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Abstract however, has proved more problematic than the seemingly

We present a novel approach for face recognition based on
the physiological information extracted from thermal fa-
cial images. First, we delineate the human face from the
background using a Bayesian method. Then, we extract
the blood vessels present on the segmented facial tissue
using image morphology. The extracted vascular network
produces contour shapes that are unique for each individ-
ual. The branching points of the skeletonized vascular net-
work are referred to as Thermal Minutia Points (TMPs).
These are reminiscent of the minutia points produced in fin-
gerprint recognition techniques. During the classification
stage, local and global structures of TMPs extracted from
test images are matched with those of database images. We
have conducted experiments on a large database of thermal
facial images collected in our lab. The good experimen-
tal results show that our proposed approach has merit and
promise.

1. Introduction

Biometrics has received a lot of attention during the last few
years both from the academic and business communities. It
has emerged as a preferred alternative to traditional forms
of identification, like card IDs, which are not embedded
into one’s physical characteristics. Research into several
biometric modalities including face, fingerprint, iris, and
retina recognition has produced varying degrees of success
[1]. Face recognition stands as the most appealing modality,
since it is the natural mode of identification among humans
and totally unobtrusive. At the same time, however, it is
one of the most challenging modalities [2]. Faces are 3D
objects with rich details that vary with orientation, illumi-
nation, age, and artifacts (e.g., glasses). Research into face
recognition has been biased towards the visible spectrum
for a variety of reasons. Among those is the availability and
low cost of visible band cameras and the undeniable fact
that face recognition is one of the primary activities of the
human visual system. Machine recognition of human faces,
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effortless face recognition performed by humans. The ma-
jor culprit is light variability, which is prevalent in the visi-
ble spectrum due to the reflective nature of incident light in
this band. Secondary problems are associated to the diffi-
culty of detecting facial disguises [3].

As a cure to the aforementioned problems, researchers
have started investigating the use of thermal infrared for
face recognition purposes [4, 5, 6]. However, many of these
research efforts in thermal face recognition use the thermal
infrared band only as a way to see in the dark or reduce
the deleterious effect of light variability [7, 8]. Method-
ologically, they do not differ very much from face recog-
nition algorithms in the visible band and can be classified
as appearance-based [9, 10] or feature-based approaches
[11,12].

In this paper, we present a novel approach to the problem
of facial recognition that realizes the full potential of the
thermal infrared band. It consists of a statistical face seg-
mentation and physiological feature extraction algorithms
tailored to thermal phenomenology. Prokoski et al. an-
ticipated the possibility of extracting the vascular network
from thermal facial images and using it as a feature space
for face recognition [13]. However, they did not present an
algorithmic approach for achieving this. To the best of our
knowledge, this is the first attempt to develop a face recog-
nition system using physiological information on the face.
Our goal is to promote a different way of thinking in areas
where thermal infrared should be approached in a distinct
manner with respect to other modalities.

Figure 1 shows the architecture of the proposed system.
It operates in two phases:

o Off-line phase: The thermal facial images are captured
by a thermal infrared camera. A two-step segmentation
algorithm is applied on the input image to extract the
vascular network on the face. TMPs are detected on
the branching points of the vascular network and are
stored in the database (see Figure 1(a)).
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Figure 1: Block diagram of our face recognition system: (a)
off-line phase; (b) on-line phase.

o On-line phase: Given a query image, TMPs of its vas-
cular network are extracted and are matched against
those that are stored in the database (see Figure 1(b)).

In the following sections, we will describe our face
recognition system in detail. In Section 2, we present the
vascular network extraction algorithm. In Section 3, we
discuss about vascular network matching. In Section 4, we
present the experimental results and attempt a critical eval-
uation. We conclude our paper in Section 5.

2. Vascular Network Extraction

A thermal infrared camera with reasonable sensitivity pro-
vides the ability to directly image superficial blood vessels
on the human face. The pattern of the underlying blood ves-
sels is unique to each individual, and the extraction of this
vascular network can provide the basis for a unique feature
vector.

