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Abstract 

A novel method f o r  2D shape recognition is  pro- 
posed. T h e  method employs as a dissimilarity mea- 
sure the degree of morphing between a test  shape 
and a reference shape. A physics-based approach sub- 
stantiates the degree of morphing as a deformation 
energy and casts the problem as a n  energy minimiza- 
t ion problem. T h e  method operates upon key segmen- 
tat ion points that  are provided by a n  appropriate seg- 
mentat ion algorithm. T h e  recognition paradigm i s  in- 
variant t o  translation, rotation, and scaling. It can 
handle both convex and non-convex shapes. T h e  pro- 
posed sy s t em exhabits robust recognition behavior and 
real-time performance in a series of experiments. T h e  
experiments also highlight the ability of the  method t o  
recognize deformable shapes. 

1 Introduction 

2D shape recognition is one of the central issues of 
machine vision. The problem arises in a variety of 
contexts. For example, the sorting and handling of 
industrial parts in manufacturing environments often 
include the 2D shape recognition problem. The same 
problem emerges in the context of an Intelligent Trans- 
portation System (ITS) or a security system for moni- 
toring pedestrian traffic. In addition, Automatic Tar- 
get Recognition (ATR) systems for classifying images 
of military planes involve shape recognition tasks. Fi- 
nally, the Optical Character Recognition (OCR) area 
for recognizing characters, words, and signatures is 
based on the classification of shapes. The common 
goal in all these applications is to reliably recognize 
the outline of a 2D object (silhouette of an industrial 
part or a pedestrian or an airplane) or a contour (let- 
ters, numerals). 

This paper introduces a framework for handling 
comprehensively the recognition of rigid and de- 

formable 2D shapes. It proposes the use of physics- 
based contour metamorphosis for shape recognition. 
Contour metamorphosis is a well established graphics 
technique that refers to the problem of computing a 
continuous contour transformation from an initial con- 
tour to a target contour. It has widespread applica- 
tions in computer animation. Contour metamorphosis 
was first used for recognition purposes in [9]. There, 
a system for on-line handwriting recognition was re- 
ported that achieved very high correct classification 
rates. The same method has now been sufficiently 
modified and improved to deal with the more generic 
task of 2D shape recognition. The proposed system 
uses to its advantage the intuitive fact that two con- 
tours that are similar don’t have to go through an 
extensive metamorphosis in order for one to assume 
the shape of the other. Thus, the degree of morphing 
between a test contour and a reference contour can 
be used as a shape matching criterion. The degree 
of morphing is an abstract quality that in our system 
is substantiated through a physics-based approach to 
contour metamorphosis first proposed by T. W. Seder- 
berg e t  al. [12]. Sederberg’s approach was developed 
for animation purposes and has been modified first in 
[SI, and even further now, to deal with the pattern 
recognition tasks at hand. 

Each contour is considered to be made of a piece of 
wire. Contour metamorphosis takes place through ap- 
propriate stretching and bending of the artificial wire 
out of which the initial shape is made of. That allows 
for the problem to be formulated as an energy mini- 
mization problem. The energy consumed for stretch- 
ing and bending a wire contour to some other wire 
contour is the entity that quantifies the degree of mor-  
phing concept. The metamorphosis is guided not by 
every point but only by a few key points which are 
the result of a segmentation process. This reduces the 
computational complexity and abstracts away part of 
the variable nature of real world shapes. The proposed 
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formulation allows comparison of two shapes indepen- 
dent of their relative orientation and position. Scale 
invariance is achieved by mapping the shapes to a unit 
square. blance. 

3. It should be easy to compute. 

4. It should match intuitive notions of shape resem- 

In this paper we first present some previous work 
conducted in the area of 2D shape recognition and 
we compare it with the proposed method (Section 2). 
Then, in Section 3 we describe the method in some 
detail. The experimental performance of the system 
is reported in Section 4. Finally, conclusions are drawn 
and the future work is outlined in Section 5 .  

2 Previous Work 

2D shape recognition is one of the most heavily 
researched areas in machine vision. (See for exam- 
ple [6] for a review of the literature). Shape recogni- 
tion systems can be characterized by the shape rep- 
resentation method they adopt and by the dissimilar- 
ity measure they use. Regarding the shape represen- 
tational aspect, recognition systems can fall loosely 
into five classes: representation by global features, lo- 
cal features, boundary description , skeleton, and 2D 
parts. Boundary representation is the most common 
representation for 2D objects [4, 7, 131. In this con- 
text, polygonal approximation and dominant point de- 
tection are considered powerful representational tech- 
niques [8, 10, 151. They can represent any shape to 
an arbitrary degree of accuracy. In fact, they can de- 
liver an adequate representation of the shape, while at 
the same time reduce its data volume by as much as 
70% - 80%. Such algorithms have also low computa- 
tional cost (O(n )  to O ( n 2 ) )  and thus, they are suitable 
for real-time machine vision applications. Our method 
is within this powerful representational framework and 
uses a segmentation algorithm [8] with special prop- 
erties. 

