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Abstract— Previous work demonstrated that facial thermog-
raphy can be successful in lie detection. In those studies the
development was based on the thermal signature of the peri-
orbital region. In the present paper a new source of psycho-
physiological information is proposed: the forehead. We found
that the corrugator muscle in the forehead is more active than
usual, when the individual experiences sustained stress. As a
result, more blood flows through the supraorbital vasculature,
increasing the cutaneous forehead temperature. In order to
monitor the thermal signature of the forehead’s cutaneous tissue,
a segmentation method based on active contours has been
developed. This creates a virtual forehead probe that can monitor
stress levels by measuring thermal radiation over the supraorbital
vessels. Thermal videos of 38 subjects under interrogation for a
mock crime scenario were used to test the new approach. The
results show that the recovered forehead signal, enables 76.3%
success rate in deceptive state classification. Thus, the forehead
channel shows promise in lie detection.

I. INTRODUCTION

Levine et al. reported in [1] a physiological signature on
the periorbital region, directly associated with stress levels.
One major application of this discovery is in lie detection
[2]. In [3] Pavlidis et al. demonstrated that the new lie
detection method produces comparable experimental results
to traditional polygraphy. The added advantage is that the
new method is contact-free and highly automated. Therefore,
it can be applied on-the-fly in security checkpoint screening,
as documented in [4].

In [5] Colin et al. reported that corrugator muscle activation
is highly correlated with the existence of mental stress. This
prompted us to investigate the applicability of the concept
in lie detection. As in the case of the periorbital channel,
activation of the muscle of interest is measured indirectly
through the intensity of the thermal imprint of the supplying
vessels. The vessels that supply with blood the corrugator
muscle are the supraorbital vessels on the forehead. Whereas
the periorbital signal carries information about instantaneous
stress due to startle, the supraorbital signal carries information
about longer lasting stress due to mental engagement. The
hypothesis is that in the course of a screening interview,
deceptive subjects may develop stronger mental engagement,
as they are making up a story. From a practical perspective,
the forehead Region of Interest (ROI) may serve as the main
channel of information in cases where the periorbital ROI is
off limits to thermal observation (e.g., the individual wears
glasses).
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A methodological problem that is still open is the seg-
mentation of the thermal imprints of the supraorbital vessels.
In [5] Colin et al. reported a heuristic segmentation method
that certainly introduces non-trivial noise in the measurement
process. A number of methods for segmenting blood vessels in
various imaging modalities have been reported in the literature
[6], [7], [8]. In thermal images, vessel imprints feature fuzzy
edges due to thermal diffusion, which adds to the segmentation
difficulty.

We propose a method based on Open-End Snake (OES)
to segment the thermal imprints of the supraorbital vessels.
Initialization of OES is aided by the operator. Thereafter, seg-
mentation is carried out automatically, aided by the coalitional
tracker [9]. We validate the segmentation goodness of the OES
method using the overlapping ratio and Hausdorff distance. We
test the lie detection potential of the forehead channel, based
on OES vessel segmentation, by running predictions on the
data set reported in [4]. For 38 subjects, the forehead deception
classifier yields 76.3% success rate.

The remaining paper is organized as follows: In Section II,
we present some background information on facial physiology
and stress. In Section III, we describe the segmentation and
tracking methods. In Section IV, we validate the segmentation
method and compare it to other methods. We also provide
the pattern recognition algorithm for deception detection and
analyze the application level performance of OES. Finally, we
conclude the paper in Section V.

II. FOREHEAD PHYSIOLOGY AND STRESS

Every human being undergoes certain physiological changes
under stress. The facial region is heavily innervated with
neuronal pathways and it is not surprising that stress affects
its physiology. Previous work has demonstrated that both the
periorbital [1] and supraorbital [5] regions manifest stress
signs.

One of the most salient manifestations of sustained stress is
that the eyebrows frown more frequently [10]. The frowning is
caused by the contraction of the corrugator muscle. Activation
of the corrugator muscle requires more blood, which is drawn
from the supraorbital vessels. The supraorbital vessels are
found in the middle of the forehead and consist of two major
branches and several sub-branches (see Fig. 1(a)). Increased
blood flow in the supraorbital vessels, directly increases the cu-
taneous temperature on the forehead. In Fig. 1(b), the imprints
of the supraorbital vessels are apparent within the rectangular
annotation of the thermal image. Our task is to detect elevated
stress levels through the quantification of increased vessel
temperature in thermal imagery. The hypothesis is that this will
provide a strong clue about the deceptive status of a subject,
in a carefully designed and executed interview.
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(a) Forehead Anatomy [11] (b) Thermal Facial Image

Fig. 1. Anatomical and thermal images of the face.

III. FOREHEAD SIGNAL EXTRACTION

The thermal signal extraction proceeds in two steps. In step
I, segmentation of the supraorbital vessels within the forehead
ROI is taking place. In step II, the ROI and the segmented
vessels therein are being tracked from frame to frame.

A. Step I: Segmentation

The proposed segmentation method features an open-end
snake contour instead of a closed loop associated with the
traditional model [12]. So, we call it Open End Snake (OES).

