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Abstract: We present (I frumework for mutch iny  U , I L ~  r e ~ o p i t i o ~ ~  of planar. shapes bused o n  a method f r o m  
cornputer. p u p h i e s  based W T L ~ V L U ~ ~ ~ T L ,  culled “shupc mctumorphosis .  ” In o‘ur upprouch, the “degrec of morphirig” 

‘milurity meus~ure. A physics-bused energy m 

uset1 fo,r optimul2.y cu,rri,puting the  “degree of morphing. ” Th 
invariance t o  t r ~ d ~ t i ~ ~  rotat ion,  sculing und mirror s y m m e t r y .  E ~ p e r i m e n t u t i o n s  271 the recognition of p lanur  
.shupcs, ~ U I L ~ - ~ ~ , ~ U , W I L  j i g  

rieusure is sho,wn t o  huac 

, u n d  on-liric cursiue ,words indicate  the  robustness of the ,rccoyi~itio,r~ puradigrn. 

1 Introduction 
Shape rnatcliing arid recognition both in 2D arid 3D 

i ~ r c  some of the most furldanicrital problems iri Corn- 
putcr Vision. In spite of the advariccnicrits in object 
rccogriitiori [5], rccogriitiori of 2D sliapcs has remained 
an area which evokes much iritcrcst. The problem 
of 2D s1iapc rnatcliirig appcars a.rnorigst others in the 
idcritificatiori arid haridling of plariar industrial parts, 
iri Optical Character Rccogriitiori (OCR), arid in tlic 
analysis of nicdical irnagcry. Furtherrnore, in many 
caws the annlysis of 3D skiapes can be decomposed 
into 2D shape analysis. The goal of this work is to 
rccogriizc planar objects, arid object contours which 
differ riot only iri tcrrns of trarislation, rotation arid 
scale, but also uridcrgo contour perturbations or kiavc 
fcaturcs wl-losc arrarigcnicrit may alter due to  shape 
dcforrriatioris. Typical cxarriplcs of such objects iri- 
clude harid-drawn shapes and cursive words (sec Figs. 

Our approach is to  use physics-based coritour rricta- 
rnorpliosis for sliapc rccognitiori. We use this tech- 
riiquc in a rnodcl-based frarncwork. Tlic contours 
of the planar object or tlic stroke patterns of a 
cursive handwritten word arc rnodclcd by a piecc 
of deforrriahle wirc. Coritour Inctaruorphosis occurs 
through appropriate stretching arid herding of the ar- 
tificial wirc. Tlic degrcc of .rnorplvlng required to trans- 
form ari input wire-form shape to a reference wirc- 
form shape i s  used as a dissirnilarity measure. T h e  

of m o r p h n g  is an abstract quantity, which iri 
our system is substaritiatcxi through a rniriirriurri en- 
ergy approach to  contour riictarnorphosis proposed by 
Scdcrbcrg e t  ul. [’i] for tlic purpose of corriputer-based 

4 arid 5). 

animation. The proposed approach is based or1 the iri- 
tuitivc fact that similar shapes riecd to undergo rriucli 
srnallcr rnctarriorphosis to assume each other’s sliapc 
than do dissimilar ones (sec Fig. 1). Some ofthc otlicr 
methods proposed by rcscarclicrs for this problem iri- 
cludc the use of joint probability density over shape to 
define model flexibility, Hidden Markov Model (I-IMM) 
[2, 31, rriultidirncrisiorial co-occurrence niatriccs [4], 
clastic matching, arid cigen-mode based reprcsenta- 
tion. Our approach differs from tlic research [a ,  3, d] iri 
that it docs riot require cxterisive shape statistics. Iri 
rcal-world applications, like user-dependent pen-based 
interfaces it allows the systcni to perform with mini- 
mal training. Based on [7], we use a corriputatiorially 
inexpensive dynamic programming approach to firid ii 

globally optimal solution to  the eriergy rniriiniizatiori 
problem. This is in contrast to  the approaches l~ascd 
on calculus of variation (e.g. clastic matching) or finite 
clcrncrits. 

This paper is organized as follows: Iri Section 2 wc 
cxplairi the matching of sliapcs using curitour rncta- 
morphosis. Section 3 iricludcs cxpcrirricrital results. 
Finally, in Section 4 we prcscrit the coricliisioris ant1 
outline the future work. 

2 Shape Matching by Contour Meta- 
morphosis 

Contour rnctaniorpliosis is defined as the traris- 
formation of oric shape (as represented by its cori- 
tour) to ariotlicr. Let s’ = [SA,. . . , S,t] ancl sT = 
[SF, . . . , ST] bc tkic point sets representing tlic input 
arid the target contours, respectively. Metamorphosis 
of S I  to ST is defined by a sequence of iritcrrricdiatc 
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Figure 1: Physics-based rrictarriorpliosis of a sliapc to a similar shape (top row) arid to a dissimilar shape (hottorn 
IOU'). 

aT'nerc U = 1 - t. Si(t)  is the ith contour point in 
the intermediate shape, formed at  tiriic t .  The time 
parameter t is normalized to the interval [ O , 1 ] .  

c- i+ l  

Figure 2: Gcornctric rnodcl for corner dctcrrniriation 
as proposed by Brault et al. [l]. 

