that there no statistically signifi-
cant difference between the estimated translations and their ground truth values
(P > 0.01) as well as the estimated rotations and their ground truth values
(P > 0.01). This validates the registration algorithm.

Fig. 2. (a)Reference image. (b) Simulated image. (c) Registered image. The orientation
and position of the registered image is in agreement with that of the reference image.

3.2 Segmentation Validation

In a heterogeneous region, such as the perinasal region in the thermal imagery, a
zero-level contour of convergence φ often leads to suboptimal delineation of the
region of interest. Therefore, it is required to train the regulating parameter υ
to achieve optimal delineation.

Training the Parameter υ: We used manual segmentations of the nostril
region and a probabilistic scoring mechanism for training the parameter. In
particular, three experts were asked to manually delineate in the thermal images
the breathing evolution inside the left and right nostrils. A total of six sets of the
thermal images were prepared from the six subjects. Each set comprised of 100
consecutive thermal images that represented 2-3 normal breathing cycles. Each
expert repeated the delineation task twice per set. Thus, we acquired a total of
six ground truth sets of manual segmentation per subject.

The performance of the segmentation algorithm was assessed against these
ground truth sets by computing the Probabilistic Rand Index (PRI) [10]. PRI
finds a common agreement between the multiple ground truth values and the
segmentation output. Higher PRI indicates better performance of the segmen-
tation algorithm. For every thermal image we varied υ from 0 to 4 in steps of
0.05 and computed the PRI for each υ value. The υ value corresponding to the
highest PRI was recorded as the optimal value for that particular image. The
process was repeated for all 100 images in each set. Their optimal υ values were
averaged and designated as the tuned parameter υt for that set. Corresponding
PRI values were also averaged and recorded for comparison with the testing
dataset. (see column-1 in Table 1).

Testing the Trained Parameter: The trained parameter was tested on
different sets of manual segmentations generated by three experts different from
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the one used in the parameter training. This time however, the six sets were pre-
pared from randomly selected 100 images from the thermal videos. We supplied
every set of images along with its tuned υ value to the segmentation algorithm
and computed the PRI.

Table 1 summarizes the mean and standard deviation of the PRI values for
every subject. The ANOVA test performed on the data concludes that there are
no statistically significant difference between the PRIs of training and testing
images (P > 0.01). This confirms that the regulating parameter υ was trained
optimally for every subject.

Table 1. Mean and Std. of PRI for training and testing sets

μ(PRI) (Training) μ(PRI) (Testing) σ(PRI) (Training) σ(PRI) (Testing)

Subject 1 0.88 0.78 0.07 0.13

Subject 2 0.88 0.82 0.04 0.05

Subject 3 0.95 0.96 0.05 0.05

Subject 4 0.92 0.96 0.03 0.05

Subject 5 0.90 0.85 0.02 0.09

Subject 6 0.87 0.76 0.05 0.13

4 Experiments

4.1 Experimental Setup

The experiment was conducted in a controlled room environment at a Sleep
Research Center. Six subjects (1 female and 5 males) participated in the exper-
iment. The mean age of the subject pool was 25± 1.86 years. The experiment
lasted 45 minutes. During the experiment the subjects were fitted with the stan-
dard polysomnography sensors to ground truth the imaging measurements. The
subjects were asked to lay prostrate in a comfortable bed for the experiment pe-
riod. They were positioned 2.5 m away from a thermal imaging system focused
on their faces (see Fig. 2). The thermal imaging system consisted of a Thermo
Vision SC6000 Mid-Wave Infrared (MWIR) camera from FLIR [9], a MWIR 100
mm lens, and a HP Pavilion m9040n desktop.

4.2 Experimental Results

Fig. 3 illustrates the spatiotemporal reconstruction of the breathing function.
The 3D clouds in the figure represent the inhalation phases. The clouds’ inhomo-
geneous colors depict the nonuniformity of the breathing function. In particular,
the core of each cloud has marginally higher temperature than the peripheral re-
gion. The temperature gradient exists because the nasal cavities get narrower as
they run from the mandibular to the periorbital region. This progressive steno-
sis amplifies heat convection which elevates the core’s temperature. The gap in
between two clouds represents the exhalation phase that our algorithm is unable
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Fig. 3. The plot illustrates an angular view (a) and a projection view (b) of Subject
1’s breathing function

Fig. 4. (a) Angular view of the multi-dimensional visualization. (b) 1D breathing wave-
form. Conditions of reduced air-flow during exhalation on the upper part of the right
nostril are evident by the bridging ‘pipe’ between the successive exhalation clouds. This
spatiotemporal pattern is lost in the 1D breathing signal.

to capture at this point. This happens because the hot air from the exhalation
phase has similar thermal profile as the nostril cartilage. In the future we plan on
applying probabilistic methods, such as Bayesian classification, to separate the
more dynamic breathing function from the relatively stationary thermal profile
of the nostril cartilage.

An advantage of the spatiotemporal reconstruction of the breathing function
over the mean temperature waveform [1][2] is the localization of subtle patho-
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logical patterns. These patterns are usually obliterated by the averaging process
at work in the 1D-breathing signal formation. Fig. 4(a) illustrates reduced flow
during exhalation on the upper part of Subject 5’s right nostril. This is evident
by a bridging ‘pipe’ in the visualization that connects the two inhalation clouds
and reveals that in the upper part of the nasal cavity, inhalation conditions
persist even during exhalation. This finding is all but obscured if one considers
Fig. 4(b) that shows the classic 1D breathing waveform, where the breathing
waveform appears normal.
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