1) Open-End Snake: A traditional snake [12] is a curve
X(s) = [x(s),y(s)],s ∈ [0,1] that minimizes the energy func-
tional

E =
∫ 1

0

1
2
[α|X ′(s)|2 +β |X ′′(s)|2]+Eext(X(s))ds. (1)

The external energy Eext is defined as the image intensity
Eext = I(x,y). Thus, the snake contour has minimum energy
when it matches the central line of the vessel. The curve
equation X(s) that minimizes Equation (1) must satisfy the
Euler equation [7]:

∂X(s, t)
∂ t

= α
∂ 2X(s)

∂ s2 −β
∂ 4X(s)

∂ s4 −5Eext . (2)

When the solution of X(s, t) approaches to a constant (t →∞),
the left hand side of Equation (2) equals 0 and then the Euler
equation has a valid solution.

2) Boundary and Initial Conditions: Both boundary con-
ditions X(s0, t),X(sn, t) and the initial condition X(s,0) are
required to solve Equation (2). In a traditional snake contour
no boundary conditions are required. These are necessary
though in our case, where the snake is employed as an
open-end curve. Fortunately, these conditions can be achieved
by refining the starting and ending points. The refinement
procedure is illustrated in Fig. 2(a) and 2(b) and consists of
the following steps:

1) Interpolate the initial points (A, M, and B) by a spline
line. Evenly choose N interpolated points (x1, x2, . . .,
xN−1, xN) on the spline line.

2) Refine the positions of two end points, at each end of
the snake line. In Fig. 2(a), these correspond to points
A and x1 (at one end), xN and B (at the other end). The
refinement is accomplished by searching the maximum

(a) Refinement (b) Detail

(c) Edge Detection (d) Temperature Profile

Fig. 2. Illustration of the OES algorithm.

temperature locations along the normal lines that go
across these four points (see Fig. 2(b)). After refinement,
the four adjusted end points are A′, x′1, x′N , and B′

respectively.
3) The boundary conditions are given by these four new

points, A′, x′1, x′N , and B′. The initial condition is given
by interpolating A′, x′1, M, x′N , and B′, as shown by the
blue dotted line in Fig. 2(a).

Given that the tracking step is valid, the refinement steps au-
tomatically assure the correct boundary and initial conditions
for OES.

3) Localization of Vessel Edges: By initializing the snake
we located the vessel’s central line. Next, we need to find the
edges of the vessel. The basic idea is to fit temperature profiles
of a Gaussian function along the vessel’s radial direction. The
detailed algorithm is as follows (refer to Fig. 2(c) and 2(d)):

1) Evenly select N + 1 points from the snake curve
S0,S1, . . . ,SN . Then draw a normal line, perpendicular
to the tangential direction of each of the N +1 points.

2) On each of the normal lines, choose 2M + 1 discrete
temperature values t−M, t−M+1, . . . , t0, . . . , tM−1, tM , cor-
responding to the locations x−M, x−M+1, . . . ,x0, . . . ,
xM−1,xM (see Fig. 2(c)).

3) Fit to these 2M + 1 temperature values two Gaussian
functions: one, f− fits the values from x−M to x0, while
the other, f+ fits the values from x0 to x+M (see Fig.
2(d)).

4) The width of the snake (i.e., vessel) at each point Sn is
the sum of the standard deviations σ− and σ+ of the
Gaussian functions f− and f+ (see Fig. 2(d)).

5) The final snake (vessel) boundary is obtained by con-
necting all N + 1 boundary points at each side of the
central line.
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B. Step II: Tracking

We employ the coalitional tracker [9], which has been
specially designed for tracking facial tissue. It can handle
various head poses, partial occlusions, and inter-tissue region
temperature variations. The tracking consists of the following
steps:

1) The user selects a rectangular ROI on the initial frame.
The selected ROI should cover the supraorbital vessels.

2) In the initial frame, the user also needs to select the
initial location of the vessel. The selection consists of a
series of points on the central line of the vessels.

3) The tracker estimates the best matching blocks in the
next clip and then determines the initialization of each
vessel in terms of the user selection. Next the segmenta-
tion step takes over the task of finding the exact vessel
structure.

The tracking step is iteratively implemented until the end
of the video sequence.

IV. EXPERIMENTAL RESULTS

We have applied the forehead segmentation method on
thermal clips from 38 subjects. These thermal videos were
taken during interrogation, where a series of crime related
questions were asked [4]. In this section we will compare
the OES results with two other vessel segmentation methods.
The first one is a morphological Tophat filter, which was used
in segmenting generic facial vessels in infrared spectrum [8].
Comparison with Tophat will include segmentation goodness
and application performance in lie detection. The second
method is a heuristic algorithm that considers vessels are
composed of the 10% hottest pixels in a carefully selected
ROI. This method was used in periorbital vessel segmentation
for lie detection [4]. It is not a true vessel segmentation
method, but appears to capture the overall blood flow effect.
Therefore, comparison with the 10% heuristic will be restricted
on application performance.

