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Abstract— User intervention in the periorbital thermal signal 
extraction process breaks down automation. This paper 
proposes a novel way to minimize user intervention. While 
previous work demonstrated the importance of accurate 
computation of the periorbital signal, the present method 
enables its automatic extraction at a reduced processing time. 
The proposed algorithm capitalizes on detection of involuntary 
eye blinking in the thermal imagery. The need for automation 
has emerged because of repetitive processing of the same 
subjects, aiming to validate improvements in the periorbital 
tissue tracking or segmentation algorithms. The proposed 
approach initiates the tracking and segmentation algorithms 
on the same spatio-temporal location in repetitive runs of the 
thermal clip. Thus, it does not only automate the process, but 
also eliminates the variability introduced by manual 
intervention. We have tested the algorithm on thermal video 
clips of 39 subjects who faced stressful interrogation for a 
mock crime. The results show that the proposed method has 
reduced total processing time from a week down to a day. 

Keywords - thermal imaging, eye blinking detection, image 
procesing automation  

I.  INTRODUCTION  
Process automation is an essential component of any 

mass production industry such as the automobile, food, and 
drug industry. In recent years, process automation is 
becoming an increasingly popular trend in the video and 
image processing field, because acquiring and processing 
massive data sets is crucial to many real-life applications. 
Such applications include video-based border surveillance, 
screening at security checkpoints, and the like.  Process 
automation mainly serves two purposes: (a) It eliminates 
user intervention and thereby reduces human errors. (b) It 
allows mass production in a short period of time and thereby 
reduces labor. To achieve these benefits for the periorbital 
signal extraction process, we propose an automatic initiation 
approach based on eye blinking detection.  

In previous work, we have demonstrated the importance 
of the periorbital signal in thermal-based lie-detection 
analysis [1]. The periorbital signal captures the peripheral 
sympathetic response of the autonomic nervous system 
during ‘flight or fight’. Realizing the importance of accurate 
extraction of the periorbital signal, we have developed a 
segmentation algorithm [2] to delineate the periorbital tissue 
and a tracking algorithm to track the segmented region over 
time in thermal imagery [3]. The combination of 

segmentation and tracking algorithms precisely extracts the 
periorbital signal despite head motion. However, to initiate 
the signal extraction process, the segmentation algorithm 
requires the user to provide seed pixels while the tracking 
algorithm needs the region of interest to be delineated in the 
first frame. This user intervention introduces significant 
overhead in a large dataset that is repeatedly processed. 
Each clip in our dataset takes approximately 45 minutes to 
process on a standard Dell PC with 2GB RAM, Pentium 
processor, and Windows XP operating system. Thus, it 
requires close to 30 hours (45 minutes/subject * 39 subjects) 
to process the 39 clips of our dataset. Furthermore, every 
modification in the segmentation and tracking algorithms 
has to be validated afresh on the dataset. This is quite labor-
intensive. The algorithm validation also requires the clips to 
be initiated on the same spatiotemporal location in order to 
avoid any variability, which could result in inconsistent 
measurements. To eliminate user intervention, we propose a 
method to automate the periorbital signal extraction process.                      

The periorbital region sits atop of the facial and 
ophthalmic arterial-venous complexes, which supply with 
blood the orbicularis oculi muscle (see Figure 1). Thus, the 
periorbital region is proximal to the eyes, which 
involuntarily blink at certain intervals. By capitalizing upon 
the eye properties and face geometry, one can compute the 
seed pixels and tracker locations.  

 

 

 (a)   (b)   

Figure 1. Anatomical and thermal images of the face. (a) 
Facial anatomy [4]. (b) Facial areas of sympathetic 
importance: (From top to bottom) Supraorbital, Periorbital 
and Maxillary regions. 
 
In the remainder of the paper, we first discuss the details 

of our approach in Section 2. In Section 3, we discuss the 
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experimental results. Finally, we conclude the paper in 
Section 4. 

