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In the last few years, accelerometer-based 
entertainment and health applications have been 
receiving increased attention in the research and 
commercial worlds. The effect of accelerometer 
placement on different parts of the body, despite its 
apparent significance, received little consideration. This 
paper documents through experimentation the different 
characteristics of accelerometer output on the waist, 
arm, wrist, thigh, and ankle in the context of 
translational body motion (walk). Furthermore, it offers 
experimental formulas that transform peripheral body 
measurements to more reliable, center body (i.e., 
waist) measurements, and these in turn to caloric 
measurements, which are the standard physical activity 
units. The importance of these results on the design of 
ubiquitous health applications and the ensuing user 
experiences cannot be underestimated. The paper’s 
methodology can be used in further studies in other 
physical activity contexts, where more elaborate body 
motion patterns are involved. 

Copyright is held by the author/owner(s). 

CHI 2009, April 4 – April 9, 2009, Boston, MA, USA 

Author Keywords 
Ubiquitous health applications, Physical activity 
interfaces, Accelerometer placement ACM 978-1-60558-247-4/09/04. 

CHI 2009 ~ Student Research Competition April 4-9, 2009 ~ Boston, MA, USA

3425



  

ACM Classification Keywords 
H5.m. Information interfaces and presentation (e.g., 
HCI): Miscellaneous.  

Introduction and Previous Work 
Accelerometer-based pervasive applications including 
health games and physical activity trackers are gaining 
popularity. Fujiki et al. [4][5] developed NEAT-o-Games, 
where the players’ physical activity “fuels” running 
avatars in a virtual race that is taking place over the 
cellular network throughout the day. Consolvo et al. [3] 
developed an entertainment application in which the 
cell phone’s wall paper design changes based on the 
user’s accelerometer values. Vito [9] tried to increase 
the user’s activity levels by disabling the TV remote 
until enough activity points have been recorded 
through the accelerometers. Nowadays, a search in the 
App Store under the `Healthcare and Fitness’ category 
can reveal dozens of ubiquitous applications that aim to 
keep track of daily physical activity. 

The problem with almost all these applications is that 
they do not take into account the dramatic effect the 
accelerometer placement has on the measurement. 
Fujiki et al. [5] have shown that different users prefer 
to attach the accelerometers in different parts of their 
bodies in physical activity games that involve walking. 
The question is how different positions affect the 
accelerometer output and bias these games or other 
ubiquitous physical activity applications.  Such bias 
should be taken into account in application design to 
enhance the user’s experience.  

Furthermore, accelerometers give indirect and 
sometimes misleading indications of physical activity 
intensity. Unfortunately, many applications report only 

raw accelerometer values or simple derivatives, like 
steps, for what is in essence a metabolic activity 
measurement. But, a step taken from a 150 lb 
individual is vey different from the step taken by a 250 
lb individual, as different mass is carried around. For 
this and other reasons, the gold standard for reporting 
physical activity is metabolic units (i.e., Kcal) measured 
through a gas analyzer.  

Therefore, variability from different body placements is 
compounded with inherent inaccuracy of the 
accelerometric measurement space to ruin user 
experiences in pervasive physical activity interfaces. 
Thus, a way has to be found not only to reconcile 
accelerometer measurements from different parts of 
the body, but also to transform these measurements to 
metabolic  units. 

Please note that this is a different problem from the 
automatic identification of accelerometer placement 
and activity classification [7][8]. In fact, automatic 
identification of accelerometer placement and activity 
classification could be considered as complimentary to 
the work reported here.  

Methodology 
Accelerometer  
A custom accelerometer system, built in the University 
of Houston’s Computational Physiology Lab, was used 
for the experiments. The system’s sensing device is the 
Hitachi H48C Tri-Axial Accelerometer Module; its output 
is processed by Parallax P8X32A-M44 MCU and sent to 
the data logger (cell phone and/or computer) via Blue 
Radio C40AH Bluetooth module.  The H48C 
accelerometer is a mainstream piezo-resistive type with 
a small scale factor. The sampling rate of the 
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Figure 1. (a) Conceptual figure of 
experimental setup. (b) A snapshot of 
the actual experimental set-up. 

accelerometer is 55 Hz, which is more than adequate 
for recording human physical activity. The minimum 
frequency bound reported in the literature is 25 Hz [1]. 
In the last few months, with the spread of 3G cell 
phones that feature embedded tri-axial accelerometers 
(e.g., iPhone), such custom accelerometers are not 
necessary anymore. But, the result for the purpose of 
this paper is all the same. 

