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Abstract. In the present paper, we propose a new pulse measurement
methodology based on thermal imaging (contact-free). The method cap-
italizes both on the thermal undulation produced by the traveling pulse
as well as the periodic expansion of the compliant vessel wall. The paper
reports experiments on 34 subjects, where it compares the performance
of the new pulse measurement method to the one we reported previously.
The measurements were ground-truthed through a piezo-electric sensor.
Statistical analysis reveals that the new imaging methodology is more
accurate and robust than the previous one. Its performance becomes
nearly perfect, when the vessel is not obstructed by a thick fat deposit.

1 Introduction

The research described in this paper aims to recover robustly the pulse frequency
in a contact-free manner. This effort is part of a general framework that we es-
tablished for measuring multiple vital signs. The hallmark of the framework is
that all measurements are performed at a distance and under a single sensing
regime (thermal imaging). So far we have demonstrated that it is possible to
perform at a distance measurements of pulse [1], breathing rate [2, 3], superficial
vessel blood flow [4], and perfusion [5]. The technology is very appealing in the
context of psycho-physiology, where outfitting the subject with contact sensors
is not recommended. In psychological experiments it is very important for the
subject to feel as free as possible or a variable may be introduced in his psycho-
logical state. As the technology for measuring vital signs at a distance matures, it
may find biomedical applications beyond psycho-physiology, wherever sustained
physiological measurements are of interest.

Cardiac pulse is an important vital sign that reflects the health status of the
subject’s cardiovascular system. It is also indicative of the metabolic rate and
stress level of the subject. In [1] we introduced a thermal imaging method to
measure pulse. That paper established the feasibility of measuring pulse at a
distance using passive sensing. In the present manuscript we report substantial
improvements that take the initial method from the realm of feasibility to the
realm of applicability.
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In the rest of the paper we unveil our new imaging methodology for measuring
pulse. Specifically, in section 2, we describe the method itself. In section 3, we
report and discuss its experimental validation.

2 Pulse Measurement Methodology

2.1 Cross-Section Temperature Function

Within the rectangular region of interest, the operator draws a line that tra-
verses the cross-section of the thermal imprint of the vessel (e.g., carotid). The
line has to bleed over to the surrounding tissue (see Fig. 1). By applying our
measurement methodology on this line over time, we can capture the thermal
undulation caused by pulsative vessel blood flow. For the typical experimen-
tal configuration we use (subject at 6 ft and camera outfitted with a 50 mm
lens) the cross-section of a major vessel, such as the carotid, spans between

Fig. 1. Carotid region of interest and cross-sectional measurement line

Fig. 2. Temperature profile across the vessel thermal imprint
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5 − 10 pixels. We increase the low spatial resolution of the measurement line
by applying quadratic interpolation [6]. The points of the interpolated measure-
ment line correspond to temperatures and form the cross-section temperature
function gt(x), x ∈ {−N, . . . , N} at frame t. We model the cross-section temper-
ature function using the first five (5) cosine functions of the Fourier series [7].
The modeling yields a smoother curve ht(x), x ∈ {−N, . . . , N} at frame t (see
Fig. 2).

2.2 Ridge and Boundary Temperature Functions

We use the facial tissue tracking algorithm we reported in [8] to compensate for
natural head motion during measurement. This is not sufficient, however, since
there is fine vessel displacement not related to volitional head movement. This
displacement is due to minute motor motion, diaphragm induced motion, and
the elastic response of the vessel to systolic and diastolic pressure. The vessel
displacement moves the point of the maximum temperature reading along the
measurement line. We call this point, ridge point and it corresponds to the middle
of the vessel’s cross section, where the blood flow speed is maximal. At frame t,
the ridge point is defined as:

rt = arg max
x

{ht(x)}, x ∈ {−N, . . . , N}, (1)

where ht(x) is the smoothed cross-section temperature function. The time evo-
lution of the ridge point forms the ridge line, which is indicative of the vessel’s
displacement. The ridge line maps to the ridge temperature function lr(x, t), x ∈
{−N, . . . , N}, t ∈ {1, . . . , T}, which is an accurate record of the evolution of the
vessel’s maximum temperature (strong signal).

