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Abstract

Thermal imaging techniques have been applied to de-
tect and measure mental stress in polygraph screening and
other applications. Mental stress is highly correlated with
the activation of the corrugator muscle on the forehead.
The vessels that supply blood to the corrugator muscle, pro-
portionally to its degree of activation, are the supraorbital
vessels. The rate of blood flow in these vessels can be in-
directly measured via the intensity of heat emission from
their segments. However, segmenting the thermal imprints
of the supraorbital vessels is challenging because (1) they
are fuzzy due to thermal diffusion, and (2) exhibit significant
inter-individual and intra-individual variation. In this pa-
per, a new segmentation method is proposed to extract the
supraorbital vessels in thermal imagery. The new method
features three steps: (1) automatic initialization of vessels;
(2) automatic localization of the central lines of vessels;
and (3) fast determination of vessel boundaries. The results
show that the new method achieves high quality segmenta-
tion in both a simulated and a real dataset. The proposed
method is expected to further increase the accuracy of stress
measurements via thermal imaging.

1 Introduction

Thermal video has been widely used in surveillance and
screening for various purposes. Recently, a series of thermal
imaging methods have been developed to measure human
physiological signs [5, 13, 16, 4], including pulse, blood
perfusion, and breath. Stress measurement is another im-
portant application of thermal imaging. Previous work has
shown that mental stress can be quantified through a ther-
mal imaging system called “Stress-cam” [14]. There are

potentially many applications for this passive imaging tech-
nology; for example, a “Stress-cam” in lie detection could
help identify interviewees’ critical physiological facial vari-
ations. In another example, the monitoring of computer
users’ affective states could be used in software usability
studies. A “Stress-cam” can also be used to monitor job-
related stress.

Researchers reported that the activation of the corruga-
tor muscle on the forehead is highly related to mental stress
[9, 2]. The vessels that supply with blood the corrugator
muscle are the supraorbital vessels. The activation of the
corrugator muscle draws more blood. In this case and due to
the heat diffusion effect, the thermal imprints of the supraor-
bital vessels are intensified in the thermal imagery. There-
fore, the intensity of the imprints could be used to measure
the activation of the corrugator muscle, which can be corre-
lated with the level of mental stress.

A methodological problem that is still open is the seg-
mentation of the thermal imprints of the supraorbital ves-
sels. In [14], Puri et al. reported a heuristic segmenta-
tion method that certainly introduces non-trivial noise in the
measurement process. Segmentation of the supraorbital im-
prints is challenging because:

1. The clarity of the supraorbital vessel imprints is low
on average. Many factors lead to this. For example,
the heat diffusion effect leaves vague boundaries be-
tween vessel and non-vessel regions; subcutaneous tis-
sue may block thermal emissions and curtail part of the
vessels’ thermal imprints.

2. The pattern of the vessel imprints on the forehead
varies significantly both inter-individually and intra-
individually. The overall thermal signature of the
forehead is naturally unique to each individual (inter-
individual variability). Furthermore, intra-individual
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variability is largely related to physiological status,
e.g., the vessel imprints expand when a person is under
stress.

A number of approaches for segmenting blood vessels in
various imaging modalities have been reported in the litera-
ture [8, 11]. These approaches can be divided into two cat-
egories, bottom-up and top-down. The bottom-up approach
is based on criteria that are used to classify pixels in terms
of salient image features; e.g., edges, intensity, and texture.
The problem of this approach is that the vessels could be
segmented into many small regions and some non-vessel ar-
eas could be erroneously labeled as vessels. The top-down
approach, on the other hand, uses prior knowledge about
vessels to guide the segmentation. The top-down method
can find the overall vessel structure but fails to accurately
delineate details, e.g., boundaries. Considering these fac-
tors, we developed a new segmentation method that com-
bines merits of the bottom-up and the top-down approaches.
This idea has its underpinnings in [1].

The core component of the proposed method is an ac-
tive contour model (snake), which is a top-down approach.
A traditional snake requires user interaction to initialize the
contours. To overcome this problem, we introduce an au-
tomatic initialization method for the active contour model.
In addition to that, we apply a bottom-up approach to find
the boundaries. By combining top-down and bottom-up ap-
proaches, we not only localize the supraorbital vessels in
the forehead region without being distracted by artifacts,
but also maintain a detail finding capability, such as find-
ing a vessel’s boundaries. Specifically, the new method,
called Open End Snake (OES), features three steps: (1) au-
tomatically initializes vessel location; (2) automatically lo-
calizes the central lines of a vessel; and (3) determines the
vessel boundaries via a specialized operator. Experiments
have demonstrated that the method has solid performance
in segmenting forehead vessels, even in the presence of im-
age noise. In fact, it achieves higher quality segmentation
with respect to other methods.

