
Abstract—In this paper, we propose a novel tracker to 

capture the human breathing signal through an infrared 

imaging method.  Human facial physiology information is used 

to select salient thermal features on the human face as good 

features to track.  The major component of the tracker is Mean 

Shift Localization (MSL)-based particle filtering. A special 

measurement model is designed for particle filtering so that the 

tracker can handle significant head movement and object 

occlusion. The breathing signal is achieved based on tracking 

results. The experiments show that the tracker is robust and 

stable and the recovered breathing signal is clear enough for 

breathing functionality computation. 

I. INTRODUCTION

REATHING is an important human physiological 

phenomenon and a vital signal to a number of diseases. 

Recently, a new infrared (IR) imaging method has been 

proposed to detect human breathing and compute the 

breathing rate by statistical methods [1] and FFT [2]. 

Unfortunately, both methods only apply on static subjects 

and constrain the practical use of this novel approach. In this 

paper, we propose a tracker to tackle this problem. 

Our approach to track the breathing signal is inspired by 

many other methods which are applied to tracking faces and 

facial features. A lot of work has been done in this area 

[3][4][5][6][7]. The task is challenging since that the human 

face is a deformable image object which varies with 

different poses and the tracker is sensitive to lighting 

illumination. Most feature-tracking methods are designed to 

track eye, lip, or mouth movement and are used for 

application such as human expression analysis and speech 

recognition. Our problem is two-fold: (1) infrared images 

are essentially different from those in visible domain; (2) 

directly tracking breathing flow is difficult. As a result, we 

need to identify facial features in IR images and track these 

features so that the breathing air flow region can be 

indirectly inferred from the tracker’s results.  

In infrared images, all pixels convey information about 

heat emissivity. In a thermal image of the human face, we 

have found that the temperature is relatively high around the 

eye regions, especially periorbits, small areas between the 

eye and bridge of the nose. There are other regions on the 

face exhibiting relatively high temperatures, e.g., the 
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forehead, the corner of mouth. However, it is our 

observation that hot pixels are consistently found in 

periorbits throughout all thermal facial images. Meanwhile, 

we have found that some regions of the face have relatively 

cold temperatures, for example, the nose and ear lobes. 

These temperature features are the best candidates for 

tracking breathing since they are local extreme values. In 

this paper, we choose the periobital regions and the nose as 

our Tracking Region of Interest (TROI). The TROI guides 

us to determine the Measurement Region of Interest 

(MROI), from which we retrieve the breathing signal. 

An algorithm is needed to detect the local extreme values 

corresponding to these facial features. Mean Shift 

Localization (MSL) [10] [11] is a suitable way of 

accomplishing this task. MSL itself, however, is a low level 

method which can not detect global information and is prone 

to tracking failure. To fully take advantage of its strength, 

we use an MSL-based particle filter as our tracking 

framework. Similar methods have been reported recently [8] 

[9].  However, single feature point on face regions is 

difficult to be tracked by this method.  The novelty of our 

approach is that we consider geometric, displacement, and 

temperature constraints to specially design a measurement 

model for particle filtering. Experiments show that the TROI 

can be followed both under significant head rotation and 

when part of the TROI is occluded.   

On determining the TROI, the breathing signal will be 

adaptively recovered from a region called the Measurement 

Region of Interest (MROI), which consists of the region 

below the nose and is expected to have the strongest breath 

signal.  Experiments prove that the breathing signal is fairly 

clear, and the improved MSL based tracker leads to a more 

practical modality for breathing measurement.  

The paper is organized as follows: in Section II, we 

determine IR facial temperature variations which supply 

good features to track. Then we describe principles of MSL 

based particle filtering in Section III.  In Section IV, we will 

see how to infer the MROI using the TROI. Finally, 

experiments will be demonstrated in Section V. We 

conclude the paper in Section VI.  

II. FACIAL PHYSIOLOGICAL FEATURES

The human face contains abundant blood vessels. One of 

the hottest areas of face is periorbital region, the two areas 

between the bridge of nose and the inner corner of the eyes. 

We can see this physiological phenomenon clearly in Fig. 1. 