Experimental Setup  
The experimental setup included 5 custom 
accelerometers (see description above) and a Proform 
400T treadmill, as well as an ADInstruments ML206 
Gas Analyzer. The accelerometers were attached to 
each subject on the following body positions: wrist, 
upper arm, waist, thigh, and ankle. The accelerometer 
data were logged to a computer via Bluetooth for post-
processing. Each subject also wore a gas mask, which 
was connected to the gas analyzer. The ADInstruments 
Gas Analyzer calculates the volume of O2 burnt inside 
the body (VO2), which is widely known to be 
proportional to caloric expenditure [6]. First, the 
subject sat on a chair and relaxed for 5 min while 
his/her baseline metabolic rate (VO2) was measured. 
Then, the subject was asked to walk on a treadmill at 8 
different speeds from 1 - 4.5 mph. The speed was 
incremented by 0.5 mph, and each speed level was 
maintained for 4 min. No inclination was employed 
(Figure 1). 

Ten healthy adults (8 males, 2 females) were recruited 
for the experiments. All subjects, except for one, 
repeated the experiment on a different day (a week to 
two weeks later).  The exception was a subject who 
moved out of town, and thus, could not participate in 

the repeat session. Some descriptive statistics of the 
participating subjects can be found in Table 1. 

Post Processing 
The collected data were high-pass filtered. High-pass 
filtering is essential to acquire the true activity 
component from the piezo-resistive accelerometer, as 
its output includes a DC component (due to gravity) by 
default. Next, the time integral of the accelerometer 
output from the three measurement axes was 
calculated using the following formula [2]: 

0

0

1 ,( )y z

t T
xt

totIA a a dt
T

a
+

= + +∫       (1.1)  

where ax, ay, and az are high-pass filtered 
accelerometer values corresponding to the x, y, and z 
axes. The interval of integration (T) is 30 sec. The unit 
of IAtot is milli-g, which corresponds to one thousandth 
of the gravitational acceleration of the earth.   

Experimental Results 
Relation between IAtot and VO2 

Figure 2 shows the scatter plots of waist accelerometer 
output calculated via (1.1) and the corresponding 
normalized metabolic ( 2VO ) measurements. The 

latter are computed by subtracting the resting from the 
exercise VO2 measurements and dividing the difference 
by the subject’s weight. Please note that Kcal can be 
computed by multiplying the normalized metabolic 
values by the factor 5 [6]. There is high linear 
correlation (r²=0.7515) between the two variables. 
Linear regression analysis yields formula (1.2), in which 
IAtot (waist) is calculated via formula (1.1). 

Physical 
Attribute Statistics (n=10) 

Age(years) 27, 4.80μ σ= =  

BMI (kg/m2   ) 25.22, 3.45μ σ= =  

Table 1. Descriptive statistics of the 
participating subjects 5

2 (3.7408 ( ) 2.4918) 10totVO IA waist −= × − ×  (1.2) 
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Thus, for an accelerometer worn on the waist, it is 
possible to calculate accurate metabolic expenditure by 
using linear equation (1.2). However, numbers on other 
body locations are not as promising as the waist’s. 
Figure 3 shows scatter plots on different body locations 
(i.e., wrist, arm, waist and thigh). Thigh and ankle 
plots show degrading linear relationship, with 
correlations worse than waist’s (r²=0.6649 and 
r²=0.7002 respectively). Wrist and arm show non-
linear relationships (r²=0.3434 and r²=0.4968 
respectively). These results indicate that the waist is 
the best location to measure metabolic consumption. 

 

IAtot on different body locations 

 

Figure 2. Relation between IAtot on the 
waist and normalized metabolic activity. 
The pink line is produced by ordinary least 
squares regression analysis. 

Figure 4 shows a box-plot graph of IAtot for different 
body positions. The figure illustrates that there is a 
distinct trend in the distribution of accelerometer 
responses on different body locations while people are 
walking. The ordering (from lower to higher) is: wrist, 
arm, waist, thigh, and ankle. To illustrate the 
importance of the point, consider the following specific 
example from the experimental data: The average 
response from the wrist, when fast walking at 4.0 
miles/hour is 609.49, whereas the average response 
from the ankle, when slow walking at 2.0 miles/hour is 
727.30. In other words, when a subject wears the 
sensor at the ankle and walks at 2.0 miles/hour, the 
system erroneously shows that he/she is more active 
than a person who wears the sensor on the wrist and 
runs at 4.0 miles/hour. This can be interpreted from 
the kinematics point of view as follows: Both thigh and 
ankle are affected by complex rotational components 
along with shock from the ground, which result into big 
accelerometer responses. By contrast, arm and wrist 
have small rotational components while walking, and 
the shock from the ground does not reach these upper 
parts of the body, thus resulting into small 
accelerometer responses. 

