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Abstract. Magnetic Resonance Imaging (MRI)-guided robotic inter-
ventions for aortic valve repair promise to dramatically reduce time and
cost of operations when compared to endoscopically guided (EG) proce-
dures. A challenging issue is real-time and robust tracking of anatomical
landmark points. The interventional tool should be constantly adjusted
via a closed feedback control loop to avoid harming these points while
valve repair is taking place in the beating heart. A Bayesian network of
particle filter trackers proves capable to produce real-time, yet robust
behavior. The algorithm is extremely flexible and general - more sophis-
ticated behaviors can be produced by simply increasing the cardinality
of the tracking network. Experimental results on 16 MRI cine sequences
highlight the promise of the method.

1 Introduction

Image guided and robot-assisted (IGRA) surgeries are evolving and may selec-
tively replace endoscopically guided (EG) surgeries in the future. Research is
motivated by several IGRA advantages, such as wide field-of-view with planar
or volumetric appreciation of the area of operation, minimally invasive processes,
and reduction of operating time [1]. A grand challenge in IGRA surgeries is the
compensation of tissue motion. This is particularly true in heart operations.

Among the most promising types of IGRA surgeries are the interventional
magnetic resonance imaging (MRI) surgeries; distinct advantages include lack
of ionizing radiation, a wide range of soft tissue contrast mechanisms, 3D data
acquisition, and operator-independent image quality [2]. MRI-guided robotic in-
terventions have a wide range of potential applications [3], including cardiac
procedures, such as aortic valve repair [4]. Tracking cardiac motion is a very ac-
tive field within the cardiovascular MRI community [5]. Nevertheless, a method
to estimate the motion of specific anatomical landmarks needed in surgical pro-
cedures has not yet been proposed.

The research described in this paper is motivated by the need to develop al-
ternatives to the highly invasive and long (several hours) surgical procedures
related to heart valve repairs. An MRI-guided robotic intervention will obviate
the need to open the thorax and stop the beating heart, thus potentially com-
pleting the surgery within minutes. For this, the motion of specific anatomical
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landmarks should be tracked in real-time to close the feedback control loop. As a
result, the robotic interventional tool will be held in place during the procedure
without harming healthy tissue and vital structures.

To locate a specific anatomical landmark, one approach is to segment the un-
derlying structures, i.e., accurately determine the boundary of the endocardium
and the left ventricle on short and long axis views of the heart. Such approach
may entail defining an appropriate optimization scheme to iteratively minimize
a cost function, and the computational cost can be significant. For example, in
[6], while the proposed boundary segmentation method achieved very high ac-
curacy, the computational time was 10 seconds per slice. In contrast, Yuen et
al. [7] achieved real-time performance in Ultrasound images with an extended
Kalman filter tracker.

We adopted a particle filtering approach to estimate landmark motion. Par-
ticle filtering is a general tracking mechanism [8], free of strong modeling, which
can accommodate very efficiently the predict-update loop. A loner particle filter
tracker, however, may become unstable in sudden motion or large appearance
changes. This is risky in cardiac surgeries. To maintain robustness we propose
a collaborative tracking framework, which coordinates multiple particle filter
trackers. Some of these trackers may fail when confronting challenging condi-
tions, such as sudden motion or significant appearance changes, but others that
are less affected will survive and yield good state estimates. The latter can be
used to produce a reliable overall estimate and eventually recover the failed
trackers. For the first time, we use a Bayesian network method to decide which
trackers fail and which ones survive at each time step.

The methodology is quite elegant, as it provides a unified framework to tackle
a wide variety of tracking problems, from the most mundane to the most diffi-
cult, by simply adjusting the number of trackers n in the probabilistic network.
For easy problems, we typically choose n = 1, while for more challenging prob-
lems n > 1. The algorithm achieves robust and real-time performance, as the
experimental results indicate. Specifically, the algorithm’s ability to monitor the
motion of the apex, the center of the left ventricle, and the aortic annulus has
been tested with success on cine long and short axis MRI imagery.