Shape recognition systems can also be classified ac- 
cording to  the dissimilarity measure they use. For 
an extensive treatment of the subject one may look 
at [14]. Within the boundary description representa- 
tional framework, some of the measures that have been 
used are the La distance between the turning functions 
of two polygons [l], the Hausdorff distance, and the 
sum of squares of the Euclidean distances from each 
vertex of each polygon to  the convex hull of the other 
polygon [5]. Generally speaking, a dissimilarity mea- 
sure should satisfy the following properties proposed 
by Arkin et al. [l] in order to  be effective: 

1. The measure should be a metric 

2 .  It should be invariant under translation, rotation, 
and scale change. 

The novel dissimilarity measure we propose (degree of 
morphing), as will be shown, satisfies all the above 
requirements. 

Recently, a new generation of shape recognition sys- 
tems has emerged that perform robustly in difficult 
machine vision tasks [2, 111. These newer systems fea- 
ture sophisticated representational mechanisms, dis- 
similarity measures that satisfy the properties sug- 
gested by Arkin et al. [l] and are resilient to  noisy data 
and shape deformations. This is quite an improve- 
ment over the older machine vision systems that per- 
formed well for limited classes of rigid objects only and 
were sensitive to noise. The price, however, has been 
increased computational complexity which cannot be 
afforded in real-time applications. Most of the newer 
systems employ a deformation measure, the computa- 
tion of which, involves nontrivial variational calculus 
[2] or finite element analysis [ll]. In comparison, the 
system we propose computes its deformation measure 
(degree of morphing) by employing a very fast dynamic 
programming technique. At the same time, the system 
performs well in difficult recognition tasks, like the 
recognition of deformable objects. Thus, the proposed 
method not only features high quality recognition per- 
formance but also remains efficient and suitable for 
real-time applications in reasonably priced hardware. 

3 The Proposed Method 

Contour metamorphosis is defined as the transfor- 
mation of one contour (initial) to another (target) [la]. 
Met,amorphosis takes place at  the point level. Points 
from the initial contour should be morphed to  t,he cor- 
responding points in the target contour. It would be 
computationally inefficient for all the shape points to  
participate in the metamorphosis process. It would 
also prove harmful to the recognition process due to 
the ever present noise a t  the point level. The neces- 
sary level of abstraction can be provided by a good 
segmentation algorithm. 

Several well-known segmentation algorithms [3, 101 
have been tried but none has produced satisfactory re- 
sults for the needs of the proposed system. One major 
problem with most segmentation algorithms is that 
their performance even on similar shapes may vary 
both in the number and arrangement of segmentation 
points. This is caused by noise and local shape vari- 
ability. Furthermore, most segmentation algorithms 
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are parameter dependent. This precludes the automa- 
tion of the recognition task and does not serve the 
purpose of the proposed system. As it will be shown 
later in this section, for the metamorphosis to work 
properly, the segmentation points between the initial 
contour and the target contour should correspond in 
meaningful ways. One way to  do this is to have a 
high curvature point correspond to a high curvature 
point and a low curvature point correspond to a low 
curvature point if possible. This necessity determines 
the philosophy of the segmentation algorithm we pro- 
pose. The basic idea is that the contour is considered 
as a succession of high curvature points (corners) and 
relatively low curvature regions that obey the pattern 
. . . corner - low curvature region - corner.. . Segmen- 
tation reduces low curvature regions to a single point 
(key low curvature point) that is usually placed some- 
where in the middle of the low curvature region. A 
full account of the segmentation algorithm we use and 
a comparative study that highlights its special quali- 
ties can be found in [8]. In short, the algorithm uses 
the method suggested by Brault et al. [3], slightly 
modified, to find the corners. The modifications in- 
troduced render the algorithm parameterless and thus 
fully automated. Then, innovatively, a method con- 
jugate to that of locating corners, is used to find key 
low curvature points. The algorithm gives similar seg- 
mentations for similar shapes even in the presence of 
certain levels of noise. This facilitates the metamor- 
phosis based matching process. Fig. 1 gives a charac- 
teristic example of the algorithm's performance. The 
points indicated by small squares are the corner points 
and the points indicated by small discs are the key low 
curvature points. 
I 

Figure 1: Segmentation of a pyramidal shape by the 
algorithm reported in [8]. 