At the same time, the temperature of skin extending from the 

bridge of nose to the apex of nose is relatively low 
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compared to the surrounding skin. This is due to a lack of 

blood supply to these areas and higher exposure to the 

ambient environment, allowing a convection effect to cool 

them down. These features shown in Fig. 1 are consistently 

found for all subjects in spite of the fact that the exact 

thermal pattern varies from person to person. These two 

regions give us good tracking features for two reasons. First, 

local extreme temperatures provide salient features which 

are easy to detect. Second, these regions are very close to 

the nostrils which are the best location to capture the 

breathing signal. 

Fig. 1.  Thermal faces with salient features.  Rectangles cover periorbital 

regions with high temperature; Ellipses cover nose regions with low 

temperature. 

In terms of our observation, we choose three rectangular 

areas as our Tracking Region of Interest (TROI). As in Fig. 

2, these three rectangles ought to cover the majority of the 

extreme-valued pixels in the periorbits and nasal apex. 

Currently, we manually select these three windows in the 

first frame of the video clip and apply MSL to each of these 

windows. 

Fig.  2.  Selection of three rectangular windows of the TROI 

III. MEAN SHIFT LOCALIZATION-BASED PARTICLE

FILTERING

In this section, we will focus on the technical side of the 

breathing tracker. The tracking framework is particle 

filtering, a Monte Carlo method for Bayesian tracking. We 

utilize Mean Shift Localization (MSL) to search the local 

extremes and particle filtering to select the best tracking 

estimation.   

MSL [10] is an algorithm to find the local mode of a 

distribution and has been successful in tracking visible 

domain objects [11]. In our problem, the TROI consists of 

three rectangular windows in Fig. 2. Each of these windows 

applies MSL independently to converge to modes of the 

temperature distribution. Since we are interested in extreme 

temperature values, MSL assigns pixels weights 

proportional (in the periorbital region) or inversely 

proportional (in the nasal region) to their temperatures. 

A. Bayesian Tracking by Particle Filtering 

From a Bayesian point of view, tracking an object through 

a series of images is a process of probability density 

propagation [12]. For the breath tracking problem, we need 

a system evolution model to generate hypotheses and a 

measurement model to evaluate hypotheses by assigning 

them different weights in terms of their correctness.  

The first step in particle filtering is prediction. The 

prediction step uses a system evolution model to produce a 

certain number of hypotheses. The vector Xk for state k is 

represented as
T

kkk xxx )6()2()1( ,...,, , in which each element 

represents the coordinates of the three windows of the 

TROI. The system model is given by a linear equation: 

kkkkk vXXXX 321 33
,

where Xk is predicted by 3 

previous states Xk-1, Xk-2, Xk-3 and vk is a noise component 

which has a Gaussian form. Then we use these hypotheses 

as inputs for MSL to find local extremes. After these 

hypotheses converge to their local extremes, we use a 

measurement model to assign weights to the hypotheses.  

B. Measurement Model of Particle Filtering 

MSL may leads to hypotheses with different local 

extremes. Hence, we need to evaluate their correctness 

through a good measurement model.  Unfortunately, a 

measurement model is not straightforward for our problem.  

The reasons are: (1) convergent hypotheses are not 

necessarily correct answers. Other parts of facial area may 

have hot or cold spots which are very similar to the windows 

of the TROI; (2) temperature-based evaluation is not 

reliable. The temperature of the TROI varies with the 

position of the head so that hypotheses are easily deviated to 

other local extremes; (3) IR-opaque CO2 airflow may 

occasionally block the TROI. This directly leads to tracking 

failure even without significant head movement. Therefore, 

we can not evaluate hypotheses using only temperature 

information. 

To tackle the above problems, we design a measurement 

model which combines geometric constraints, temporal 

displacement and temperature all together to evaluate the 

importance of each hypothesis. The major ideas are:  

(1) The three windows of the TROI are virtually 

connected each other to form a “periorbits-nose” triangle. 

Lengths of sides of the triangle are constrained within a 

certain range. We define the geometric weight WGeom = 1 if 

within this range, 0 otherwise.  

(2) Deformation of this triangle is assumed to be limited 

from frame to frame. Deformation here includes 

displacement and distortion. The deformation weight is 

defined as 11 k
ijk

ks

Deform eW , where s1 is a positive scale 
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factor and ijk

k
 is a triangle for the current state hypothesis. 