Figure 3. Relation between IAtot and normalized metabolic 
activity on various body locations ((a):wrist (b):arm 
(c):thigh (d):ankle) .  

 
Figure 5 shows the bi-variate response relationship 
between the waist (x-axis) and the remaining four 
locations. The waist was chosen to be the basis, 
because as demonstrated earlier, the waist is the best 
position for metabolic consumption measurements. All 
scatter plots show moderate linear relationships. 
Furthermore, one can observe that the response 
variability is increasing from lower to higher speeds, 
indicating heteroscedasticity. This prevents the 
application of ordinary least squares (OLS) regression. 
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To deal with this issue, the authors transformed the 
data by taking the natural logarithm of IAtot and 
applying weighted least-squares regression. The 
inverse of the speed was taken as the weight to 
account for the non-constant variance, which is 
analogous to speed. Figure 6 shows the resulting 
scatter plots and regression lines. All four graphs now 
reveal strong linear relations. Note also that the 
residuals are small and almost constant over the entire 
data range. These linear relations can be used to 
”correct” responses from different body positions to 
produce a unified range of output. Parameters of the 
regression lines are shown in Table 2. r² values indicate 
we got reliable regression lines for all positions. Using 

Table 2, accelerometer responses from peripheral body 
positions can be transformed to equivalent waist 
responses. Then, using formula (1.2), they can be 
transformed to metabolic rate values. 
 
Conclusions 
The paper demonstrates the dramatic difference that 
accelerometer placement can have on the 
measurements used in ubiquitous entertainment and 
health applications. Ignoring these factors will result in 
faulty interfaces, responsible for unfair physical activity 
gaming or erroneous physical activity recording. Most 
importantly, the paper offers transformation formulas 
that can reduce accelerometer measurements from 

 

Figure 5. Scatter plots of IAtot between peripheral body 
locations and waist.  Moderate linear relationship is present 
in all graphs and variability is increasing along with speed. 

 

Figure 4. Box-plot of IAtot for different 
locations. Red points are outliers. The 
ordering of the distributions is clearly from 
wrist to ankle (lower to higher). 

 

Figure 6. Scatter plots of ln(IAtot) between peripheral body 
locations and waist. Green lines are regression lines produced 
by weighted least-square regression analysis. 

Body 
Position 

Parameters of  
fitted line (y = ax +b) 

2r  

Wrist 0.71, 1.32a b= =  0.64  

Arm 0.75, 1.17a b= =  0.84  

Thigh 0.99, 0.61a b= =  0.94  

Ankle 0.90, 1.36a b= =  0.90  

Table 2. Linear regression parameters and 
their corresponding r2
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various peripheral body positions to equivalent waist 
positions. The waist position is the one that best 
correlates to metabolic rate consumption, as it is in the 
center of the body, shielded from shock from the 
ground, and featuring only a translational component. 
Finally, the paper offers a formula that can transform 
the equivalent waist measurements to normalized 
metabolic measurements, which are the proper units 
for physical activity reporting.  

The paper comes to fill an important gap in the current 
literature and practice at the moment that ubiquitous 
physical activity applications proliferate. The current 
state of affairs ranges from oblivion to half-baked 
solutions in a multi-step problem. An example of the 
latter is transformation of the accelerometer values to 
metabolic values based on heuristic tables and without 
consideration of the accelerometer’s position.  

The paper reports results for walking, which is the most 
common daily physical activity. The same methodology 
can be used to produce formulas for other physical 
activities, like stair climbing. The methodology uses 
accelerometers attached at various parts of the body, 
where cell phones are usually tacked, to generate 
measurements for a range of intensities precisely 
produced by a relevant exercise machine. To ensure 
statistical significance, these measurements are 
produced for various subjects and in repeat sessions. 
The data are statistically analyzed and modeled and 
experimental formulas are extracted that can be 
incorporated in ubiquitous interfaces. These formulas, 
when supported by automatic activity classification and 
sensor placement algorithms reported elsewhere, can 
form a complete and reliable physical activity interface. 
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