The remainder of the paper is structured as follows: In
Section 2, we discuss the underlying physiological mecha-
nism. In Section 3, we present the details of the segmenta-
tion methodology. In Section 4, we validate the segmenta-
tion method and compare it with other methods to prove the
merits. Finally, we discuss the open issues and conclude the
paper in Section 5.

2 Forehead Physiology and Stress Level

Every human being undergoes certain physiological
changes under stress. The facial region is heavily innervated
with neuronal pathways and it is not surprising that stress
affects its physiology. Previous work has demonstrated that

(a) Forehead Anatomy (b) Thermal Facial Image

Figure 1. The anatomical and thermal images
for the facial region. (a) is a courtesy of Pri-
mal Pictures [12].

both the periorbital [10] and supraorbital [14] regions man-
ifest stress signs.

One of the most salient manifestations of sustained stress
is that the eyebrows frown more frequently [3]. The frown-
ing is caused by the contraction of the corrugator muscles.
Activation of the corrugator muscles requires more blood,
which is drawn from the supraorbital vessels. The supraor-
bital vessels are found in the middle of the forehead and
consist of two major branches and several subbranches (see
Figure 1(a)). Increased blood flow in supraorbital vessels,
directly increases the cutaneous temperature on the fore-
head. In Figure 1(b), the imprints of the supraorbital ves-
sels are apparent within the rectangular annotation of the
thermal image. Our task is to delineate such supraorbital
vessels in thermal imagery. Thereafter, accurate measure-
ment of these vessels’ temperature becomes feasible, which
in turn provides a strong clue about the stress level of sub-
jects (e.g., in polygraph screening).

3 Supraorbital Vessel Segmentation

3.1 Overview

The OES algorithm proceeds in three steps:

1. It detects the approximate location of the vessel im-
prints via the Hough transform. Examples of initial
vessel locations are given by the straight lines shown
in Figure 2(c).

2. It finds the exact central lines of the vessels via an ac-
tive contour method (see Figure 2(d)).

3. It determines the boundaries of the vessels via a special
operator (see Figure 2(d)).

These three steps ensure full vessel localization. In the fol-
lowing subsections, we will present more details for each of
these steps. For simplicity, we interchangeably use “ther-
mal imprints of the supraorbital vessels” and “vessels.”
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(a) Original image (b) Binary image

(c) Vessel initialization (d) Final segmentation result

Figure 2. Example of vessel segmentation.

3.2 Step I: Vessel Initialization

The first step is to approximate the location of the ves-
sels. This initialization process consists of two steps: pro-
ducing a binary vessel image via the Tophat method and
finding initial vessel lines via the Hough transform.

Tophat is a morphological method that enhances the
bright (“hot”) ridge-like structures corresponding to the
blood vessels. It aids the identification of vessel structures
in a relatively low contrast image. The structuring ele-
ment we use in the Tophat operation is a disk with diameter
roughly equal to the width of the vessels. One example bi-
nary image produced by the Tophat method is seen in Figure
2(b).

The Hough transform is chosen to detect vessel lines in
images. We apply the Hough transform on the binary im-
age resulted from the Tophat operation, to find all major
vessel lines. The line detection process has been tailored to
the specific case. Since all of the supraorbital vessels are
oriented vertically or nearly so, we only search the corre-
sponding domain inside the transformed space. An example
result of the Hough transform is illustrated in Figure 2(c).

3.3 Step II: Central Lines of Vessels

Having initialized the vessel locations, we want to fur-
ther localize the central lines of the vessels. The actual ves-
sel is shaped as a curved instead of a straight line, which
was the outcome of the Hough Transform. A top-down ap-
proach, like the active contour, has the ability to remedy this
and accurately capture the vessel’s shape. The active con-
tour converges on the vessel’s central line, along which we
have locally maximum temperature values. The proposed
active contour model features two open ends instead of a
closed loop in the traditional model [7]. Also, note that

there could be more than one active contours in the region
of interest (ROI) and each of them evolves independently of
the others.