The three vertices are given by ith hypothesis for the left 

periorbit, jth hypothesis for the right periorbit, and kth

hypothesis for the nose.  

(3) The temperature within the windows of the TROI does 

not change dramatically from frame to frame. The 

temperature weight WTemp is: 
2

02 TTs

Temp

i
k

eW , where s2 is a 

positive scale factor, 
i

k
T  is the current mean temperature for 

the ith hypothesis in one window of the TROI, and 
0

T is the 

original temperature for the same window of the TROI as 
i

k
T .

Having all these three weights, a measurement model is 

given by
TempDeformGeomkk WWWcXZp ,

where c is a 

constant which guarantees that a good hypothesis will 

survive a short period of measurement failure.  

C. Procedures of the MSL-based Particle Filtering 

The procedure of MSL-based particle filtering is as 

followings: 

(1)  Initialization. Generate M hypotheses x0 according to 

the feature selection for the first frame.  Repeat 

following steps (2) ~ (6) for incoming frames. 

(2)  Prediction. Use system model to generate hypotheses 

xk+1’.

(3) Convergence. All hypotheses use MSL to find their 

local extremes, xk+1*.

(4) Weighting.  Assign a weight to each converged 

hypothesis according to the measurement model.  

(5) Updating. Resample these hypotheses in terms of 

their weights. 

(6) Go back to step (1) and repeat the same procedure. 

If we do not have any triangle that is qualified for 

constraints, we assume at least one window of TROI is lost 

or blocked. Then, this window will be regenerated according 

to the geometric positions of other two windows. Currently, 

we do not consider the scenario that more than one window 

of the TROI is lost or blocked during tracking. Fortunately, 

the probability of losing control of two windows is very low.

IV. LOCATING MROI 

On locating the TROI, we need to infer the Measurement 

Region of Interest (MROI). According to weak perspective 

camera model [13], from the object frame to the camera 

frame, the object experiences a scaled transformation 

followed by an orthographic projection to the image frame 

from the transferred object in the camera frame. Hence, the 

MROI is projected orthographically and varies in terms of 

different poses. Through our experiments, the size of the 

MROI is not very sensitive to the measuring accuracy of the 

breath signal given that it reasonably covers the breath flow 

region. Currently, we only compute the mean temperature 

within the MROI and use it as the breathing intensity for 

each frame. The series of mean temperature variations will 

be utilized to compute breath frequency.  

V. EXPERIMENTS AND PERFORMANCE ANALYSIS

We capture the video clips by our highly automated IR 

image processing platform ATHEMOS [14]. The image is 

taken by adding a 4.3µm narrow band filter on the camera 

lens to visualize CO2 airflow. The size of the image frame is 

320*254 pixels, and the video is sampled at 50-55 

frames/second. The number of hypotheses in particle 

filtering is M=15 for each window of the TROI. We use four 

video clip files, which are named D005-030, D005-031, 

D005-042, and D005-043.

A. Tracking with Significant Head Movement and TROI 

Occlusions 

First we see how the tracker deals with significant head 

rotation (Fig.3. (a-i)). In frame 83, the TROI is clearly 

visible so that all hypotheses converge to similar points. In 

frame 102, the hypothesis for the right periorbit begins to 

slightly be distracted from its unique location because the 

visibility decreases as the head turns. In frame 137, most of 

the right periorbit is invisible and all hypotheses for that 

window converge to the left periorbit and forehead. Thanks 

to the geometric constraints, the tracker is aware of the loss 

of control for the right periorbit and therefore generates a 

new window position for the right periorbit. We see that by 

this artifactual interference, we still can infer the MROI 

approximately by locating the TROI. The same situation 

repeatedly occurs in frames 183, and 242. When the head 

turns back, we see in frame 245 that the tracker regains 

control of the right periorbit. In frame 249, the window for 

the right peri-orbit is lost again because the TROI is 

occluded by CO2 airflow. After that, the tracker recovers all 

of three windows in frame 253.  We see that our tracker 

works very well under significant head movement.  The 

necessary condition however is that two windows of the 

TROI are under control of the tracker. 