II. METHODOLOGY 
Our approach to process automation is divided into four 

parts: (1) Segment skin from background pixels by applying 
a Bayesian classification algorithm. (2) Compute blobs that 
represent motion in the current frame using a second order 
change detection method. (3) Find the best eye blinking 
candidate pair. (4) Use geometric information to compute the 
location of the seed pixels from this pair. 

A. Step 1: Skin Segmentation  
The skin segmentation method has at its core a Bayesian 

algorithm, which we proposed previously [5]. The 
probability of a pixel being skin (s) is calculated by the 
Bayesian formula: 
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where, ( ) ( )t sπ  is the prior skin probability, ( | )tf x s is 

the likelihood of pixel x representing skin,  ( ) ( )t bπ is the 

prior background probability, and ( | )tf x b is the 
likelihood of pixel x representing background, at time t. 

Since the temperature range of the coldest parts of the 
human face, such as nose and eyebrows, partially overlaps 
the temperature range of the background, the Bayesian 
classifier may misclassify cold body parts pixels as 
background pixels. This creates holes in the segmented skin 
area. On the other hand, the temperature range of covered 
skin (e.g., subject’s cloth) overlaps with the naked skin 
temperature range. Therefore, the algorithm may 
misclassify covered skin as naked skin pixels and generate 
outliers in the image. These outliers and holes in the skin 
area confuse the change detection algorithm. Therefore, it 
is necessary to remove them from the Bayesian output. We 
use connected component labeling to fill holes and remove 
outliers from the binary image. 

The connected components technique, also known as the 

blob-coloring technique, is a simple method for region 
classification [6][7]. It lists all the regions or blobs in an 
image by assigning a distinct integer number or color to each 
blob. We keep the largest blob and remove all other blobs. 
This eliminates all the spurious objects, which are mainly 
non-skin areas. We generate a complement of the binary 
image by applying the NOT binary operator. The holes in the 
image now appear as objects and the background of the 
image is the largest object in the complementary image.  We 
again apply the connected components technique to list the 
regions in the image and remove all the regions except the 
largest. Next, we apply the NOT binary operator to inverse 
the complementary binary image. Thus, the output image is 
free from spurious objects and holes. The image is treated as 
a binary mask and convolved with the raw thermal image to 
get optimal skin segmentation (see Figure 2). Localizing the 
skin region not only reduces false detection of blinking but 
also improves the time complexity of the eye detection 
algorithm. 

B. Step 2: Change Detection 
The simplest way to detect object motion in a video clip 

is to take image differences between subsequent frames. 
This first order differentiation identifies global as well as 
local motion in the imagery. By global motion, we refer to 
a motion that persists for an extended period of time, such 
as face motion and body motion. Local motion refers to 
changes that appear instantaneously, like involuntary eye 
blinking. 

The first-order change detection is computed by taking 
the absolute difference of the current ( tI ) and previous 

( 1tI − ) thermal frames: 
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The resultant image dI is then converted into a binary 
image by selecting an appropriate threshold (T) value. The 
threshold value depends on the noise level in the image. The 
first-order change is sufficient to detect eye blinking when 
the face is stationary. However, when the face moves, many 

(a)                                                               (b)                                                            (c) 
 
Figure 2: Skin segmentation: (a) Raw thermal image. (b) Bayesian skin segmentation. (c) Final output after post-processing. The 
Bayesian skin segmentation segments the skin area, but leaves outliers and holes in the image. Post-processing is necessary for 
optimal skin segmentation.  
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blobs appear around the face boundary as well as on the face 
itself, after the first-order differentiation (see Figure 3a and 
Figure 3d). 

We remove the blobs that represent global motion by 
taking a second-order differentiation [8]. The second-order 
differentiation takes three consecutive image frames and 
computes a first-order differentiation between the first and 
second frames ( tdI ) as well as between the second and 

third frames ( 1tdI ), as shown in Equation  (2). The 

resultant binary images, tdI  and 1tdI , are then used to 

compute the velocity ( , )i jV v v of the moving object: 

 ( , )  argmin || -  1 ( ) ||,i j t tV v v dI dI V=  (3) 

where, ||.|| represents  the L1 norm of a vector. 