The vessel’s minimum temperature is recorded at the vessel’s boundary, where
the blood flow speed is minimal. At each frame t, we select on either side of the
measurement line, the boundary point bt to be:

bt = arg max
x

{|h′
t(x)| + |h′′

t (x)|}, x ∈ {0, . . . , N}, (2)

where ht(x) is the smoothed cross-section temperature function. The time evolu-
tion of the boundary point forms the boundary line. The boundary line does not
exactly mirror the displacement of the ridge line. The reason is that the vessel is
compliant and its volume changes with respect to pressure. Therefore, the vessel
expands during diastole and contracts during systole, superimposing a boundary
deformation on the general vessel displacement. The boundary line maps to the
boundary temperature function lb(x, t), x ∈ {0, . . . , N}, t ∈ {1, . . . , T}, which is
an accurate record of the evolution of the vessel’s minimum temperature. This
function carries valuable pulse information that is associated to the periodic ex-
pansion of the vessel’s wall. Fig. 3 depicts the ridge and boundary lines and the
corresponding temperature functions for a measurement applied on the carotid
of a subject. The measurement lasted for T = 1, 000 frames.
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Fig. 3. Ridge and boundary lines along with the corresponding temperature functions

2.3 Computation of the Mean Pulse Frequency

Initially, we compute the mean pulse over an extended period of time T (T ≥
30 sec). In long observation periods the pulse frequency is expected to dominate
in the spectral domain, since it is more consistent than white noise. Therefore,
this reliable mean value estimate can be used in a feedback loop to narrow-down
the search space in a second-pass instantaneous pulse computation.

The computation is based on Fourier analysis and takes into account both
the ridge and boundary temperature functions lr(x, t) and lb(x, t) respectively.
We will show the development for the ridge temperature function lr(x, t) only.
Exactly, the same applies for the boundary function lb(x, t). Specifically:

1. We use a low order trigonometric polynomial to prepare the function lb(x, t)
for Fast Fourier Transformation (FFT):

Lr(x, t) = lr(x, t) − (α cos(t) + β), (3)

where α = 1
2 (Lr(x, 0) − Lr(x, T − 1)) and β = 1

2 (Lr(x, 0) + Lr(x, T − 1)).
This ensures that the shift will not affect the stability of the scheme by
minimizing the Gibbs phenomenon.

2. We extend Lr(x, t) to a 2T periodic function as follows: we apply a symmetry
function (Eq. (4)) and then a periodic extension (Eq. (5)):

∀t ∈ (0, T ), Lr(x, T − t) = −Lr(x, t) (4)

∀t ∈ (0, 2T ), ∀k ∈ Z, Lr(x, t + k2T ) = Lr(x, t) (5)

3. We apply a classic decimation-in-time (Cooley and Tukey) 1D base-2 FFT
method [6] to obtain the power spectrum Pr(f) of function Lr(x, t):

Pr(f) = F(Lr(x, t)). (6)
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4. We model the power spectrum Pr(f) as a multi-Normal distribution P ′
r(f)

by applying a Parzen window method [9]:

P ′
r(x) =

1
F

F∑

i=1

W (f − fi), (7)

where W (f) is the Parzen window Normal kernel:

W (x) =
1

σp

√
2π

e
− (x−μp)2

2σ2
p . (8)

We take as μp = 0 and σ2
p = 0.1. The normalized mean frequency variance

of the pulse for the subjects in our data set is σ2
n = 0.1, as it is computed

from the ground-truth measurements. Therefore, our choice σ2
p = 0.1 for the

variance of the Parzen window kernel is relevant.

Once we compute the model spectra P ′
r(f) and P ′

b(f) of the ridge and boundary
temperature functions respectively, we multiply them to obtain the combined
model spectrum P ′

rb(f) (see Fig. 4). Then, we find the frequency fn for which
the model spectrum P ′

rb assumes its maximum amplitude. We consider fn the
mean pulse frequency of the subject during the extended time period T . In fact,
we represent this mean pulse frequency as a Normal distribution with mean
μl = fn and variance σ2

l = σ2
n = 0.1.

(a) (b) (c)

Fig. 4. All graphs are normalized: (a) Raw ridge and boundary spectra. (b) Multi-
normal models after the application of Parzen window. (c) Combined multi-normal
model.

