
  

  

Abstract— We propose a novel method that localizes the 
thermal footprint of the facial and ophthalmic arterial-venous 
complexes in the periorbital area. This footprint is used to 
extract the mean thermal signal over time (periorbital signal), 
which is a correlate of the blood supply to the ocular muscle.  
Previous work demonstrated that the periorbital signal is 
associated to autonomic responses and it changes significantly 
upon the onset of instantaneous stress. The present method 
enables accurate and consistent extraction of this signal. It aims 
to replace the heuristic segmentation approach that has been 
used in stress quantification thus far. Applications in 
computational psychology and particularly in deception 
detection are the first to benefit from this new technology. We 
tested the method on thermal videos of 39 subjects who faced 
stressful interrogation for a mock crime. The results show that 
the proposed approach has improved the deception 
classification success rate to 82%, which is 20% higher 
compared to the previous approach.  
 

I. INTRODUCTION 
ACIAL physiology changes locally with the onset of 
stress, either autonomic or non-autonomic. Previous 

work by Pavlidis et al. have demonstrated that the onset of 
autonomic stress is associated with instantaneous changes in 
the blood flow supply of the ocular muscle [1]. Recently, 
Pavlidis et al. have also demonstrated that the onset of non-
autonomic stress is associated with gradual changes in the 
blood flow supply of the corrugator muscle [2][3]. Heat 
convected from the flow of ‘hot’ arterial blood in superficial 
facial vasculature eventually radiates through the skin in the 
thermal infrared band. Therefore, one can record and 
analyze these heat signals through a thermal imaging sensor 
of sufficient sensitivity. The analysis problem depends on 
the localization of the relevant tissue areas in facial thermal 
imagery. Consistent tissue localization over time is very 
important, if one is interested to extract meaningful 
measurements. 

The periorbital tissue of interest is located in the inner 
corner of the eye, as this is the area that sits atop the facial 
and ophthalmic arterial-venous complexes, which supply 
with blood the orbicularis oculi muscle. The proposed 
periorbital segmentation method has at its core a fuzzy-
based segmentation algorithm. This algorithm copes well 
with the fuzziness characterizing thermal imagery, due to the 
heat diffusion phenomenon. Manual intervention is limited 
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to selecting seed pixels in the initial frame of the image 
sequence. Starting from these operator-selected seed pixels, 
the algorithm computes new, optimal seed pixels. Then, it 
uses the computed seed pixels to grow the periorbital 
segments. Finally, Gaussian filtering applies on the 
segmented regions. 

Pavlidis et al. reported the applicability of the periorbital 
thermal signature in deception detection [4], [5]. However, 
their 10% hottest pixels heuristic segmentation approach [6] 
highly depends on operator expertise. It assumes that only 
the 10% hottest pixels of a carefully chosen region of 
interest (ROI) are periorbital. Although the method is simple 
and easy to implement, its performance heavily depends on 
the choice of the initial ROI.  The periorbital region must 
coincide with approximately the 10% hottest pixels of the 
manually selected ROI.  If this constraint is violated, the 
10% methodology consistently misclassifies captured 
temperature pixels, as shown in Fig. 1. As a result, 
inconsistency in the measurement of the periorbital signal is 
introduced, which is detrimental to final applications such as 
deception analysis. The method we propose is not bound by 
the constraints of the heuristic method and the choice of the 
initial ROI has no effect on the method’s performance.   

 

Fig. 1. The 10% hottest pixels heuristic segmentation approach: The 
algorithm over-segments the periorbital area (red colored) if an 
inappropriate Region of Interest (ROI) is selected. The problem is evident 
from the variability of the mean periorbital temperature when different sizes 
ROIs are selected on the same initial frame.    
 

The remaining paper is organized as follows: In Section II, 
we present some background information on facial 
physiology and stress. In Section III, we describe the 
segmentation, tracking, and noise reduction methods. In 
Section IV, we show experimental results for the proposed 
method and compare it to the 10% heuristic method. We 
also analyze the performance of the proposed method in a 
deception detection application. Finally, we conclude the 
paper in Section V. 

II. PERIORBITAL REGION AND STRESS 
Pavlidis et al. have shown that increased blood flow in the 

periorbital region is a ubiquitous manifestation of 
instantaneous stress [1]. When a person is under perceived 
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threat, the sympathetic division of the autonomic nervous 
system (ANS) prepares the body accordingly. It tasks the 
eyes to collect accurate visual information and the brain to 
process that information quickly. Increased ocular muscle 
activity requires energy (metabolic fuel), which is carried 
via increased blood flow.  The ophthalmic and facial 
vessels, which are the predominant supply of blood to the 
orbicularis oculi muscle, have superficial segments in the 
inner eye corners (see Fig. 2(a)). Therefore, variable heat 
dissipation from the periorbital region due to change in 
blood flow can be monitored through a thermal camera (see 
Fig. 2(b)). 