2 Methodology

2.1 Single Particle Filter Tracker (n = 1)

The particle filter tracker that we use features 100 particles and performs a single
iteration per frame. We denote the motion state of an individual tracker Ti at
time t by θi,t and its observations by zi,t. The state transition model is:

θi,t = θi,t−1 + N, (1)

where N is the noise subscribing to a Normal distribution. Please note that the
motion state itself is characterized by three variables: x, y for translation and φ
for rotation.
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The algorithm approximates the posterior distribution p(θi,t|zi,1:t) via a set
of weighted particles Si,t = {θr

i,t, ω
r
i,t}J

r=1, where
∑J

r=1 ωr
i,t = 1; Si,t is properly

weighted with respect to p(θi,t|zi,1:t). Then, we use the maximum a posteriori
(MAP) estimate to determine the state of the tracker:

θ̂i,t = arg max
θi,t

p(θi,t|z1:t) ≈ arg max
θi,t

ωr
i,t. (2)

The weight values of the particles are proportional to the posterior probability:

ωi,t ∝ p(θi,t|zi,t). (3)

In our implementation, the particle weight is computed as the correlation co-
efficient of the sampled region of interest (ROI) with an appearance template.
The appearance template is composed of intensity values inside the ROI. The
choice of pixel-based template ensures generality, rendering the method appli-
cable beyond the MRI modality. Also, intensity blocks are computationally ef-
ficient. We adopt the spatio-temporal matte (STM) template described in [9].
The strong point of STM is that updating is based both on pixel dependence
(spatial smoothness) and temporal dependence (temporal smoothness).

2.2 Collaborative Tracker Network (n > 1)

Particle filter trackers trade sophistication for generality and efficiency. This
approach works well in simple motion scenarios, but may reduce robustness in
challenging ones. By forming a collaborative network of particle filter trackers we
aim to increase sophistication without sacrificing generality and efficiency. Figure
1(a) shows as an example a 3× 3 tracker network (n = 9), where each tracker is
assumed to interact with its neighbors. After having all tracker states computed
via the corresponding particle filters, a survivor group is formed consisting of
all the well performing trackers. For each individual tracker Ti, a decision is
made whether to include it or not into the survivor group. The adjacent trackers
{Tj, ..., Tm} provide evidence to make this decision.

The effects of the adjacent trackers on tracker Ti are modeled via a Bayesian
network (Figure 1(b)). Θ̂i,t = {θ̂i,t, θ̂j,t, ..., θ̂m,t} and Zi,t = {zi,t, zj,t, ..., zm,t}
are the estimated states and observations of Ti and its adjacent trackers. Wi,t

represents the event that tracker Ti is in the survivor group at time t. Gi,t−1 is
the Bayesian network at time t−1, whose probability p(Gi,t−1) is known at time
t. The arrows in Figure 1(b) indicate dependency relationships. Two underlying
assumptions for this Bayesian network are:

– An individual tracker is likely to have motion similar to its adjacent trackers.
– A tracker included in the survivor group at the previous time step is likely

to be in the current survivor group.

The joint probability of the Bayesian network Gi,t is:

p(Wi,t, Θ̂i,t|Gi,t−1, Zi,t) ∝ p(Wi,t|Gi,t−1, Θ̂i,t)
∏

k

p(θ̂k,t|zk,t), (4)
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where k identifies each of the trackers in the Bayesian Network and
p(Wi,t|Gi,t−1, Θ̂i,t) is a probability function of Wi,t.

Given Gi,t−1 and Θ̂i,t as parameters, the function p is defined as:

p(Wi,t|Gi,t−1, Θ̂i,t) ∝ p(Gi,t−1)
∏

k

N(θ̂i,t|θ̂k,t, σ
2), (5)

where p(Gi,t−1) is computed at time t−1 and is known at time t. N(θ̂i,t|θ̂k,t, σ
2)

is the probability density of θ̂i,t on the Normal distribution centered at θ̂k,t with
variance σ2. According to Equation (3) each tracker p(θ̂k,t|zk,t) in Equation (4)
is proportional to the particle weight of the estimated tracker state. This equals
to the normalized highest matching score among all the particles. Thus, the
conditional probability p(Wi,t, Θ̂i,t|Gi,t−1, Zi,t) on the left hand side of Equation
(4) can be easily computed.

p(Wi,t, Θ̂i,t|Gi,t−1, Zi,t) serves as evidence in deciding whether to include or
not tracker Ti in the survivor group. If the evidence exceeds a minimum thresh-
old, then it is included in the survivor group, otherwise it is excluded.

