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Abstract
In this article the authors describe a novel way to conduct
user studies via the combination of a physiological and an
observational information channel. The method enables
not only the quantification of arousing emotional states
but also their disambiguation into positive or negative
instances. The physiological channel targets sympathetic
responses and is materialized as a perspiratory signal
extracted from thermal imagery of the perinasal area. The
observational channel is materialized via decoding of facial
expressions. However, while such decoding is usually
performed in the visible spectrum, the authors have
developed an algorithm to carry this out in thermal
imagery instead. Thus, thermal imaging is used for both
physiological and observational analysis. The potential of
this dual unobtrusive methodology is demonstrated with
some examples from a stress study, where users (surgeons
in this case) interact with laparoscopic training boxes.

Author Keywords
User studies; emotions; eustress; distress; sympathetic
signals; facial expressions

ACM Classification Keywords
H.5.m [Information Interfaces and Presentation]:
Miscellaneous;



General Terms
Design, Experimentation, Measurement

Introduction

Figure 1: The seven ROIs used
to capture facial muscle
movement and deformation
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Figure 2: Feature vector
formation for expression AU 1+2
(Inner+ Outer Eyebrow Raise)

One of the goals of human-centered computing is to
unobtrusively monitor and understand human behavior, in
order to assess interactions. Researchers have paid
significant attention to the role of emotions on human
behavior [2]. Emotions are not directly measurable, but
can be inferred from expressive cues, self-reporting,
physiological indicators, and context. Previous work
demonstrated that during emotional arousal physiological
signs materialize on the face, such as increased blood flow
in the peri-orbital area [4] and transient perspiration on
the perinasal area [5]. These signs have thermo-
physiological footprints and quantification methods have
been proposed based on thermal imaging in [6] and [5].
Between the periorbital and perinasal signal, the latter is
of particular interest to this work, because it is part of a
cluster of sympathetic responses on sensory organs (tactile
and olfactory) that are closely related to emotions [5].
Because the perinasal response is sympathetic in nature, it
is non-specific to negative or positive arousal. However,
with the aid of an observational cue, such as facial
expressions, it would be possible to disambiguate instances
of negative (unpleasant) versus positive (pleasant) arousal.

Facial expressions are formed through coordinated muscle
actions and can be classified using the Facial Action
Coding System (FACS) [3]. FACS breaks down the
development of expressions into sets of basic units. It was
designed to measure visible facial behavior in any context,
not just in emotions, and has become the gold standard
for facial measurement systems. Automatic FACS
decoding in visual imaging has proved challenging due to
the effect of light variability [1].

In this work, the authors used the thermal imaging
method described in [5] to derive the perinasal signals. In
addition, they have developed an algorithmic method to
decode facial expressions in thermal rather than visual
imagery. Hence, both physiological and observational
analysis can be carried out computationally under a single
imaging modality.

The remainder of the paper features a description of the
thermal imaging methodology for the extraction of
perinasal signals and the recognition of facial expressions.
This is followed by a description of the human-machine
interaction study where the dual analysis method was
applied. The paper concludes with accuracy results of the
facial expression recognition method and examples of its
disambiguating role on the physiological signals.

Methods
Facial Expression Recognition
The authors tracked 7 regions of interest (ROIs) on the
thermal imagery of the face (Fig. 1). The tracking
algorithm used is described in [7]. The ROIs were carefully
chosen to align with facial muscles heavily involved in
emotional action units. Each ROI was abstracted by its
centroid that was tracked over time forming a trajectory.
The centroid of ROI-5 (nose) was used as a reference,
because the nose is the most stable part of the face and is
largely invariant under expressions.

Evolving Euclidean distances between centroid trajectories
were used as indicators of muscle actions. Specifically, the
algorithm computed the Euclidean distances d(x, 5)
between each ROI-x (x 6= 5) and ROI-5 from the onset till
the offset of every expression (Fig. 2A). A feature vector
for each expression was then formed by computing the
standard deviations of these Euclidean distances (Fig. 2B).



These feature vectors capture the characteristic
inter-muscle deformations over the course of expressions,
and hence can be used to train a classifier. The authors
chose a feed-forward multilayer perceptron for
classification. The multilayer perceptron featured 13 input
nodes, 12 sigmoid nodes in the hidden layer, and 5 output
nodes to classify expressions.

Study Design
The authors imaged thermally1 and visually the faces of
surgeons while they engaged in training in an inanimate
laparoscopic skills lab at the Methodist Hospital, per a
protocol approved by the local institutional review board.
The surgeons (n = 17) were performing manipulation,
precise cutting, and suturing drills on a laparoscopic
training box over the course of several weeks. In 977
training trials (1-4 min each), the authors found 244
expressions made out of 5 action unit combinations (AU
1+2, 4, 9, 10, and 12). The subject population included
both novice and experienced surgeons. Hence, the
challenge level of the training was differing among
subjects, producing interesting cases of distress and
eustress, in a human-machine interaction paradigm that
can generalize across many domains. Indeed, due to
increased mechanization and computerization, interactions
in areas as different as laparoscopic training and
unmanned aerial vehicle (UAV) piloting, start looking
increasingly similar.

Actual Predicted
AUs AUs

1+2 4 9 10 12
1+2 6 5 3 3 1

4 3 39 0 3 0

9 2 1 5 7 5

10 0 2 1 69 3

12 1 1 0 4 80

Table 1: Confusion matrix for
thermal FACS classification

Results and Discussion
The perinasal signals quantified arousals during the
training trials. Novice surgeons exhibited a preponderance
of arousals with respect to experienced surgeons. We
informed the type of arousal events in the physiological

1The thermal imaging system included a MWIR camera from FLIR
(model SC6000), outfitted with a MWIR 100 mm lens f /2.3.

signals via the observation channel. Specifically, a certified
FACS expert decoded facial expressions on the visual
stream into three categories: positive, negative, and
neutral. ations on the visual stream served as
ground-truth. Then, the authors used 10-fold cross
validation and percentage split to test the accuracy of the
algorithmic FACS method on the thermal stream, using
the expert’s FACS annotation on the visual stream as
ground-truth. The overall recognition rate found to be
81.55% (Table 1). This performance is likely to hold
across different application scenarios, as thermal imaging
is relatively insensitive to lighting conditions [1].
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Figure 3: A bout of eustress for an experienced surgeon
(D005), as indicated by the locally elevated perinasal signal
and the positive facial expressions.

Figure 3 shows a characteristic example of eustress from
the experimental set. About 130 sec into the drill, the
perinasal signal of the surgeon exhibits elevation, which is



characteristic of arousal. From the observational channel,
either via manual FACS decoding in the visual stream or
via algorithmic FACS decoding in the thermal stream, can
be inferred that this is a bout of eustress. Indeed, the
experimental context supports this conclusion, as this is
an experienced surgeon who successfully addressed a
technical challenge towards the end of the drill (sense of
accomplishment).
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Figure 4: Bouts of distress for a novice surgeon (D025), as
indicated by the fluctuating perinasal signal and the negative
facial expressions.

Figure 4 shows a characteristic example of distress from
the experimental set. The surgeon seems to be
undergoing a roller-coaster of arousals. The distressing
type of arousals is informed by the observational channel
(both in the visual and thermal streams). Indeed, this is a
novice surgeon who performed multiple errors during the
execution of the drill (sense of foreboding).

Future studies may benefit from the proposed analysis
method that is not only comprehensive (quantitative and
qualitative), but also economical (single imaging modality
with no labor).
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