3.3.1 The Active Contour Model

A traditional active contour [7] is a curve X(s) =
[x(s), y(s)], s ∈ [0, 1], that minimizes the energy functional

E =
∫ 1

0

1
2
[α|X ′(s)|2 +β|X ′′(s)|2]+Eext(X(s))ds, (1)

where α and β are parameters controlling the curve’s ten-
sion and rigidity. The external energy, Eext, is defined in
terms of image features. In our case, this is the image in-
tensity: Eext = I(x, y). Thus, the active contour has mini-
mum energy when it matches the central line of the vessel.
The curve X(s) that minimizes Equation (1) must satisfy
the Euler equation and can be written as follows [15]:

∂X(s, t)
∂t

= α
∂2X(s)
∂s2

− β ∂
4X(s)
∂s4

−5Eext. (2)

When X(s, t) converges (t → ∞), the left hand side of
Equation (2) equals 0 and then the Euler equation has a valid
solution.

3.3.2 Boundary and Initial Conditions of the OES

Both boundary and initial conditions are needed to solve
Equation (2). In a traditional active contour, where we have
a closed curve, no boundary conditions are required. These
are necessary though in our case, where the active contour
is employed as an open-end curve. Fortunately, these condi-
tions can be determined by refining the starting and ending
points of the initialized lines from Step I of the algorithm
(Section 3.2). We outline this refinement process in the fol-
lowing steps and we depict it in Figure 3:

1. Refine the positions of the two end points (A and B
in Figure 3(a)) of the initial contour line. Refinement
is accomplished by searching for pixels with the max-
imum intensity along a horizontal line (Figure 3(b)).
The searching radius should be approximately equal
to the width of the vessel. The refined end points (A′

and B′ in Figure 3(a)) reside in the middle line of the
vessel.

2. The boundary conditions are given in terms of the lo-
cations of the newly found central line points (A′ and
B′). For example, at the end A′ , the boundary con-
dition consists of points A′ and x′1. x′1 is one of the
linearly interpolated points between A′ and B′ that is
the closest one to A′. Similarly, B′ and x′N are the
boundary conditions for the other end of the line (see
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(a) (b)

Figure 3. The determination of the boundary
and initial conditions of the OES.

Figure 3(a)). The boundary points are already either
on the middle line of the vessel or very close to it and
remain anchored during the curve evolution process.

3. The initial conditions are points A′ and B′ and
the full series of interpolated points between them,
x′1, x

′
2, . . . , x

′
N , as shown by the blue dotted line in

Figure 3(a).

3.4 Step III: Vessel Boundaries

After locating the vessel’s central line, we need to find
its outer boundaries. It is rather challenging to obtain the
exact vessel boundaries in thermal imagery due to the heat-
diffusion effect. The fuzzy boundaries disqualify standard
edge detection methods. Instead, we use a special operator
to find the vessel edges. The operator searches the maxi-
mum temperature gradient along the vessel’s radial direc-
tion at each point of the active contour. This operator is
basically a bottom-up approach. The benefit is obvious:
given that the OES has found the correct central lines of
vessels, the boundary searching avoids any other sharp gra-
dients that are found in the ROI and do not belong to the
vessels.

The operator is implemented as follows (see Figure 4):

1. Evenly select N + 1 points on the active contour
S0, S1, . . . , SN . Then, at each point draw a line nor-
mal to the tangential direction (see Figure 4(a)).

2. Along each of the normal lines, extract a 3×M rectan-
gular image matrix, which centers at the current active
contour point and is aligned with the normal line (see
Figure 4(b)).

3. Convolve a 3 × 3 mask with the 3 × M rectangular

matrix. A typical mask is

 −1 0 1
−2 0 2
−1 0 1

. If the

vessel density profile is of a bell shape in the radial
direction, the convolution function should be similar
to the function displayed in Figure 4(c).

4. The width of the vessel (w− + w+) at each point Sn is
determined by the location of the extreme values of the
convolution operation. These extreme values indicate
the maximum gradient on each side of the vessel. (see
Figure 4(c)).

5. The final vessel boundaries are obtained by connecting
the corresponding N +1 boundary points on each side
of the central line (see Figure 4(a)).

4 Experimental Results

Two experiments were carried out to validate the perfor-
mance of the new segmentation tool. The first experiment
used simulated vessels. The simulated image enabled us to
find a relation between the algorithm’s performance and the
image quality. The second experiment involved real vessels
in 65 forehead thermal images.