We approximate the contour of x i  object by ideri- 
tifying certain salient poirits on it. Our segmentation 
strategy is based upori tlic algorithm of Brault et d .  
[I]. Specifically, the gcorrictric pararrietcrs shown in 
Figs. 2 and 3 arc calculated for each contour point. 
Following Brault et ol. [l], a high curvature domairi 
(corner) is dcfiricd for every contour point c as c z t  i 
( i  = 1, a...). Thc point pair helorigs to this dorriairi ifs 
the following inequalities arc satisfied (scc Fig. 2): 

?r 7i 
w ( c  + i )  < 7 c r r d  w(c  - i )  < -. (2) 2 2 

Tlic cor'ner'ncss of point c is computed as 

.bJ( c )  

(c + i ) )  * cos(w(c - i ) ) ,  (3 )  
i=-l 

where c i 1, . . . , c I-t 71 bclorig to tlic high curvature 
dorriuiri of point c. Iririovativcly, for each point c, we 

also define a low curvature dorriairi in a mariricr cori- 
jugate to thc method proposed for the dcterrninatiori 
of corners in [l]. The point pair c i i belongs to tlic: 
low curvature dorriairi of c (sec Fig. 3)  Z;fs 

L 2 (4 
n 7l 

w(c  + i )  > ; ur w(c - i )  > -. 

The flatness of point c is then given by 

hf-(C) 

fZutncss(c) = j cos(w(c + i)) 1 * j cos(w(c - i ) )  1 
i=l 

(5) 
where c %  1, . . . , c & 71 bclorig to the low curvtturc do- 
main of point c. The points with the highest cornc7'- 
ness or flatness from cadi doniairi are selcctcd. T'ricsc: 
points constitute the scgriicritatiori poirits for the co~i- 
tours. The algorithm is dcscribed in detail iri [E;]. 

Figure 3: Geometric rriodcl for key low curvaturc 
point dcterminatiori. 

In gcricrsl, the input arid the target contours partic- 
ipa,tirig in the metamorphosis have different numbcr. of 
segmentation points. In order for tlic proccss of rricta- 
morphosis to  occur, as detailed in Eq. (l), a poirit cor- 
rcsporidencc bctwecri the scgrricntation poirits in thv 
input arid the target nccds to be cstahliskicd, whcrciri 
any point in the input sliapc corresponds to a t  least, 
oric point in tlic target shape arid vice versa. 

Such a corrcsporidcrice can be one to oric (point 
rnorphed to a point), oric to rriariy (point rriorplid 
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Figure 4: Tcrnplatcs (first row) and some of tlic tcst shapes (sccorid row) used in cxperinierit 1 

to scgmcnt(s)), rriariy to one (segrricnt(s) rriorphcd to 
a point) or rriariy to rriariy (scgnicrit(s) rriorphcd to 
scgrncnt(s)) . Followirig tlic physics based forrnulatiori 
of rrictarnorphosis 171, we dcfiric tkic cost of a point 
correspondence as tlic sum of strctchirig arid bending 
energies rcquircd to bririg about the corrcspondcricc. 
The strctchirig energy is corriputcd for a pair of points 
arid is dcfiricd as [7]: 

2 

(6) 
I LT - LI  I 

(I - c,)niin(LI,  L T )  + c,mcix(LI, L T ) .  E, = f s  

LI arid LT cicriotc the scgrncrit lengths bcforc arid after 
the rnctarnorpliosis. The tcrrri c, dcnotcs the penalty 
for segrricrits collapsirig to  poirits arid f s  is the strctckl- 
irig stifhicss pararnctcr. The bending cricrgy is corn- 
putcd for point triplets a r id  dcriotcs thc: cost of angular 
dcforrriation. The bcridirig cricrgy is computed as: 

whcrc f b  intlic:atcs bcridirig stiffricss arid Ad rcprcscrits 
the absolutc valuc of arigular dcforriiatiori in radians. 
Urilikc tlic forrnu1;rtiori in 171, Ey. (7) is symrrictr-ic to 
the direction of rrictarnorpliosis. 

Tlic optimal point cor.rcsporidcricc: bctwccri two 
shapes is dcfiricd as tlic corrcsporidcricc which rcyuircs 
the lcast ericrgy in tcrrris of Eys. ( 6 )  arid (7). If 
tlic rrictarnorpliosis is coristrairicd to the scgrncnta- 
tiori points of tlic iriput arid target shapes orily (i.e. 
the cricrgy rniriirriization is considered orily at the cx- 
isting poirits), then tlic followirig optimal substruc- 
ture property can  be statcd: Tlic optirnum cost of 
the poirit corrcsporidcricc (S!, ST) equals the optirriurri 
cost of the previous point corrcsporidcricc (St-, , ST) 
or (St-,,S,T_,) or (S!,S,Tl,) arid the cost of cstab- 
lisiiirig the corrcsporidcricc (St, S:). Sirice the criergy 
r~icasurcs (Eys. 6 arid 7) used i r i  tlic mctarnorphosis 
dcpcrid ori the d a t i v e  position of tlic contour points 
of an object arid riot tlicir absolute position, they arc 
irivariant to translation arid rotation. Irivariarice to 
sca,lc changes is achieved by rnappirig thc shapes to a 
unit squarc~. 