In our approach, a shape is represented by the seg- 
mentation points of its outline contour only. If Ci 
(i = 0, 1, . . . , n) denote the segmentation points of the 
contour C, then the contour C could be represented 

in vector form as 

c = [C,,Cl, . . . , Cn]. (1) 

Metamorphosis from an initial contour Cr  to  a target 
contour CT is accomplished by performing a linear 
interpolation between the corresponding segmentation 
points of the two contours, 

C( t )  = UC1+tCT 
= [UC,' + tc;, uc: + tc?, . . . , uc; + tC,'] 
= [Co(t),Cl(t),. . . ,Cn(t)l (2) 

where t is the time variable normalized to  the interval 
[O, 11 and U = 1 - t .  

In general, the initial contour Cr has a different 
number of segmentation points (n points) than the 
target contour CT (m points). Thus, point correspon- 
dence becomes the central issue in contour metamor- 
phosis. Sederberg et al. in [12] addressed the point 
correspondence problem in the following manner: All 
the possible point correspondences between an initial 
contour of n points and a target contour of m points 
were represented by an m x n matrix. The determina- 
tion of the preferred point correspondence is consid- 
ered as an optimization problem and is solved by em- 
ploying a dynamic programming technique. For this to  
happen, each candidate point correspondence is asso- 
ciated with a value (point correspondence cost). The 
computation of the point correspondence cost is based 
on the following physics paradigm. The contours are 
considered to be made of virtual wires, metamorphosis 
takes place through bending and stretching of the ini- 
tial wire (contour) to the target wire (contour). Such a 
formulation allows each point correspondence to be as- 
sociated with a deformation measure that represents 
the stretching and bending energy that is consumed 
during the metamorphosis. The optimal point corre- 
spondence is the point correspondence that consumes 
the least metamorphosis energy. A visualization of the 
method in action can be seen in Fig. 2. The first and 
the final frames in the action sequence have the out- 
put of the segmentation algorithm superimposed with 
the corner points represented by small squares and the 
key low curvature points represented by small discs. 

Despite its merits, Sederberg's approach cannot be 
applied effectively to  quantify 2D shape differences. 
It does not elaborate on how to automatically select 
points for representing a shape, nor does the metamor- 
phosis energy satisfy the properties of a metric. This 
is not surprising in that the goal of Sederberg et al. 
in [12] was to obtain visually pleasing metamorphoses. 
We, however, are primarily concerned with using the 
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Figure 2: An industrial part is metamorphosed to the same industrial part that differs from the initial up to a 
noise level and a geometric transformation only. Because the initial and the target contours are very similar, the 
metamorphosis is least pronounced and the deformation energy spent is very small. 

energy spent in metamorphosis as a dissimilarity mea- 
sure for 2D shape recognition. 

From [12], we have maintained the formula for the 
stretching energy (E,): 

where LI is the initial length of the wire and LT is 
its length after the deformation. The term c, is a 
user-definable parameter which controls the penalty 
for segments of the wire that collapse to  points during 
the metamorphosis. Finally, k ,  is the user-definable 
stretching stiffness parameter. 

Initial Contour 
1 

0 1 2 _ _ _  

Figure 3: Computation of the optimal point corre- 
spondence. 

We have introduced the following two important 
modifications in the original method [12]: 

(A) The bending energy (Eb) is now computed as: 

Eb = (4) 

where k b  indicates the bending stiffness and Ad 
represents the absolute bending angle change due 
to  the metamorphosis of a particular triplet of 
segmentation points. The formulation in Eq. (4) 
takes into account only the difference in the corre- 
sponding angles between the input and the target 

contour and nothing else. Contrary to the formu- 
lation in [12], the current formulation is symmet- 
ric with respect to the direction of metamorpho- 
sis. 