We generate the 1 ( )tdI V image by shifting the 1tdI  by 

( , )i jv v pixels. The image  1 ( )tdI V  is dilated via a binary 
morphological operator to cover not only the changed pixels 
but also the neighborhood of the changed pixels.  

Finally, we compute the tddI image by subtracting 

1 ( )tdI V from tdI  (see Figure 3c and Figure 3f). The 

isolated pixels in the tddI image are removed via a median 
filter. 

C. Step 3: Blob Analysis 
In this step, the best candidate eye blinking pair is 

computed. So far in the algorithm, we have analyzed 
individual blobs. Next, we explore pairs of blobs in order to 
find the best blinking pair from all possible candidate pairs. 
The possible number of candidate pairs can be computed 
using the following equation: 

( 1)_ , ,
2

n nC a nd ida te P a ir P −=  (4) 

where n is the number of blobs in the current frame. For 
example, if n  = 4, the number of possible pairs  are 6, 

1 2( , )P b b : (1,2), (1,3), (1,4), (2,3), (2,4), (3,4).  

We compute the Euclidian distance ( 1 2( , )d b b ) between 
blobs in each pair and the orientation of the line that 
connects the blob centroids in each pair 1 2( , )L b bθ . We 
then apply a distance constraint to discard the pairs that 
have blobs too close or too far from each other. The distance 
constraint is set based on anthropometric knowledge [9] and 
the camera model.  

Next, we calculate the orientation of each blob in the 
following two steps. First, we apply a skeletonization 
algorithm that transforms an elliptical blob into a line. In the 
second step, we fit a linear polynomial to find the 
orientation ( )B bθ of the line that represents the blob. If 
both blobs in a pair represent blinking blobs, their 
orientation ( 1 2( ) and ( )B Bb bθ θ ) should match the 

orientation of the line that connects them ( 1 2( , )L b bθ ). We 
use this information to compute the orientation error 
( ( )OE P ) for each pair using the following equations: 
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If a pair 1 2( , )P b b  represents an eye blinking set, it 

should have blobs of nearly the same size. Based on this 
assumption, we compute the size ratio error as follows:  
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The values are then normalized between 0 and 1. Finally, 
the total error is computed from Equations (5) and   (6): 

 
( )  ( ) ( ).T O SRE P E P E P= +   (7) 

 
The minimum total error ( )TE P  corresponds to the best 

possible eye blinking pair. 

D. Step 4:  Seed Pixels Computation 
Once eye blinking is detected, we use the x- and y-

coordinates of the blinking blobs to compute the four 
corners (top left, bottom left, top right, and bottom right) of 
the tracking region of interest (ROI), as follows: 

 

Figure 3: Second order change detection for two different
instances. Top instance: (a) Global changes (head motion) at time
t. (b) Global changes at time t-1. (c) Second-order change. It does
not contain any useful information. Bottom instance: (d) Local
(eye blinking) and global changes. (e) Global changes. (f) 
Second-order changes (include local changes and some noise).  
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where ( )LCG X and ( )LCG Y are x- and y-coordinates 
of the center of the left eye blob, respectively, while 

( )RCG X and ( )RCG Y are x- and y-coordinates of the 
center of the right eye blob, respectively. This information is 
then supplied to the tracking algorithm to initiate the 
tracker.  

Having defined the ROI, we subdivide it to roughly 
localize the periorbital area. The entire ROI is first divided 
into two equal size columns: a left column and right 
column. Each column is then subdivided into four equally 
sized cells. The top right cell of the left column is labeled 
as the left periorbital region and the top left cell of the right 
column is labeled as the right periorbital region.  Pixels 
with the highest temperatures in the left periorbital region 
and the right periorbital region are then labeled as the left 
seed pixel and the right seed pixel respectively. The seed 
information is then used to initiate the periorbital 
segmentation algorithm. 

