
iPhone as a Physical Activity 
Measurement Platform

 

Abstract 
iPhone is emerging as a ubiquitous physical activity 
measurement platform due to its incorporated 
accelerometer sensor. The iPhone's capacity to 
accurately measure physical activity has not been put 
to scrutiny up to now, despite claims from an increasing 
number of applications. This study examines ways to 
perform accurate physical activity measurements with 
the iPhone, at various positions on the user's body. The 
study focuses on walking and running - the two most 
prevalent aerobic activities. For walking, a methodology 
has been developed that translates accelerometer 
values from peripheral body locations to equivalent 
readings on the waist and from there to metabolic units. 
For running, the limitation of iPhone to perform 
accurate metabolic measurements is documented. The 
formulas and results in this paper can readily be used 
by developers to increase the accuracy of fitness 
applications and improve user experience. 
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Introduction 
Accelerometers emerge as the preferred sensors to 
measure physical activity under free-living conditions, 
due to their non-obtrusive nature. Accelerometer-based 
mobile phone applications are on the rise. NEAT-o-
Games ([5]) is a successful sample that enhances 
users’ daily physical activity level utilizing 
accelerometer and mobile phone platform.  

iPhone stands apart as a practical measurement 
platform of physical activity. It is a popular mobile 
phone with an incorporated accelerometer. Users carry 
iPhones on them throughout the day. Fujiki et al. in [5] 
demonstrated that when the accelerometer is not 
embedded in the cell phone, forcing the user to carry 
an extra device, usability and reliability suffer. Users 
forget to carry the sensor from time to time and the 
wireless communication between the phone and the 
sensor experiences intermittent failures. In these 
respects, iPhone with its embedded accelerometer has 
a definitive advantage. In addition, iPhone applications 
benefit from a very popular and easily accessible 
distribution network, the App Store.  Nowadays, a 
search in the App Store under the `Healthcare and 
Fitness' category reveals dozens of ubiquitous 
applications that aim to keep track of daily physical 
activity using the iPhone's embedded accelerometer 
([7], [10]).  

Despite the growing popularity of physical activity 
applications on the iPhone platform, there has not been 
any rigorous study on calibrating the device. Calibration 
is paramount to accuracy in metabolic sensing and 
computation. A number of calibration studies have been 
carried out for stand-alone accelerometer sensors that 
predate iPhone ([3], [4]). However, most of the 

calibration studies assume that users will attach the 
accelerometer on a specific position (typically on the 
waist). This expectation has little chance to come true 
even with a stand-alone accelerometer ([5]), much less 
with an accelerometer embedded in a mobile phone. 
This important issue has not been investigated enough. 
Fujiki et al. [6] developed positional calibration of 
accelerometer readings using real accelerometer 
signals obtained from different body locations, i.e., 
waist, thigh, ankle, hand, and arm. However, the study 
was based on stand-alone accelerometers, in which 
case body placement preferences are very different 
with respect to accelerometers embedded in mobile 
phones.  

The present study reveals the potential of the iPhone 
accelerometer to measure physical activity while 
walking - the most pervasive physical activity. In fact, 
based on experimentation and statistical analysis, the 
study has developed calibration formulas that can be 
used in walking applications. Furthermore, the study 
brings to the fore the limitation of iPhone in accurately 
measuring running activity. In the experiment, iPhones 
were attached at different locations where iPhone users 
typically wear them, i.e., waist, pants pocket, arm, 
hand, backpack, jacket side pocket, jacket top pocket, 
and handbag; then, the relation between these 
locations was examined. Indirect calorimetry was used 
to obtain ground-truth metabolic data. Indirect 
calorimetry is the golden standard for energy 
expenditure measurements. It gauges volume of O2 
consumed at the lung level (VO2 (L)), which is 
proportional to calorie consumption ([2]).  

Please note that this is a different study topic from the 
automatic identification of accelerometer placement 
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and activity classification ([8]). In fact, automatic 
identification of accelerometer placement and activity 
classification can be considered as complimentary to 
this study. 

Methodology. 
Subjects  
We recruited 11 healthy subjects (8 male and 3 female) 
for the experiments. Their physical attributes are 
summarized in Table 1. 

Experimental Design 
A survey of iPhone users revealed 8 preferred locations 
where they place their phones. The locations are waist, 
pants pocket, arm, hand, backpack, jacket side pocket, 
jacket top pocket, handbag. Ideally, we would like each 
subject to carry iPhones on all 8 locations to establish 
direct correlations. However, because carrying more 
than 5 iPhones on one's body is getting cumbersome, 
we split the experiment into two sessions. The positions 
measured in each session are listed in Table 2. 