2.1. Face Segmentation

Due to its physiology, a typical human face consists of hot
parts (dominant mode) that correspond to tissue areas that
are rich in vasculature and cold parts that correspond to tis-
sue areas with sparse vasculature. This casts the human face
as a bimodal distribution entity, which can be modelled us-
ing a mixture of two Normal distributions. Similarly, the
background can be described by a bimodal distribution with
walls being the cold objects (dominant mode) and parts of
the subject’s body dressed in cloths being the hot objects.
We approach the problem of delineating facial tissue from
background using a Bayesian framework [14] since we have
apriori knowledge of the bimodal nature of the scene.
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We call 6 the parameter of interest, which takes two pos-
sible values (s and b) with some probability. For each pixel
z in the image, we draw our inference of whether it repre-
sents skin (i.e., # = s) or background (i.e., # = b) based on
the posterior distribution p(*)(A|;) given by:

O (s|lzy), 6 = s
®) (g _ )P t) 1
p ( ‘xt) {p(t)(bxt) -1 —p(t)(s|xt)7 0—b (D
where according to the Bayes’ theorem:
()
T\ (s) f(xt]s

w0 (s)f (we]s) + 71 (b) f (x:]b)

Here, w(t)(s) is the prior distribution at time ¢, which is
equal to the posterior distribution at time ¢ — 1.

In the first frame (¢ = 0), the priors for skin and back-
ground are considered equiprobable:

7O (s) = 2 =7 O), 3)
fort > 1:
) (g) = pt=1) 0 =
Oy =27 (s)=p (sle-1), S 4
T {H“w>=p“1MMm_n,e=b @

Based on the bimodal view of the skin and background
distributions we will have for the likelihood for ¢ > 0:
(wils) = 7wl N () 02"), 0= 5
(elb) = 37wl N (™), 0=

&)
where ws, = 1 — wg, and wp, = 1 — wp,. The mixture
parameters ws, , fis, , Oz, , Wy, , b, , Oy, , © = 1,2 can be ini-
tialized and updated using the EM algorithm. For that, we
select N representative facial frames (off-line) from a vari-
ety of subjects. This will serve as our training set. Then,
we manually segment on all the /N frames, skin and back-
ground areas, which will yield Ny skin and NV}, background
pixels.

Once a data point x; becomes available, we decide that
it represents skin if the posterior distribution for the skin,
p®(s|lz;) > 0.5 and that it represents background oth-
erwise. Figure 2 depicts the Bayesian segmentation of
a subject’s face. On one hand, small parts of the sub-
ject’s nose and left cheek have been erroneously labelled
as background (white). On the other hand, a couple of
small cloth patches around the subject’s neck have been er-
roneously marked as facial skin. These are due to occa-
sional overlapping between portions of the skin and back-
ground distributions. The isolated nature of these misla-
belled patches makes them easily correctable through post-
processing (morphological opening and closing).

)7
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Figure 2: Segmentation of facial skin region: (a) result
of Bayesian segmentation; (b) correction of mislabelled
patches through post-processing.

2.2. Segmentation of Superficial Blood Vessels

Once a face is delineated from the rest of the scene, the seg-
mentation of superficial blood vessels from the facial tissue
is carried out in the following two steps [14, 15]:

1. Smooth the image to remove the unwanted noise.

2. Apply morphological operations to localize the super-
ficial vasculature.

In thermal imagery of human tissue the major blood ves-
sels have weak sigmoid edges, which can be handled effec-
tively using anisotropic diffusion. The anisotropic diffusion
filter is formulated as a process that enhances object bound-
aries by performing intra-region as opposed to inter-region
smoothing. The mathematical equation for the process is:

0I(z,t)

5 (0)

In our case I(Z, t) is the thermal infrared image, & refers

to the spatial dimensions, and ¢ to time. c(Z, t) is called the

diffusion function. The discrete version of the anisotropic
diffusion filter of Equation (6) is as follows:

V(e(z, t)VI(z,t1)).