Two different performance measures were used to eval-
uate the results:

• Accuracy, which is based on the confusion matrix:
Accuracy = (TP +TN)/(TP +TN +FP +FN),
where TP is True Positive, TN is True Negative, FP
is False Positive, and FN is False Negative. In other
words, Accuracy is simply the percentage of the cor-
rectly classified pixels. The higher the Accuracy is,
the better the segmenter.

• Hausdorff distance [6], which measures the closeness
of two vessels’ contours. The Hausdorff distance H
is defined as H(P1, P2) = max(min(d(P1, P2))),
where the d(P1, P2) is the Euclidean distance between
the point set P1 and the point set P2, i.e., it is the max-
imum distance of a set P1 from the nearest point in the
other set P2. In our problem, P1 is the segmented ves-
sel and P2 is the ground truth. The lower the Hausdorff
distance is, the better the segmenter.

4.1 Simulated Vessels

In the first experiment, we generate a series of simu-
lated vessel images to evaluate the segmentation method.
The size of the simulated ROI is 100 × 80 pixels. Within
the ROI, two sigmoid functions are used to simulate the
supraorbital vessels. The average width of the vessels is
equal to 7 pixels. One vessel resides on the left and one on
the right half of the ROI image respectively. We add 5%
to 20% uncertainty on the vertical orientation, the curvature
degree, and the width of the vessel. Hence, the appearance
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(a) Mid and boundary vessel lines (b) Boundary search (c) Width determination

Figure 4. Localization of vessel boundaries.

of simulated vessels varies in accordance with numerous
observations of forehead thermal images. The objective is
to determine the degree of noise that the method can tolerate
before its performance breaks down.

First we define the noise level of the simulated image as
follows:

Definition I: If the image pixels representing the
vessels have intensity value 1, the image pixels
representing the non-vessels (background) have
random intensity values that are uniformly dis-
tributed. This uniform distribution has lower
bound 0, and upper bound nl. Then the image
noise level is defined as nl.

After having generated vessel configurations, we gener-
ate different noise levels for the background pixels. The
noise levels we select range from 0.1 to 2.1. Thereafter, a
15 × 15 Gaussian filter is used to smooth the whole ROI
image. Ten simulated vessel images are shown in Figure
5, where the vessels’ central lines and boundaries are an-
notated. It is evident that the segmentation performance
deteriorates as the noise level increases. The increasingly
noisy background gradually erodes the vessel imprints. The
algorithm fails to find the vessels when nl = 1.9.

The simulation dataset consists of 100 different vessel
configuration images for each noise level. We applied the
OES algorithm to these simulated vessel images and eval-
uated the performance by two measures: Accuracy and
Hausdorff distance. In Figure 6, we see that the Accuracy
of the segmentation maintains high values (>0.9) until nl
reaches 1.7. The Accuracy decreases dramatically when nl
increases from 1.7 to 2.1. On the other hand, the Hausdorff
distance increases sharply after nl = 1.7, which also indi-
cates deterioration in performance.

From this experiment, we conclude that the new algo-
rithm can locate the vessels even with a fair amount of noise
(nl ≤ 1.7). The algorithm fails to segment the vessels
only when the intensity of the background noise approaches

the intensity of the vessels. In that case, the vessel outline
blends into the background.

4.2 Real Vessels

In the second experiment, we chose 65 thermal forehead
images from 65 different subjects. The ground truth ves-
sel images were created by manual delineation at a super-
resolution level based on our best anatomical knowledge.
The ground-truth results from two different experts were
reconciled and the composite ground-truth set was used in
our validation. In this experiment, we compared the results
of the proposed method with two other segmentation meth-
ods, 10% hottest thresholding (10P) and Tophat morpho-
logical method (Tophat). The 10P is a thresholding method
that selects the top 10% values of the ROI. The Tophat is a
morphological method, similar to the one we used in vessel
initialization (see Section 3.2).

We divided the set of 65 real images into two groups ac-
cording to their quality: normal group (34) and abnormal
group (31). So far, we have not found a strict way to quan-
titatively define the quality of vessel images. The criteria of
grouping are qualitative. The differences between the two
groups are in most cases clear, but sometimes are subtle.
Quality-based grouping facilitates more targeted evaluation.