(B) The matrix in Fig. 3 shows how to compute the 
cost of a point correspondence. The modifica- 
tions introduced in the first two rows and columns 
ensure that the cost of point correspondences is 
always finite. This is achieved through the appro- 
priate combination of stretching E, and bending 
energies Eb. The cost of corresponding the point 
Cf of the input contour to the point CF of the 
target contour is defined as the minimum cost of 
the previous point correspondence (C,'-, , CF) or 
(C,', CT-l) or (C,'_,, C,',) and the incremental 
cost in connecting that to  (C,', CT). The arrows 
at each cell in the table indicate the possible pre- 
vious correspondences. By following the outgoing 
arrows from a cell to  its immediate neighbors, we 
get the points participating in the computation of 
the corresponding stretching energy (E,). By fol- 
lowing two consecutive outgoing arrows (triplet of 
points), we get the points for the bending energy 
(Eb) computation. The symmetric structure of 
the matrix ensures that the deformation energy 
for each point correspondence is invariant to the 
direction of metamorphosis. 

Figure 4: Representative shapes from the database. 
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Ref. Shapes 
21 

We informally argue that with the above modifi- 
cations, the energy deformation measure E (degree of 
morphing) fully satisfies the properties of a metric, 
namely: 

Test Shapes Correct Classifications Misclassifications Success Rate 
84 82 2 97.62% 

(2) E(C1,C2) = 0 iff C1 = C2 

(3) E(C1, C2) = E(C2, C1) 

(4) E(C1, C2) + E(C2, C3) 2 E(C1, C3) 

where C1, C2, and C3 are arbitrary shape contours. 
The justification for the first two properties follows 
trivially from the definitions of the stretching and the 
bending energy. The third property, is satisfied af- 
ter the introduction of the proposed modifications. 
For the fourth property, we observe that the bend- 
ing and stretching energies are always positive. For 
the bending energy specifically, the angle changes be- 
tween contour C1, contour C2, and contour C3 may 
be either monotonic (for example, Ocl > Oc2 > O c 3 )  
or non-monotonic (for example, Oca > Ocl > e C 3 ) .  

Thanks to modification (B), in the monotonic case, 
the equal option of property (4) holds, while in the 
non-monotonic case, the inequality option of the prop- 
erty holds. With similar arguments, we can show that 
property 4 holds also for the stretching energy, and 
hence for the total energy (stretching and bending). 
The initial point correspondence for metamorphosis 
to occur can be chosen between two arbitrary seg- 
mentation points from the input and target shapes 
respectively. The degree of morphing is defined as the 
minimum energy over all possible initial point corre- 
spondences. 

4 Experimental Results 

The shape recognition ability of the proposed sys- 
tem was tested on a database of 21 object outlines 
(contours). The database contained among others, 
the outlines of a variety of industrial parts and tools 
(see Fig. 4). Some of the object contours included in 
the database have been taken from [7, 10, 12, 131. For 
each reference contour four test samples were captured 
in random positions and orientations. During experi- 
mentation, each test contour was segmented and mor- 
phed to every reference contour. The metamorphosis 

that yielded the smallest energy indicated a match. 
The results of the experimentation are shown in Ta- 
ble l. The misclassifications were the result of a poor 
segmentation performance. Interestingly, the system 
gives real-time responses in a moderate piece of hard- 
ware (SGI IndigoTMR4000 that runs at 100 MHz). 

Present experimental studies indicate that the 
method shows promise in the recognition of de- 
formable shapes. An example of deformable shapes 
is a set of consecutive frames of a pedestrian. Recog- 
nition/classification of deformable shapes can play a 
fundamental role in areas like pedestrian detection (an 
interesting ITS application). Fig. 5 shows the first 
and the last frames of two action sequences that were 
stored as reference contours in the database. Fig. 6 
shows three intermediate frames that were used as test 
contours in a classification experiment. Table 2 shows 
the recognition results for this experiment in terms of 
the degree of morphing values. All the shapes were 
correctly classified. Interestingly, the degree of mor- 
phing reflected the position of the intermediate test 
frames in their respective action sequences. 

5 Conclusions and Future Work 

A novel 2D object recognition method has been pro- 
posed that is based on shape metamorphosis. The 
method uses the degree of morphing as a powerful dis- 
similarity measure. The proposed measure satisfies all 
the properties of a metric. The method also employs a 
representational technique, first proposed in [8], that 
is well suited to the way metamorphosis works. The 
low computational complexity, the ability to handle 
arbitrary shapes, and the promise it has shown in the 
classification of deformable shapes, render the method 
suitable for a variety of real world, real-time applica- 
tions. 