1
Lipi(z,y) = It + 1" [ent(z,y)VIN g (z,y)

+csi(x,y)Vise(z,y) + cpe(x,y)VIip (2, y)
+ewi(z,y)Viwe (2, y)]. (M

The four diffusion coefficients and four gradients in
Equation (7) correspond to four directions (i.e., North,
South, East, and West) with respect to the location (X,y).
Each diffusion coefficient and the corresponding gradient
are calculated in a similar manner. For example, the coeffi-
cient along the North direction is calculated as:

7VI]2V,t (:E, y)
k2 ’
where I = Li(z,y + 1) — Ii(x,y).
Image morphology is then applied on the diffused image

to extract the blood vessels that are in low contrast com-
pared with respect to the surrounding tissue. We employ

®)

CN,t(HU» y) = exp(
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Figure 3: Vascular network extraction: (a) anisotropically
diffused image; (b) blood vessels extracted using white top
hat segmentation.

for this purpose a top hat segmentation method, which is
a combination of erosion and dilation operations. Top hat
segmentation has two versions: white top hat segmentation
that enhances bright objects and black top hat segmenta-
tion that enhances dark objects in the image. In our case,
we are interested in white top hat segmentation [14] since
it helps to enhance the bright (‘hot’) ridge like structures
corresponding to the blood vessels. Figure 3(a) depicts the
result of applying anisotropic diffusion to the segmented
facial tissue shown in Figure 2(b). Figure 3(b) shows the
corresponding blood vessels extracted using white top hat
segmentation.

3. Vascular Network Matching

The branching points of the extracted blood vessels are lo-
calized as Thermal Minutia Points (TMPs). Different fea-
tures of each TMP are considered for matching an input fa-
cial image with a database image.

3.1. Extraction of Thermal Minutia Points

Although, various methods have been proposed for robust
and efficient extraction of minutia from fingerprint images
[16], we are not aware of any for facial images. Most of
the fingerprint approaches describe each minutia by at-least
three attributes, including its location, orientation, and type.
We adopt a similar approach for extracting TMPs from the
facial vascular network. Specifically, we undertake the fol-
lowing steps:

1. Estimate the local orientation of the vascular network.
2. Skeletonize the vascular network.

3. Extract TMPs from the thinned vascular network.

4. Remove spurious TMPs.

Local orientation ¥, is the angle formed by the blood
vessel at pixel (z,y) with the horizontal axis. Estimating
the orientation field at each pixel provides the basis for cap-
turing the overall pattern of the vascular network. We use
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Figure 4: Results of TMP extraction algorithm: (a) vascular
network extracted from thermal facial image; (b) thinned
vessel map; (c) extracted TMPs from branching points; (d)
spurious TMPs removed.

the approach proposed in [17] for computing the orientation
image since it provides pixel-wise accuracy and also can be
used in both binary and gray-scale images.

Next, the vascular network is thinned to one-pixel thick-
ness [18]. Each pixel in the thinned map has a value of
1 if it is on the vessel and O if it is not. Considering 8-
neighborhood (Ng, N1, ..., N7) around each pixel, a pixel
(z,y) represents a TMP if (ZZ:O N;) > 2. Removal of
spikes and clustered TMPs reduces spurious TMPs. The
vascular network of a typical facial image contains around
50-80 genuine TMPs whose location (x, y) and orientation
(D) are stored in the database. Figure 4 shows the results of
each stage of the TMP extraction algorithm on a segmented
vascular network.

3.2. Matching of Thermal Minutia Points

Numerous methods have been proposed for matching fin-
gerprint minutiae, most of which try to simulate the way
forensic experts compare fingerprints [16]. Popular tech-
niques are alignment-based point pattern matching, local
structure matching, and global structure matching. Local
minutiae matching algorithms are fast, simple, and more
tolerant to distortions whereas global minutiae matching
algorithms have high distinctiveness. A few hybrid ap-
proaches [19, 20] have been proposed where the advantages
of both methods are exploited. Our method of TMP extrac-
tion is modelled after these hybrid approaches.