(a) (b)

Fig. 1. (a) Layout of tracker network (n = 9). (b) Bayesian network for tracker Ti.

The overall motion state is determined by the trackers in the survivor group
and computed as follows:

θ̂overall =
1

∑|W |
i=1 βi

|W |∑

i=1

θ̂iβi, (6)

where |W | is the cardinality of the survivor group and βi is the impact factor of
each linked tracker. The latter is determined from:

βi =
p(Wi,t, Θ̂i,t|Gi,t−1, Zi,t)

Di,t
, (7)
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where the enumerator is the conditional probability computed in Equation (4)
and Di,t is the Euclidean distance from the point of interest (landmark) to
the center of the tracker. Trackers closer to the landmark point weigh more on
motion estimation with respect to those that are further away. The overall state
is used to determine the new position of the landmark point as well as relocate
the failed trackers.

3 Experimentation

3.1 Experimental Design

Data were acquired with a 1.5T Espree Siemens MRI scanner. The collected
cine sets include short and long axis views on normal volunteers (N = 2) with a
true fast imaging with steady-state precession (TrueFISP) sequence (TR/TE/a
= 60.3ms/1.4ms/80o; slice thickness = 6mm; acquisition matrix = 256 × 256).
We are interested in tracking anatomical landmarks on the heart, as a way to
close the feedback control loop in MRI-guided robotic surgery on the valve. The
interventional tool should be constantly adjusted with respect to the anatomical
points to avoid harming critical structures of the beating heart. Specifically,
there are four landmarks of interest (see Figure 2):

– Apex (A): The apical point of the left ventricle selected in long axis view.
– Medium (M): The center of the left ventricle at a basal level, i.e., just below

the valves, in long axis view.
– Valve (V): The center of the entrance of the aortic valve annulus in long axis

view.
– Centroid (C): The center of the left ventricle in short axis view.

Tracking experiments were performed on a set of 16 MRI cine sequences. Each
sequence had 25 heart phases (frames) and total duration of 1 sec (approximately
one heart-beat). Each of the 16 sequences had one landmark that belonged to
one of the above categories. The goal for the experiments was to compare the
speed, accuracy, and robustness of different tracking network configurations.

Fig. 2. (a)-(b)Anatomical landmarks of interest. (c) Tracker orientations: Horizontal
(along the elongation axis of the moving part) and Vertical (across the elongation axis
of the moving part).
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These configurations featured different number, size, and orientation of trackers.
Specifically, the following cardinalities and sizes were considered:

– Small single tracker (S1): One small tracker that tracks only the moving
region around/near the landmark.

– Big single tracker (B1): One big tracker that in addition to the moving region
includes some static surrounding structures.

– Collaborative trackers (B4): A 2 × 2 collaborative tracker network (n = 4)
that has the same initialization as B1.

Each of these trackers can be applied in either horizontal (H) or vertical (V)
orientation (Figure 2 (c)), leading to the following 6 configurations: HS1, HB1,
HB4, VS1, VB1, and VB4. For the Centroid point, we make use of a square (in-
stead of rectangular) tracker because the shape of the left ventricle that encloses,
is approximately circular (instead of elliptical) in the short axis view. Thus, for
this landmark type only, we have 3 instead of 6 configurations: S1, B1, and B4.

Ground-truth was manually labeled by an expert. The labeled points were
recorded as time series of the coordinates of the relevant anatomical landmarks
{xg, yg}t, where t is the index of the heart phase (1 ≤ t ≤ 25). Then, all tracking
configurations (6 for Apex, Medium, Valve and 3 for Centroid) were applied on
the cine sequences to obtain time series of tracked estimates {x, y}t for the rele-
vant landmarks. The closer the tracked time series {x, y}t to the corresponding
ground-truth time series {xg, yg}t, the better.