A. Segmentation Performance

The segmentation ground truth for the experimental data set
was created by manual delineation at a super-resolution level
and based on our best anatomical knowledge.

Quantitative analysis of segmentation goodness was per-
formed in terms of two measures: The overlap ratio and
closeness. The overlap ratio is estimated by Accuracy [13],
that is, the ratio of the correctly classified pixels. The higher
the Accuracy is, the better the classifier. We calculated the
Accuracy measure for the OES and the Tophat methods, over
all 38 subjects. In Fig. 3(a), the results show that the mean
Accuracy value over all 38 subjects is 95.8% for OES, and
80.9% for the Tophat, indicating that the new segmentation
method is a lot more precise in detecting the supraorbital
vessels on the forehead.

For further validation, we also used the Hausdorff distance
[14], which measures the closeness of two vessels’ contours.
The lower the Hausdorff distance, the better the segmentation.
The Hausdorff distances between the segmented vessels and

(a) The Accuracy measurement

(b) The Hausdorff distance

Fig. 3. The comparison of validations for the OES and the morphological
Tophat, over the 38 DARPA study subjects.

ground truth for the OES and Tophat methods are plotted
in Fig. 3(b). We found that the OES method consistently
outperforms the Tophat method, over all 38 subjects in the
data set. The mean distance to the ground truth by using the
Tophat is 26.97 pixels and it is only 3.69 pixels when the OES
is used.

B. Performance Under Varying Conditions

We examined the robustness of the OES segmentation
method as the head pose and forehead temperature varied. Fig.
4(a) shows a normal head pose for which the segmentation
result is satisfactory. In Fig. 4(b) the subject looks upward.
Still, the tracker locates correctly the forehead ROI and OES
segments accurately the vessel, whose contour has become
shorter. In Fig. 4(c), we observe that OES localizes the vessel
contour even when the subject’s forehead temperature has been
raised. Fig. 4(d) shows the result of OES segmentation when
the subject looks downward. It turns out that varying head
poses and forehead temperatures do not cause any problems
to the OES method. This hinges on the assumption that the
ROI is not occluded in the video and the tracker performs
well.

C. Performance on Lie Detection

In lie detection, we are interested in designing a pattern
recognition scheme (classifier) that will be able to discriminate
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(a) (b)

(c) (d)

Fig. 4. Vessel tracking and segmentation results. The left image in each
subfigure marks the ROI provided by the tracker and the right is the
corresponding vessel detail.

the Deceptive (D) from the Non-Deceptive (ND) subjects. The
classifier uses as raw data the supraorbital vessels’ thermal
signal, obtained by the OES segmentation. We found that the
temperature variation, during an interrogation, is the result of
the compounding effect of two phenomena: the interrogation
effect (present to all subjects) and the deception effect (existing
in D subjects only). Almost all of the subjects appear to have
present the interrogation effect, since the forehead temperature
appears to increase from the beginning to the end of the
interrogation. For deceptive subjects, the deception effect is
confounded with the interrogation effect. Our scheme aims
to isolate the deception effect. We split the entire interview
thermal signal to the 13 question-answer (Q&A) sessions.
Please refer to [4] for the complete description of the relevant
psychological experiment. For each of these sessions i we
calculate the average temperature value of the thermal signal
for the question part (Qi) and the answer part (Ai), where
i = 1,2, · · · ,13. Then, we calculate the difference for each
session by di = Ai−Qi, i = 1,2, · · · ,13. Next, we define:

DI = average(d1,d2),
DII = average(d3,d4, · · · ,d13).

Our decision rule is based on the comparison of DI and DII :

DII −DI →
{

> 0 Non-Deceptive,
≤ 0 Deceptive (3)

This decision rule is based on the observation that deceptive
subjects build stress sooner than non-deceptive subjects and
they remain alert during the whole interview.

The final success rate of the proposed classifier is 76.3%
for the OES segmentation method, 71.1% for the Tophat,
and 68.4% for the 10% hottest heuristic segmentation. The
prediction rate further motivates the use of the OES seg-
mentation method. The detailed deception detection results
are not displayed here due the limited space. Please refer to:
http://www.cpl.uh.edu/html/localuser/zzhu/html/embs/Table I.jpg

V. CONCLUSIONS AND DISCUSSION

We have developed a new segmentation method for extract-
ing forehead signatures in thermal video clips that can be

used in deception detection. It depends on tracking a forehead
Region of Interest (ROI). Within the ROI, the supraorbital
vessels are segmented using an Open-End Snake (OES). The
experimental results show that the proposed method outper-
forms the Tophat and 10% hottest pixel methods in terms of
segmentation goodness and/or application performance in lie
detection.

There are a few problems concerning the new segmentation
method. One is that the segmenter’s performance depends
heavily on the tracker’s performance. One needs to find a
more robust way to initialize the OES so that it can cope
with occasional tracker instability. Another problem is the low
performance of OES when the two supraorbital vessels are
close to each other. Finally, the method cannot recover after
temporary disappearance of the vessel’s thermal imprint during
the video.
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