Formally, UT define the deyrce of mo.rphing bctwccri 
two sliapcs A arid B as: 

Djnorph(A, i?) = rniri rnin E(C.4, C D ) ,  (8) 

whcrc CA arid CB arc tlic coritour points of sl-iapc:s 
A and B arid E(C,~ ,CD)  is tlie cumulative cricrgy 
spcnt in rnorpliirig sliapc A to shape B. R dcriotos 
the set of all starting poirit correspondences bctwccn 
shapes A arid B. il. dcriotcs tlic four possible ways of 
traversirig contours CA arid C,q. Sincc the contours 
of planar objects arc simple curves arid therefore car1 
bc tra.vcrscd either clockwise or anticlockwise, invari- 
ance to mirror syrnrnctry is obtained by rnininiizirig 
E(., .) over it. Dmorph(il, i?) satisfies all the prop  
crties of a metric. To prove tlic triangle inequality 

may observe that the cricrgy tcrrns E, arid Eb (Eqs. 
(6) arid (7)) arc always positive. Furtlicrriiorc. in thc 
case of Eh any corresporiding ariglc change bctwccxi 
skiapcs A, B, a,nd c car1 bc either monotonic > 
O B  > 0') or nori-monotonic (OB > 0" > Oc'). Iii 
tlic forrncr case, UT ~ L L V C  equality while in the latter 
case tlic inequality liolds true. A similar argurncrit c m  
bc given for E, (length changes) arid licricc for. the surri 
of E* arid E,. The other tlirec properties of a rrictric 
arc straightforward from the formulation of the d c p e  
of morph'iny 

3 Experimental Results 
Tlic proposcd rncthod was evaluated with tkircc 

data sets. The first set consisted of eight shapes taltcri 
from [2]. For each sliapc, 22 sarnplcs were created by 
different people using a, WACOM tablet. Participants 
wcrc shown each one of tlic eight shapes in turri ar i t l  
then asked to gcricratc the samples without lookirig a t  
the shapes. A siriglc carefully hand drawn sliapc from 
cadi class was used as a tcrnplatc. Of thc 176 tcst 
sliapcs, tlic proposed systcrri correctly recognized 161 
shapes (91.48% recognition rate). Fig. 4 sliows thc 
templates arid sornc tcst sarnplcs which wcrc correctly 
recogriizcd. 

n h 

&"(A, B) + & o r p h ( B ,  C )  2 &"l(A C ) ,  1J"'C' 
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Figure 5: Metamorphosis of test samples of the words uduenture, yuurd, arid banana. The input words arc sliowri 
with the segrricntatiori poirits superimposed 

In the second expcrirncnt, the rnctliod was used for 
the recognition of unconstrained cursive liaridwriting 
iri a user dcpcridcnt, on-liric setting. Four users partic- 
ipated in the cxpcrirricnt. A vocabulary of the follow- 
ing tcri raridorrily selected words was used: advcnture, 
bununu, bookshelf, cu’rrrio’ri, flywAee1, yuurd, luridmark, 
m u d ,  pcuch, tooth. Each user provided one tcrnplate 
sarnplc arid four test samples pcr word. Tlic da.ta was 
collcctcd using thc S ~ I K K  setup as in tlic previous cx- 
pcrirncrit. The recognition rates for each of the par- 
ticipants wcrc: user 1 (loo%), user 2 (go%), user 3 
(92.5%1), and user 4 (97.5%). Fig. 5 sliows examples 
of rccogriitiori cxpcrirricrits for the words udwnture, 
y,uurd arid bununu takcri frorri user 1. The last case 
shows a rriisrccogriitiori caused due to  loss of irripor- 
tarit feature points throughout the uwd. Tlic last 
cxpcrirricrit coriceriis the rccogriitiori of planar iridus- 
trial parts and objects (sec Fig. 6). Tlic objects were 
captured at  different oricritatioris arid locations. An 
arbitrary cxarriplc frorri each object class was choscri 
as a tcmphte. For a database of 21 templates and 
urith 4 test cases per tcrriplatc a recognition rate of 
97.62%) was obtaiiicd. 

4 Conclusions and Future Work 
In this paper we discuss tlic use of shape mctarnor- 

pliosis as a paradigm for recognition of 2D shapes. The 
sliapc contours arc rriodclcd as a piccc of wire and the 
arnourit of energy spcrit in converting one wire-form 
shape to another- is used to quantify the shape diffcr- 
cricc. The proposcd recognition measure can be used 
for both corivex and concave shapes, furtherrnorc it i s  
irivariarit to tra.rislatiori, rota.tiori, sca.lc changes, rnir- 
ror syrrimctry a.rid sa.tisfics the propcrtics of a metric. 
Our future work is dircctcd towards developing the 
paradigrn to deal with contour occlusions and incor- 
porating sliapc statistics to define tlic sha.pe reprcscn- 
tation. 
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