3.2 Experimental Results

In terms of speed, all proposed tracker configurations are computationally light
and achieve real-time performance (25-40 fps) on a standard PC. In terms of
accuracy, we use the Euclidean (L2) distance metric to measure the distance be-
tween the tracking results and the ground-truth values for all 16 cine sequences.
We examine the following two questions: (a) For each landmark (Apex, Medium,
Valve, or Centroid ), which tracking configuration performs the best? (b) Of the
three tracking configurations (S1, B1, or B4), which is the best overall?

In the table of Figure 3, we provide the L2 distances that each tacking con-
figuration (columns) achieves on every cine sequence (rows). Cine sequences are
named as c#:[Landmark Designator], where c# stands for the cine sequence code
number (c1-c10), while the Landmark Designator is A for Apex, M for Medium,
V for Valve, and C for Centroid. For left and right views in Apex/Valve the
designator becomes L-A or L-V and R-A or R-V correspondingly.

The cells with red numbers in the table indicate the configurations that
achieve the minimum L2 distance for each cine sequence. We observe that the
network of collaborative trackers (n = 4) clearly outperforms the single trackers
(n = 1). This is true for all types of landmarks. Only in the case of Apex, the
easiest of the landmarks, the single trackers appear to be somewhat competitive.
Indeed, the Apex landmark point features the least amount of motion and typ-
ically sits on a well contrasted tissue area. The big single trackers, have better
contrasting support but some complex tissue movements from outlying areas
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introduce ambiguity at times. The collaborative trackers distribute the risks and
advantages. Therefore, failures are locally isolated and overall success is achieved
through optimal probabilistic reasoning (Bayesian network). Another interest-
ing observation is that the horizontal configurations fare a lot better than the
vertical ones. This is probably to be expected, as the horizontal configuration is
along the major motion axis, which is what the tracker strives to capture in the
first place. The poor performance of the vertical configurations (which are limit
cases), indicates that is not a good idea to orient rectangular trackers away from
the major motion axis of the tissue.

L2 Distance
HS1 HB1 HB4 VS1 VB1 VB4

A
p
e
x

c1:A 4.98 6.18 4.16 4.53 4.31 4.99
c2:A 1.68 7.01 2.41 2.33 2.20 2.66
c3:A 5.84 8.47 8.76 7.20 8.18 7.48
c4:L-A 7.18 9.37 7.03 — — —
c5:R-A 7.00 5.62 5.23 — — —

M
e
d
iu

m

c2:M 30.74 5.25 3.91 6.14 4.20 4.08

V
a
lv

e c1:V 3.18 5.53 2.60 5.40 3.78 3.99
c2:V 22.39 3.92 3.83 4.58 4.35 3.42
c4:L-V 2.86 2.59 2.46 4.39 1.93 1.82
c4:R-V 3.53 4.58 3.57 3.95 4.26 3.73

S1 B1 B4

C
e
n
tr

o
id

c5:C 16.11 2.39 1.65
c6:C 13.54 2.56 2.60
c7:C 31.87 3.07 3.05
c8:C 5.23 2.15 2.08
c9:C 3.59 3.09 1.58
c10:C 2.96 1.94 1.38

Fig. 3. Left: L2-based tracking performance. Right: Centroid tracking. (a) Initializa-
tion; (b) Ventricular contraction; (c) Ground-truth(blue) versus tracking results(red).

The right panel of Figure 3 shows annotated results from the tracking of the
Centroid point for all three tracking configurations. As it is evident in the third
column of images, the collaborative tracker configuration outperforms the single
trackers; the reported landmark completely coincides with ground-truth. All
the annotated experimental results can be found at http://ourpapers.info/
miccai10-mri.

4 Conclusion

We have presented a collaborative tracking algorithm that can handle robustly
heart motion as appearance changes (due to blood) in MRI cine sequences. The
algorithm provides real-time information about landmark points through which
robotic interventional tools can be compliantly guided in future valve repair
operations. The individual trackers in the algorithm are unimpressive particle

http://ourpapers.info/miccai10-mri
http://ourpapers.info/miccai10-mri
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filter trackers. When combined, however, under a Bayesian network framework,
they produce sophisticated behaviors without loosing efficiency. The framework
is flexible enough and general enough to be applied beyond MRI intervention
studies.
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