4.2.1 The Normal Group

Six segmentation examples from the normal group are dis-
played in Table 1. Each ROI is processed by three different
algorithms, 10P, Tophat, and OES. All of the depicted ves-
sel images belonging to the normal group, have two clear
supraorbital vessel imprints. The 10P method finds most of
the “hottest” pixels from the vessels; many times, however,
it fails to capture the entire vessel because the temperature
profile along the vessel’s axial direction is not even. The
Tophat method shows better performance compared with
the 10P, since it is able to find the local ridge-like peaks.
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(a) nl=0.1 (b) nl=0.3 (c) nl=0.5 (d) nl=0.7 (e) nl=0.9

(f) nl=1.1 (g) nl=1.3 (h) nl=0.15 (i) nl=1.7 (j) nl=1.9

Figure 5. Vessel simulation with different noise levels (nl). The detected central lines of the vessels
are marked in green. The detected vessel boundaries are marked in yellow.

We observe that it classifies correctly most of the vessel
pixels. But, one problem of the Tophat is that a number
of locally hot pixels in non-vessel region are classified as
vessel pixels. The OES method fully captures the vessels
without being fooled by the fuzzy background, thanks to its
mixed bottom-up and top-down approach.

The performance measures, Accuracy and Hausdorff
distance, are used to evaluate these algorithms. We see
in Figure 7(a) the average Accuracy is 0.859 for the OES,
0.791 for the Tophat, and 0.782 for the 10P. The Hausdorff
distance is in Figure 7(b). The average Hausdorff distance
is 7.30 for the OES, 12.58 for the Tophat, and 14.98 for the
10P. From these results, out of 34 normal images the OES
definitely outperforms other two. Also, the Tophat scores
better points than the 10P. The quantitative results correlate
well with the visualizations in Table 1.

4.2.2 The Abnormal Group

Six examples from the abnormal group are given in the sec-
ond part of Table 1. From these “abnormal” examples, we
see that the forehead thermal imprints have significant inter-
individually differences. Also, some of the real challenges
are becoming evident: images feature vessels with unclear
imprints (Sub 05), or multiple branches (Sub 20), or broken
central lines (Sub 32), or highly asymmetric ones (Sub 39),
or distracting objects (e.g., hairs in Sub 62), or only a single
branch (Sub 71).

Because of the low quality in the abnormal group im-
ages, the performance of all three segmentation methods has
been negatively affected. The average Accuracy is 0.785
for the OES, 0.728 for the Tophat, and 0.757 for the 10P.
The average Hausdorff distance is 11.95 for the OES, 12.74
for the Tophat, and 15.21 for the 10P. These numbers indi-

(a) Accuracy (b) Hausdorff distance

Figure 6. Evolution of segmentation perfor-
mance for the simulated vessels under differ-
ent noise levels (nl).

cate that the OES is still relatively better from the other two
methods when it comes to abnormal vessel images.

5 Discussion and Conclusions

We have developed a new segmentation method for ex-
tracting the thermal imprints of the supraorbital vessels in
thermal imagery. The algorithm has three parts. First, it
uses an automatic vessel detection method, which is based
on the Hough transform, to initialize the vessel locations.
Second, an active contour model, the OES, finds the central
lines of the major vessels. Third, the boundaries of those
vessels are determined by a special operator. The proposed
method combines top-down and bottom-up approaches to
achieve optimal results.

Two experiments have been conducted to evaluate the
performance of the new algorithm. In the first experiment,
we demonstrated that the OES can segment simulated ves-
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Table 1. Visualization of segmentation results
from the various methods. (Raw: the orig-
inal ROI, GT: Ground-Truth, 10P: 10 Percent
thresholding, Tophat: Tophat morphological
method, OES: Open End Snake)

Normal Group
Sub Raw GT 10P Tophat OES

Sub03

Sub04

Sub26

Sub28

Sub61

Sub81

Abnormal Group
Sub Raw GT 10P Tophat OES

Sub05

Sub20

Sub32

Sub39

Sub62

Sub71

(a) Accuracy, the normal group

(b) Hausdorff Distance, the normal group

(c) Accuracy, the abnormal group

(d) Hausdorff Distance, the abnormal group

Figure 7. Performance comparison of the
three different segmentation methods.
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sels with high noise level (nl=1.7). In the second experi-
ment, we showed that the OES method outperformed other
vessel segmentation methods according to two measures,
Accuracy and Hausdorff distance. The new method may
find wide applicability in segmenting thermal vessel im-
prints.

Some limitations of the OES algorithm include:

1. The number of the vessels in the ROI has to be indi-
cated by the operator. The OES can not automatically
determine the number of vessels.

2. The OES deteriorates with decreasing image quality.

3. The operator needs to be skillful enough to select the
correct ROI on the forehead before the OES is ap-
plied. An automatic ROI localization tool may solve
this problem in the future.
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