The two misclassifications unearthed during the ex- 
perimentation stage are due to the inadequate descrip- 
tional behavior of the segmentation algorithm. The 
segmentation algorithm used, allows a consistent de- 
scription of shapes . . . corner - low curvature point - 
corner . . . which facilitates the metamorphosis. Nev- 
ertheless, the experimental results indicate the need 
to extend the system so that segmentation algorithms 
with better approximating capabilities can be used. 
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Test 
Contours 

Test Frame 1 
Test Frame 2 
Test Frame 3 

Initial Final 
Dance Frame Dance Frame 

Reference Contours 
Initial Final Initial Final 

Dance Frame Dance Frame Exercise Frame Exercise Frame 
145.88 204.85 409.26 483.38 
181.21 172.47 370.30 429.66 
314.85 303.02 255.01 168.28 

Initial Exercise Frame Final Exercise Frame 

Figure 5: Initial and final frames of two action se- 
quences. 

Figure 6: Intermediate frames from the action se- 
quences of Fig. 5 that serve as test contours. 

Acknowledgements 

This research was supported by the National Sci- 
ence Foundation through Grants #IRI-9410003 and 
#IRI-9502245, the McKnight Land-Grant Professor- 
ship Program of the University of Minnesota, and the 
Department of Energy (Sandia Labs) through Con- 
tracts #AC-3752D and #AL-3021. 

References 

[l] E.M. Arkin, L.P. Chew, D.P. Huttenlocher, K. Kedem, 
and J.S.B. Mitchell. “An Efficiently Computable Metric 
for Comparing Polygonal Shapes”. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 13(3):209-216, 
1991. 

[2] R. Azencott, F. Coldefy, and L. Younes. “A Distance for 
Elastic Matching in Object Recognition”. In Proceedings of 
the 13th International Conference on Pattern Recognition, 
volume 1, pages 687-691, 1996. 

[3] J.J. Brault and R. Plamondon. “Segmenting Handwrit- 
ten Signatures at Their Perceptually Important Points”. 
IEEE Transactions on Pattern Analysis and Machine In- 
tellzgence, 15(9):953-957, 1993. 

[4] J. Chen and J.A. Ventura. “Optimization Models For 
Shape Matching of Nonconvex Polygons”. Pattern Recog- 
nition, 28(6):863-877, 1995. 

“Opti- 
mal Matching of Convex Polygons”. Pattern Recognition 
Letters, 9:327-334, 1989. 

Computer and Robot 
Vision, volume 2, chapter 18, pages 427-491. Addison- 
Wesley, Reading, Massachusetts, 1992. 

[7] L. Huang and M.J. Wang. “Efficient Shape Matching 
Through Model-Based Shape Recognition”. Pattern Recog- 
nition, 29( 2) :207-2 15, 1996. 

“A Curve Seg- 
mentation Algorithm That Automates Deformable-Model 
Based Target Tracking”. Technical Report T R  96-041, Uni- 
versity of Minnesota, 1996. 

[9] I. Pavlidis, R. Singh, and N.P. Papanikolopoulos. “Recog- 
nition of On-Line Handwritten Patterns Through Shape 
Metamorphosis”. In Proceedings of the 13th International 
Conference on Pattern Recognition, volume 3, pages 18- 
22, 1996. 

[lo] B.K. Ray and-K.S. Ray. “Determination of Optimal Poly- 
gon From Digital Curve Using L1 Norm”. Pattern Recog- 
nition, 26(4):505-509, 1993. 

[ll] S. Sclaroff and A.P. Pentland. “Modal Matching for Cor- 
respondence and Recognition”. IEEE Thnsactions on  
Pattern Analysis and Machine Intelligence, 17(6):545-561, 
1995. 

[12] T. W. Sederberg and E. Greenwood. “A Physically Based 
Computer Graphics, 

[13] I. Tchoukanov, R. Safaee-Rad, B. Benhabib, and K.C. 
Smith. “A New Boundary-Based Shape Recognition Tech- 
nique”. In Proceedings of the 1992 IEEE/RSJ  Inter- 
national Conference on Intelligent Robots and Systems, 
pages 1030-1037, 1992. 

[14] P.J. van Otterloo. “A Contour-Oriented Approach to 
Shape Analysis”. Prentice Hall, Hemel Hampstead, 1991. 

[15] P. Zhu and P.M. Chirlian. “On Critical Point Detection of 
Digital Shapes”. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 17(8):737-748, 1995. 

[5] P. Cox, H. Maitre, M. Minoux, and C. Ribeiro. 

[6]  R.M. Haralick and L.G. Shapiro. 

[8] I. Pavlidis and N.P. Papanikolopoulos. 

Approach to 2D Shape Blending”. 
26(2):25-34, 1992. 

1656 