Our task is to capture the temperature evolution in the 
periorbital region as accurately as possible and thus, form 
the periorbital signal to detect elevated instantaneous stress 
levels.  

 

 

(a)  Periorbital Anatomy [7] (b)  Thermal Facial Image 
 

Fig. 2. Anatomical and thermal images of the face 
 

III. PERIORBITAL SIGNAL EXTRACTION 
The periorbital thermal signal extraction has three 

modules. In module I, the periorbital region is being 
segmented. In module II, the segmented region is being 
tracked frame by frame. In module III, the extracted thermal 
signal is being cleaned from unwanted noise.  

A. Module I: Segmentation 
The proposed segmentation approach has three main 

steps:  
1) Selection of Seed Pixels: The periorbital segmentation 

process is initiated by selecting two points in the initial 
frame, one in each inner eye corner. We then center a 9 9×  
pixel grid on each seed pixel and search for the respective 
maximum temperature pixels.  We repeat this step for every 
incoming frame and compute new seed pixels based on 
those from the previous frame. This simple step guarantees 
labeling of the local maxima as the seed pixels for every 
incoming frame. In order to avoid convergence of both seed 
pixels to the same local maximum, we hide the first 
segmented region by setting its pixel values to zero while 
computing the second seed pixel location. Thus, the second 
seed pixel always picks the local maximum in the second 
periorbital region.  

2) Adaptive Fuzzy-Based Segmentation: Having localized 
the maximum temperature periorbital pixels, we use them as 
seeds in the adaptive fuzzy connectedness algorithm [8], [9]. 

The primary reason for using the fuzzy connectedness 
algorithm is that thermal images are characterized by the 
heat diffusion phenomenon and therefore, thermal 
phenomenology fits well the fuzzy connectedness 
segmentation framework.  

The algorithm calculates fuzzy affinity (k) between two 
pixels based on a weight function that incorporates 
geometric, temperature homogeneity, and temperature 
gradient space adjacency: 

 
{(( , ), ( , )) | ( , ) },  andkk c d c d c d Cµ= ∈  
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where, C is a n-dimensional array of pixels, c and d are pixel 
locations in an image, and kµ is the strength of the strongest 
path between c and d. The fuzzy affinity of every incoming 
pixel ( )d  with respect to the seed pixel ( )c  is computed 
using the following equation: 
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where, ( )f c  and ( )f d  are the temperature values of 

pixels c and d, respectively. Adaptive weights hw  and gw , 

are the ratios of the homogeneity ( h ) and the gradient ( g ) 
functions. Similarity between two pixels is measured by the 
homogeneity function h . The function g  determines the 
gradient energy of the incoming pixel with respect to the 
seed pixel. The adjacency function ( , )c dαµ  allows 4-pixel 
neighborhood.   

Once the first periorbital region is grown, we perform a 
similar growing operation for the other periorbital region in 
the frame. 

3) Gaussian Filtering: Finally, all the temperature values 
inside the segmented periorbital regions are smoothed using 
a Gaussian filter. The filtering is effected using the weighted 
mean as opposed to the simple mean. The segmented 
regions fluctuate in size due to the pulsating nature of blood 
flow in the vessels. Also, blinking alters the segmented 
regions. The simple mean allows both of these phenomena 
to interfere in the periorbital signal. Therefore, the weighted 
mean is necessary to smooth out this unwanted fluctuation. 
We place a Gaussian mask centered at each seed pixel and 
compute the weight of every neighboring pixel.   Thus, the 
pixels closer to the seed pixels are weighted more compared 
to the boundary pixels. This ensures capture of thermal 
evolution form the core only of the segmented periorbital 
region. 

The entire segmentation process is repeated for every 
incoming frame.  
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B. Module II: Tracking 
 We employ the coalitional tracker [10], which has been 
specially designed for tracking facial tissue. It can handle 
various head poses, partial occlusions, and inter-tissue 
region temperature variations. On the initial frame, the user 
initiates the tracking algorithm by selecting a rectangular 
ROI, which covers the periorbital region. The user also 
selects two seed pixels, one for each side of the periorbital 
region, to initiate the periorbital segmentation.  The tracker 
estimates the best matching blocks in the next frame of the 
thermal clip. Next, the segmentation step takes over the task 
of localizing the exact periorbital regions. This interleaving 
of tracking and segmentation steps is iteratively 
implemented until the end of the image sequence. 

C. Module III: Noise Cleaning 
 The extracted periorbital signal consists of a low 
frequency component that represents the long term trend of 
blood flow levels, and a mid frequency component that is 
associated with disturbances caused by stress. These 
components contain valuable information. However, the 
measurement carries substantial high frequency noise due to 
imperfections in tissue tracking and segmentation. We use 
the noise cleaning algorithm that we proposed in [6] to 
suppress high frequency noise from the signal. 