III. EXPERIMENTAL RESULTS 
We have tested the proposed algorithm on thermal clips 

of 39 subjects. The thermal clips were captured during the 
interrogation of subjects who were suspects of check 
stealing in a mock crime scenario [1]. The goal of the 
proposed approach was to detect at least one eye blinking 
before the interrogation began. Figure 4 illustrates that the 
algorithm successfully achieved this goal for all the 
subjects. On average, it used 300 thermal frames to detect 
the first blinking in the thermal clips.   

There is inter-individual variation in the number of blinks 
detected (see Figure 4) that is due to variation in the 
involuntary blinking rate, variation in the number of thermal 
frames before the beginning of the interview, and the 
algorithm’s error in the presence of excessive head motion. 

Since false negatives (fail to detect eye blinkings) do not 
produce adverse outcomes, we have biased the parameters 
to minimize false positives (false blinking detection). As a 
result, the algorithm misses blinking in excessive head 
motion. However, we are not worried about these cases as 
just one involuntary blinking is required to initiate the 
process. 

 

 
Figure 4: Number of blinkings detected before the start of the 
interrogation.    

 
There were five instances of false positive detection in the 

dataset (see Figure 5). The main reason for the false positive 
detection was that whenever a subject raised his/her 
eyebrows involuntarily (e.g., in surprise or frustration 
emotions) or fast enough, the algorithm detected this change 
as eye blinking. This happened because the eyebrows and 
eye blinking blobs share similar geometric characteristics in 
the thermal domain. One possible solution to this problem is 
to use the thermal signature of the eyebrows in the detection 
algorithm, which is typically lower than that of eyelids.  

 

 
Figure 5: Number of false positive blinks. 

 
The algorithm works optimally at approximately 40 

frames per second (fps) video capture rate.  Eye blinking 
detection at a higher video capture rate may require larger 
inter-frame distance among the three frame samples. 

The proposed approach eliminates user intervention in the 
initiation of the periorbital signal extraction process. This 
significantly reduces the amount of labor hours. Roughly 
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speaking, the total labor to initialize 39 clips has been 
reduced from 4 hours (5mins/clip x 39 clips) to just a few 
minutes. More importantly, the method has accelerated data 
processing speed as the process can now be run in a batch 
mode. The time to complete one run of the signal extraction 
process for the 39 clips has been reduced from a week (45 
min/clip x 39 clips) to a little over a day. 

The approach is computationally expensive as the 
second-order change detection computes the motion 
velocity at every frame and uses median filtering to remove 
isolated pixels. Therefore, once the signal extraction process 
is initialized, we stop detecting the blinking. 

 Figure 6 shows outputs from every algorithmic step that 
was discussed in Section 2. 

IV. DISCUSSION AND CONCLUSIONS 
User intervention was one of the major obstacles in 

achieving automation in the deception detection process. 
We propose a novel approach to solve the problem. The 
periorbital region is localized via detection of the eyes in the 
thermal imagery.  

This approach allows batch-processing of data as user 
intervention is not required for initiation of the periorbital 
signal extraction process. Thus, it saves long labor hours, 
especially when massive amounts of data need to be 
processed. It also speeds up data processing as it can run 
day and night without waiting for user input. The other 
advantage of the method is that it guarantees to select the 
same spatiotemporal location for repetitive processing of a 
clip. This is very important when comparison is made 
among different versions of the tracking and segmentation 
algorithms.  

Ultimately, this approach will prove very convenient 
when a deception analysis system is deployed in the field, 
especially, for quick screening at security checkpoints 
where minimal user intervention is preferred to accelerate 
the screening process.  

By locating the eyes on the face, one can locate other 
facial areas of sympathetic importance, such as the 
supraorbital and maxillary areas (see Figure 1). Therefore, 
this approach can be extended to automate more than one 
facial thermal signal extraction processes. A natural 
expansion of our method is to perform blinking 
quantification and investigate its relationship to deception 
analysis. 
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Figure 6: Automatic initialization of the periorbital signal 
extraction process for two subjects. (a) Original thermal image. 
(b) Binary mask that represents skin area. (c) Skin segmentation
output. (d) Blinking detection, the location of the seed pixels 
and the tracking region of interest. (e) Tracking initialization. (f)
Periorbital tissue segmentation.  
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