2.4 Computation of the Instantaneous Pulse Frequency

The time window of the pulse computation may vary between the period that is
required for a single heartbeat (lower limit) to the long observation period we use
for the mean pulse computation (upper limit). The typical period required for the
completion of a heartbeat is ∼ 1 sec, although this may vary depending on the
physical condition of the subject. Our imaging system operates with an average
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speed of 30 fps, so 1 sec equates to ∼ 30 frames. We select the time window
for instantaneous pulse computation to be 512 frames (∼ 14 sec) respectively.
The chosen number is a power of 2 and facilitates the FFT computation. It is
also a reasonable compromise between very long (T ≥ 30 sec) and very short
(T ∼ 1 sec) observation periods.

In order to compute the combined model spectrum P ′
rb−i(f) for the short

observation period Ti, we apply exactly the same procedure that we described in
section 2.3 for long observation periods. Then, we filter P ′

rb−i(f) by multiplying
it with the normal distribution N(μl, σ

2
l ) of the mean pulse:

P ′′
rb−i(f) = P ′

rb−i(f) ∗ N(μl, σ
2
l ). (9)

In essence, we use the mean pulse frequency to localize our attention in the
instantaneous pulse frequency spectrum. Then, we compute the frequency fi for
which the amplitude of the spectrum P ′′

rb−i(f) is maximum. This is the tentative
instantaneous pulse frequency.

2.5 Post-processing

The instantaneous pulse frequency computation described in section 2.4 may
occasionally be affected by noise despite the defensive mechanisms built into the
methodology. To address this problem we use an estimation function that takes
into account the current measurement as well as a series of past measurements.
This way, abrupt isolated measurements are smoothed over by the natural con-
tinuity constraint.

The instantaneous pulse frequency computation is being performed over the
previous Ti frames (Ti = 512). We convolve the current power spectrum Pc =
P ′′

rb−i with a weighted average of the power spectra computed during the pre-
vious M time steps (see Fig.5). We chose M = 60, since at the average speed
of 30 fps sustained by our system, there is at least one full pulse cycle con-
tained within 60 frames even in extreme physiological scenarios. Therefore,
the historical contribution of our estimation function remains meaningful at all
times.

Specifically, the historical frequency response at a particular frequency f is
given as the summation of all the corresponding frequency responses for the M
spectra, normalized over the total sum of all the frequency responses for all the
historical M spectra:

H(f) =
∑M

c=1 Pc(f)
∑M

c=1
∑F

j=1 Pc(j)
(10)

Finally, we convolve the historical power spectrum H with the current power
spectrum to filter out transient features. We then designate as pulse the fre-
quency fpulse that corresponds to the highest energy value of the filtered spec-
trum within the operational frequency band (see Fig.5).
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Fig. 5. Estimation Function

3 Experimentation and Discussion

We used a high quality Thermal Imaging (TI) system for data collection. The
centerpiece of the TI system is a Phoenix InSb 640 × 480 Mid-Wave Infrared
(MWIR) camera [10]. We recorded 34 thermal clips from the faces of 34 subjects
while resting in an armchair. Concomitantly we recorded ground-truth pulse
signals with the ML750 PowerLab/4SP [11] data acquisition system, accessorised
with a piezo-electric sensor. The data set features subjects of both genders (24
males vs. 10 females), different races, and with varying physical characteristics.
All imaging measurements were performed on a major facial vessel, that is,
carotid, temporal, or supra-orbital.

We evaluated the performance of the method regarding the mean pulse compu-
tation by calculating the accuracy against the mean ground-truth measurements.
We evaluated the performance of the method regarding the instantaneous pulse
computation by calculating the cumulative sums (CuSum) between the instan-
taneous imaging measurements and their corresponding ground-truth ones.

The overall accuracy of the mean pulse measurement using the new method
has improved to 92.1%, compared to the previous method’s [1] 88.5% perfor-
mance. The new method improved dramatically the accuracy for 21 subjects
that have clear thermal vessel imprints (from 88.5% to 96.9% ). These are typi-
cally the cases of lean subjects where the vessel is not obstructed by a thick fat
deposit. The stellar performance is due to accurate localization of the boundary
signal, which weighs heavily in the current method. Further improvements in
the quantification of the boundary signal under difficult conditions is the focus
of our ongoing efforts.

The overall CuSum error is only 7.8%, which indicates a strong performance
in instantaneous pulse measurements.
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