Using a similar lost-and-recover mechanism, we see in 

Fig. 3. (j-q) that how the tracker recovers from TROI 

occlusions by the subject’s hand. By frame 108, we see that 

the tracker has fully recovered its control over the three 

windows of the TROI. The hand print left on the face is still 

visible.   

B. Breathing Signal Through MROI 

We test the trackers ability to recover the breathing 

intensity signal from the video file D005-30, in which the 

subject moves his head slowly followed by some quick 

movements.  Since the CO2 flow absorbs emissivity, the 

MROI has a lower temperature when expired flow comes 

through. We record the mean temperature in the MROI as 

given by the white quadrilaterals in Fig. 3 and plot its 

variation against time as in Fig. 4. To visualize the breathing 

cycles, we manually indicate the expiration cycle by a 

shadowed bar with the sequence number. For the first five 

cycles, the average temperature of the MROI almost ideally 
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reflects the expiration cycle. After that, the temperature 

signal fluctuates with the increasing amplitude of movement. 

Overall, the temperature does drop during expirations, 

which can be used to represent a breathing cycle. After cycle 

number 8, quick movement obviously brings a lot of noise 

to the signal. 

C. A Comparison Between Trackers With and Without 

Constraints 

To show the importance of the constraints introduced for 

our measurement model and provide a quantitative 

evaluation of our breathing tracker, a comparison is 

conducted between trackers with and without constraints.  

The tracker without constraints uses only temperature to 

evaluate hypotheses. The comparison results are given in 

Table I. We divide each video file into equally long clips 

and count the number of failures for each clip. For shorter 

files D005-030 and D005-031, the length of clip is 200. For 

D005-042 and D005-043, it is 1000. The rate of failure is 

calculated as the total number of failures divided by the total 

number of frames. We define failure when the TROI triangle 

violates a geometric constraint, which defines the size range 

and orientation of the triangle. From Table 1, we see that the 

tracker with constraints considerably improves the tracking 

performance. Occasional failures for tracker with constraints 

are due to the subject being out of the viewing scope, 

moving too fast, and other artifactual reasons.  

VI. CONCLUDING REMARKS

We have developed a tracker to automatically follow the 

human breathing signal using an infrared imaging system. 

The tracker is robust under different circumstances and is 

able to effectively recover the breathing signal. This has 

been achieved by selecting human facial physiology features 

as a TROI and tracking by MSL-based particle filtering. We 

impose geometric and displacement constraints on the 

windows of the TROI and design a measurement model in 

particle filtering, which makes the tracker perform reliably 

under different head poses and when part of the TROI is 

occluded. Experiments show that the specially designed 

measurement model can prevent a number of tracking 

failures which are inevitable in a tracker without these 

constraints.   

Further work is needed in the near future: (1) determine 

the optimal number of hypotheses in particle filtering to save 

as many computational resources as possible; (2) further 

investigate how the head position and movement influences 

the breathing signal sampling from the MROI; (3) 

automatically recover from tracker failure even when more 

than one window of the TROI is lost; (4) signal processing 

for breathing analysis when noise is introduced by the 

tracker.
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TABLE I

COMPARISON BETWEEN TRACKERS WITH AND WITHOUT CONSTRAINTS

 D005-030 D005-031 D005-042 D005-043 

Length 2835 2614 17416 17577 

Item WiC. WoC. WiC. WoC. WiC. WoC. WiC. WoC.

Rate of 

Failures

(%)

3.04 10.61 1.58 57.62 0.2 87.6 1.84 46.92

Note: WiC.: with constraints; WoC: without constraints
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Fig. 3. Tracking with significant head moving (a-i) and occlusion (j-q). Green rectangles are for the right periorbit, red ones for the left periorbit, and blue for 

the  nose. The white circles represent the best estimation of the TROI and the white quadrilateral is the MROI. The number on top right is the frame index. 

All images are from video clip D005-043 

Fig. 4. .  Breathing signal against time.  The curve is given by mean temperature in MROI.  The labeled shadowed bars indicate each inspiration cycle, during 

which the CO2 occludes the emissivity from facial regions to lower the temperature. 
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