For each TMP M(,, ,. w,) that is extracted from the
vascular network, consider its N nearest neighbor TMPs
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M, yow,), 7 = 1,...; N. The TMP M can then be de-
fined by a new feature vector:

Ly = {{d1, 1,91}, {d2, 02,02}, ... {dn, on,IN}, Vi }

)]
where
dn \/(In - xi)Q + (yn - yi)2
©n diff(¥,,9;), n=1,2,...,N
9, = diff (arctan (y" - y) @) (10)
Tn — T4

The function dif f() calculates the difference of two an-
gles and bounds the result within the range [0, 27) [20].
Given a test image M, the feature vector of each of its
TMPs is compared with the feature vector of every TMP
of a database image. Two TMPs M and M’ are marked to
be a matched pair if the absolute difference between cor-
responding features is less than specific threshold values
{04, 0,, 09,0y }. The threshold values should be chosen in
such a way that they accommodate for linear deformations
and translations. The final matching score between the test
image and a database image is given by:

NUMmatch
maX(NUMtest7 NUMdatabase)

Score = (11
where NU M, qtcn represents number of matched TMP
pairs, and NU Micst, NU Mgatabase represent number of
TMPs in test and database images respectively. If the high-
est matching score between the test and database images is
greater than a specific threshold, we decide that the corre-
sponding database image is the match. If the highest score
is less than the threshold value, we decide that the test image
does not exist in the database.

4. Experimental Results

We collected a large database of thermal facial images in
our lab from volunteers representing different sex, race, and
age groups. The images were captured using a high quality
mid-wave infrared camera (Phoenix by FLIR Systems).
We used a subset of the dataset for evaluating the per-
formance of the proposed face recognition algorithm. The
dataset consists of 1518 thermal facial images from 138 dif-
ferent subjects (11 images per subject) with varying pose
and facial expressions. One image from each subject is used
for training, the TMPs of which are extracted and stored in
the database, and the remaining ten images are used for test-
ing. A major challenge associated with thermal face recog-
nition is the performance over time [21]. Facial thermo-
grams may change depending on the physical condition and
environmental conditions. A few approaches that use direct
temperature data for recognition reported degraded perfor-
mance over time [10]. However, our approach attempts to
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Figure 5: (a) Thermal facial image of a subject acquired
on 10-17-2003 and (b) corresponding vascular network; (c)
Thermal facial image of the same subject acquired on 04-
29-2004 and (d) corresponding vascular network.
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Figure 6: CMC curve of proposed method on our dataset.

solve this problem by using facial anatomical information
as its feature space, which is unique to each person and at
the same time is invariable to physical and environmental
conditions as shown in Figure 5. The vascular network ex-
tracted from the same person with a time gap of about six
months exhibits a similar pattern.

Figure 6 shows the Cumulative Math Characteristic
(CMC) curve and Figure 7 shows the ROC based on var-
ious threshold values for the matching score discussed in
Section 3.2. The results demonstrate the promise as well as
some problems with our proposed approach. Specifically,
CMC shows that rank 1 recognition is over 82% and rank
5 recognition is over 92%. This performance puts a brand
new approach very close to the performance of mature vis-
ible band recognition methods. In contrast, ROC reveals a
weakness of the current method, as it requires false accep-
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tance rate over 20% to reach positive acceptance rate above
the 80% range. To address this problem we believe we need
to estimate and eliminate the non-linear deformations in the
extracted vascular network. This will accommodate safely,
large variations in pose and facial expression during the en-
rollment and testing phases.
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Figure 7: ROC of proposed method on our dataset.

5. Conclusions

We have outlined a novel approach to the problem of face
recognition in thermal infrared - one of the fastest grow-
ing biometrics. The cornerstone of the approach is the use
of unique and time invariant physiological information as
feature space. The facial tissue is first separated from the
background using a Bayesian segmentation method. The
vascular network on the surface of the skin is then ex-
tracted based on a white top-hat segmentation preceded by
anisotropic diffusion. Thermal Minutia Points (TMPs) are
extracted from the vascular network and are used as features
for matching test to database images. The experimental re-
sults demonstrate that our approach is very promising.

The method although young, performed well in a non-
trivial database. Our ongoing work is directed towards im-
proving the sophistication of the method regarding variable
pose and facial expression and testing it comparatively in
larger databases.
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