The waist is included in both sessions as a master 
position. It is considered an ideal position to measure 
physical activity because it is close to the center of 
body mass ([6], [9]). This is also supported in the 
results section of this study. 

For each subject we recorded his/her weight and height. 
At the beginning of each session the subject walked on 
a treadmill for 6 minutes to warm up. After that, the 
subject was connected to a metabolic cart and sat back 
on a chair to have his/her basal metabolic rate (BMR) 
measured. Following the BMR measurement, the 
subject walked on a treadmill at seven different speeds 
from 1 mph to 4 mph, while connected to the metabolic 

cart and attached with iPhones on different positions 
(Figure 1). The speed increment was 0.5 mph, which 
was sufficient resolution for our purposes. 

Energy Expenditure 
Energy expenditure was measured with the 
ADInstruments Exercise Physiology Kit [1]. The 
subject's expired air was collected in the gas mask and 
fed to the ADInstruments LabChart Metabolic Module, 
which calculated VO2 consumption.  Specifically, energy 
expenditure per body mass purely deriving from 
physical activity was calculated as follows: 

 

The factor 5 was used to convert VO2 unit (L) to energy 
units (kcal) [2]. The units for EPA are kcal/kg. 

Accelerometer 
iPhones (up to 3GS version) use the STMicroelectronics 
LIS331DL accelerometer. In our study, 5 iPhone 3G 
devices running iPhone OS 2.2.1 were used as 
acceleration measurement platforms. A simple 
application was created to record the accelerometer's x, 
y, z-axis readings along with time stamp (Figure 1). 
The sampling rate was set as 88.5 Hz. 

Post-processing of Accelerometer Output 
We applied high-pass filtering on the raw accelerometer 
data. High-pass filtering is essential to acquire the true 
activity component from a piezo-resistive 
accelerometer, as its output includes a DC gravitational 
contribution. In the literature, the ideal cutoff frequency 
for the filter is under debate; it ranges from 0.1 Hz to 
0.5 Hz. Our experiment showed that 0.5 Hz is sufficient 

Physical 
Attribute Mean Standard 

Deviation 

Age (years) 25.18 4.75 

Body Mass (kg) 72.75 14.46 

Body Mass 
Index (kg/m²) 23.60 3.21 

Table 1 Descriptive statistics of the 
participating subjects 

Session Positions 

Session 1 Waist, pants pocket, arm, 
hand, backpack 

Session 2 Waist, jacket side pocket, 
jacket top pocket, handbag 

Table 2 iPhone body placements in each 
session. 

 

Figure 1 Experimental set-up for Session 1 
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to exclude the gravity component while still including 
all the physical activity contributions to the signal.  

To correlate accelerometer with physical activity 
measurements, the accelerometer's three dimensional 
vector needs to be summarized as one scalar value that 
represents physical activity intensity over small time 
periods. This scalar value is called accelerometer 
energy in this paper.  

To calculate accelerometer energy, several different 
methods have been proposed, but the most popular 
one is the summation of time integrals of accelerometer 
output over the three spatial axes [3]. We adopted this 
method not only because it is popular but also because 
proved to be the most reliable in our experiments. 
Hence, the accelerometer energy is calculated 
according to the following formula:  

 

where ax, ay, az are high-pass filtered accelerometer 
values corresponding to the x, y, and z axes. The 
interval of integration (T) is 30 seconds.  

Experimental Results 
Correlation of EPA and Accelerometer Energy 
Table 3 shows the correlation of physical activity 
energy EPA with accelerometer energy readings from 
various body placements of iPhone. From all positions, 
the waist accelerometer energy shows the best 
correlation with EPA with either filtering method. 

Waist Accelerometer Energy versus EPA 
 Figure 2 shows the scatter plot of waist accelerometer 
energy versus physical activity energy EPA. Data from 

both experimental sessions (Session 1 and Session 2) 
are combined here. Equation 1 shows the linear 
regression equation ( ). The graph and the  
value show that the bivariate relationship is very good. 
The regression line obtained from equation 1 can be 
used to convert waist accelerometer energy to physical 
activity expenditure.  

   - (Equation1) 

Accelerometer Energy on Waist versus Other Locations 
Figure 3 (next page) shows the distribution of 
accelerometer energy per body positions. The results 
show distinct order of distribution. The position with the 
highest energy is the pants pocket, then come waist 
and jacket side pocket; other upper body positions 
produce lower energy. 

This suggests that accelerometer energy values from 
various body locations need adjustment. 

First, linear regression analysis was attempted to 
convert accelerometer energy from various positions to 
the scale of the waist. However, the direct mappings 
create ever increasing variance and make application of 
linear regression a poor choice as in the case of stand-
alone accelerometer ([6]). 