IV. EXPERIMENTAL RESULTS 

A. Segmentation Performance  
 We have tested the proposed algorithm on 39 thermal 
clips. The thermal clips were captured during the 
interrogation of subjects who were suspects of check 
stealing in a mock crime scenario [6]. In this section we will 
compare fuzzy-segmentation results with the 10% hottest 
pixels method. We employed 6 individuals and asked them 
to select ROIs on the initial thermal frame of 39 thermal 
clips. These individuals received basic training on ROI 
selection before the experiment began.  Based on their 
selections, the periorbital region was segmented via the 10% 
heuristic and the proposed fuzzy-based approach.   Fig. 3 
shows segmentation results for one of the subjects.  

Unlike the 10% heuristic approach, the fuzzy-based 
method never over-segments the periorbital region. This 
guarantees that the signals extracted are true representations 
of the temperature in the periorbital area. Also, unlike the 
10% approach, the new method is not sensitive to the ROI 
selection. Therefore, regardless of the ROI size, the method 
segments consistently the periorbital area and produces the 
same mean temperatures for the same frame, which the 10% 
method fails to do.  

B. Performance on Deception Detection 
 Improved measurement technology for the periorbital 
signal is expected to positively affect deception detection 
applications that use it. To prove this we used the heuristic 
and the proposed segmentation methods in combination with 
a classification algorithm [6], to make comparative 
deception predictions.  

 

 

 
 
Fig. 3. Comparison of the fuzzy-based (green colored) and 10%   (red 
colored) approaches for periorbital segmentation. The top figure shows 
visual comparison and the bottom figure shows numerical comparison of 
both approaches. The crosses in the periorbital regions represent seed pixel 
positions. 
 

The classification algorithm uses the fact that periorbital 
temperature variation during an interrogation is the result of 
the combined stress effect from the interrogation itself, 
which is present in all subjects, and the deception stress 
effect, which is present only in deceptive subjects. The 
interrogation effect is realized as a global ascending trend in 
the periorbital signal, while the deception effect is transient 
in nature and appears in deceptive subjects during the 
critical questions only. Therefore, our prediction scheme 
compares the rate of the temperature change during a critical 
question, which was question 4 ( 4ir ) in the specific dataset, 
against the rate of the temperature change during the entire 
interview ( iR ), for every subject i: 
 

4

0 subject  is D,
0 subject  is ND.ii

i
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i
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(3) 

 
In other words, if the physiological change in the critical 

question is greater than the baseline change, then the subject 
is classified as deceptive (D); otherwise, he/she is labeled 
non-deceptive (ND). Details about this mock crime 
experimental design can be found in [6].  

We extracted the periorbital signals of 39 subjects four 
times by selecting the same respective ROIs and then 
predicted each subject’s deception classification for every 
run. Predicting the subjects more than one time was 
necessary to avoid the variability that the tracker introduces 
due to its stochastic component. Fig. 4  illustrates that the 
fuzzy-based segmentation algorithm outperformed the 10% 
approach with a considerable margin (approximately 20%) 
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for all four runs. The results verify the higher application 
performance of the new algorithm. One may notice small 
variability in the prediction success rate from run to run in 
both segmentation approaches (see Fig. 4). As mentioned 
above, momentary failures in the tracking algorithm cause 
local temperature variation in the periorbital signal, which, 
ultimately, alters prediction results for borderline subjects.   

 

 
 
Fig. 4. Comparison of success rates in a deception experiment based on the 
periorbital signals extracted from the 10% hottest pixels and fuzzy-based 
approaches. 

V. CONCLUSION  
We have proposed a novel method for periorbital tissue 

segmentation in thermal clips. Within the ROI, the 
periorbital region is localized using the adaptive fuzzy-based 
segmentation approach. The experimental results show that 
the new segmentation approach exhibits performance 
superior to the 10% hottest pixels heuristic approach. In 
conclusion, apart from the fact that the fuzzy-based 
segmentation approach does not require user expertise in 
ROI selection, it produces accurate and consistent mean 
temperature, irrespectively of the ROI size. Based on the 
results from 39 subjects, we conclude that the combination 
of accurate tissue segmentation, tissue tracking, and noise 
cleaning along with the appropriate classification algorithm 
has consistently achieved a deception classification rate 
close to 80%.   

One problem we have noticed with the proposed method 
is that in some cases, the seed pixels cannot be recovered 
after momentary tracker failures. This happens only when 
sub-regions in the ROI, other than the periorbital region, 
have locally maximum temperatures.  For now, we manually 
reselect the seed pixels for those cases.  

Another open issue is the manual selection of the initial 
seed pixels; an automation solution is forthcoming. 
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