In order to account for the ever increasing variance, 
accelerometer energy from the waist versus any other 
position was compared in the natural logarithm scale. 
The results are shown in Figure 4. All peripheral 
positions show good correlation with the waist. Most 
importantly, the variance is constant over the entire 
range, opening the way for linear regression analysis. 

Position 
Correlation 
coefficients 

Waist 0.80429 

Arm 0.41474 

Hand 0.43268 

Pants Pocket 0.74243 

Backpack 0.66035 

Jacket side pocket 0.67102 

Jacket top pocket 0.63013 

Handbag 0.69293 

Table 3 Correlation coefficients ( ) 
between physical activity energy EPA and 
positional accelerometer energy.  

 

 

Figure 2 Scatter plot of accelerometer 
energy on waist versus EPA. 
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To increase accuracy we applied weighted least squares 
instead of ordinary least squares analysis. The inverse 
of the speed was taken as the weight to account for the 
increasing variance along the speed axis. The results 
are shown in Table 4. The  values show good to very 
good correlations for all positions.  

y=ax+b  

a b 
 

Arm 0.77091 1.2328 0.65434 

Hand 0.89733 0.46088 0.72383 

Pants Pocket 0.95847 0.60686 0.87939 

Backpack 0.98815 -0.38668 0.82154 

Jacket side pocket 0.9671 0.19277 0.8928 

Jacket top pocket 0.99051 -0.27129 0.84273 

Handbag 0.95993 0.38927 0.90916 

Table 4 Linear regression parameters and correlation 
coefficients ( ) between accelerometer energy on waist versus 
other body locations in logarithmic scale.  

Running 
The running experiment was conducted with a subset 
(n=6) of the total subjects who were fit enough to 
perform this more strenuous exercise. At the end of the 
walking experiment, a preliminary experiment was 
conducted to test if a subject is fit enough for the 
running experiment.  

As in the walking experiment, the waist accelerometer 
energy was compared with EPA. The results are shown 
in Figure 5 (next page). No correlation is observable 
between accelerometer energy and EPA. 

Major reason for this bad correlation turned out to be 
the limitation of the iPhone accelerometer itself. The 
iPhone accelerometer (up to iPhone OS 3.1.2) is known 
to measure only up to ±2.3G. Figure 6 (next page) 
shows a sample of running signal from one axis, which 
clearly demonstrates this statement.  

Discussion and Conclusions 
This study investigated the potential of iPhone as a 
ubiquitous physical activity measurement device.  

It developed calibration methods for accurate 
measurement of walking activity and identified 
limitations in measurement of running activity. 
Researchers and application developers can use the 
formulas and results of this study to develop sound 
`Healthcare and Fitness' applications that will improve 
user experience. The ever expanding popularity of 
these applications and their tremendous outreach 
through the App Store distribution network, renders 
science efforts such as this one, not only technically but 
also socially valuable.  

The work builds on preliminary research first presented 
by Fujiki et al. in [6], where calibration issues were 
investigated for a custom accelerometer device. The 
present effort investigates accelerometer calibration 
issues on the iPhone platform, which has a wide 
application base. Therefore, the impact of this effort is 
likely to be far greater.  

 

Figure 4 Scatter plots of accelerometer 
energy on waist versus other body 
locations in logarithmic scale. In all 
graphs the x-axis represents the waist 
accelerometer energy. 

 

 

Figure 3 Accelerometer energy distribution 
per body position. 'Waist1' and 'Waist2' 
represent waist accelerometer energy from 
experimental Session 1 and Session 2 
respectively. 
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The study concluded that the iPhone accelerometer 
readings have the highest correlation with ground-truth 
physical activity measurements, when the phone is 
attached to the waist. This result is aligned with 
intuition, as waist is a locale very close to the body's 
center of mass. It is also in agreement with results 
reported in other studies of stand-alone accelerometers 
([6], [9]). In a nutshell, if the user wears the iPhone on 
the waist, immediate translation of accelerometer 
values to metabolic values can be obtained through the 
regression outlined in equation 1. 

Although the translation does not work as well for 
peripheral locations, the study developed a method to 
transform accelerometer readings from non-waist 
locations to equivalent waist locations. Once this is 
achieved, then one can safely correlate these virtual 
waist readings with physical activity values based on 
the regression of equation 1. 

The experiment was limited on treadmill and free range 
walking is left as a future work. This very interesting 
topic was postponed this time since it requires a mobile 
indirect calorimetry device which we could not afford. 

Last but not least, the study demonstrated some 
limitations in accurate measurement of physical activity 
during running, which are in part due to iPhone. 
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Figure 5 Scatter plot of accelerometer 
energy on waist versus EPA during 
running.  

 

 

Figure 6 Sample running signal from one 
axis. Solid line represents measured signal 
and dashed line represents interpolated 
missing signal. 
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