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Abstract 

A novel curve segmentation algorithm for detennin- 
ing control points for deformable-model-based target 
tracking is proposed. The  algorithm is parameterless 
enabling a full-fledged automated tracking regard1e:w of 
the shape of the object being tracked. Compared with 
other curve segmentation algorithms, it selects a min- 
imal number of control points that yet deliver a supe- 
rior shape description. The  algorithm is  comparatively 
tested with other curve segmentation algorithms in a 
variety of characteristic target outlines. 

1 Introduction 

The need for target tracking arises in a number of 
different applications in robotics research. Character- 
istic examples include vision-based control of grasping 
and manipulation tasks [8, 101 and visual tracking of 
moving objects [2, 51. Target tracking is also impor- 
tant in a number of other applications, like the case 
of pedestrian tracking in an Intelligent Transportaftion 
System (ITS) [9]. A well-established and popular tech- 
nique for target tracking involves the use of deformable 
models [2, 9, 101. Deformable models originate from 
the “snake,” a model for representing image contours 
first developed by Kass et  al. [4]. 

A necessary first step in the computation of a. de- 
formable model is to  determine a set of control points 
to approximate the tracked object’s contour. To date, 
this is done by hand through a user-interface. How- 
ever, the possibility of using a curve segmentation 
algorithm is often indicated. Picking control points 
manually, renders difficult the automation of the en- 
tire tracking task. In addition, since the user is pick- 
ing the points randomly or at best using some heuris- 
tic developed through his/her own experience, he/she 

tends to pick either too many or too few control points. 
On the other hand, using some classical curve seg- 
mentation algorithm [l, 3, 6, 71 only half-automates 
the task since the performance of these algorithms de- 
pends upon the fine tuning of a number of parameters. 
Different object shapes may require different param- 
eter settings or otherwise the segmentation algorithm 
will perform at times either excessive segmentation or 
sparse segmentation. 

In this paper we propose a segmentation algorithm 
(from now on, we will denote it as P &. P)  that fills 
out the existing gap in all the respects. It fully auto- 
mates the selection of the control points since it does 
not depend on any parameters and works equally we11 
for all kinds of shapes. Comparatively to other curve 
segmentation algorithms, it manages to select the min- 
imal number of points that yet deliver a superior de- 
scription of the original shape. 

The organization of the paper is as follows: Sec- 
tion 2 presents some previous curve segmentation al- 
gorithms and discusses their shortcomings for the task 
at hand. Section 3 describes the algorithm we propose. 
In Section 4, the results from experimental tests are 
presented. Finally, in Section 5, the paper is summa- 
rized and conclusions are drawn. 

2 Previous Work 

Several interesting techniques that segment contin- 
uous lines in various ways have already been proposed 
in the literature in fields other than target tracking. 
The criteria against which the various curve segmen- 
tation algorithms should be judged for deformable- 
model-based tracking purposes are the following: 

0 First, the number of segmentation (control) 
points should be kept to the minimum, since the 
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speed of deformable-model-based tracking is usu- 
ally linear in the number of control points. 

Second, the control points chosen should deliver 
an accurate description of the tracked object’s 
contour. This is important because it allows the 
deformable model to  follow small deformations. 

The above two criteria appear at first contradictory 
and researchers resorted to either choosing too many 
control points, thus compromising the tracking speed, 
or too few control points, thus compromising the qual- 
ity of tracking. Interestingly, these two criteria are 
not quite met without careful or ad hoc parameter 
tuning by any of the most prominent curve segmen- 
tation algorithms. Three typical curve segmentation 
approaches are briefly presented in the following para- 
graphs for illustrative and comparative purposes. 

A series of curve segmentation algorithms of the 
“split and merge’’ kind have been proposed by T .  
Pavlidis et al. [6, 71. These algorithms are based 
on an iterative approximation of a curve by straight 
segments that drive an error norm under a specified 
threshold. This method (from now on, we will denote 
it as P) is suitable for the approximation of a curve 
by a polygonal line but has a tendency to result in too 
many segmentation points. 

Freeman and Davis [3] proposed another type of 
segmentation technique (from now on, we will denote 
it as F & D) that involves the analysis of portions 
of the curve joining s points. The s points are used 
to locate the discontinuities along the curve. Three 
indices are calculated for each successive portion of 
s points; one index C( i )  is related to the severity of 
the curvature combining these s points, and the other 
two are related to  the length of the discontinuity-free 
region (backwards (Ib(i))  and forward ( I f ( i ) ) )  from 
the point i. The importance of a given vertex i is 
calculated with the formula 

~ m p ( i )  = ~ ( i )  Jm. (1) 

The segmentation points are the ones located, af- 
ter a proper filtering, at the maxima of I m p ( i ) .  This 
interesting method, however, fixes arbitrarily the do- 
main where a potential vertex could be found and is 
not able to detect “long and smooth” corners. 

Brault and Plamondon [l] presented yet another 
segmentation algorithm (from now on, we will denote 
it as B & P) that could be considered as an improve- 
ment over the F & D algorithm. The main idea of their 
approach is that for each point i of the curve, the al- 
gorithm tries to iteratively construct a vertex centered 

on that point with the help of neighboring points to 
either sides of it until certain geometric conditions are 
met. In comparison with the F & D algorithm the B & 
P algorithm considers that a corner could be made by 
any number of points, and the algorithm itself must 
determine the length and the specific domain of ev- 
ery potential vertex. This algorithm, however, still 
depends on two other parameters that need to  be fine 
tuned. In addition, while the algorithm employs a very 
powerful technique for detecting corners, it does not 
have an equally powerful way of detecting key points 
in round or flat curves. 

3 The Algorithm 

The algorithm we propose (P & P) takes a step 
further than the B & P algorithm. It does not de- 
pend on any parameters and thus offers a potential 
for true automation. It features a coherent mechanism 
for detecting not only corners but also some key points 
between corners. In this way, it improves its approx- 
imating power at the minimum cost. And because of 
its ability to locate some key points with relatively flat 
or round surroundings, it also performs satisfactorily 
in the case of rounded and flat objects. 

3.1 Corner Determination 

The determination of corners is done in a way simi- 
lar to the method followed in the B & P algorithm [l]. 
The notable difference is that there is no need for pa- 
rameter tuning. The basic idea is that for each point 
i of this curve, the algorithm tries to iteratively con- 
struct a vertex centered on that point with the help 
of neighboring points to either side of it until some 
conditions are met. 

3. 

3. 

Figure 1: Geometric model for corner determination. 
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More precisely, the geometric parameters shown in 
Fig. 1 are calculated for each pair of neighbors i 3: n 
(for n = 1,2  ...). Intuitively, the more the two angles 
O j ( i ,  n), B b ( i ,  n) approach f, the less the corresportd- 
ing pair of neighboring points contributes to the cor- 
nerness of point i. As a result, by a suitable analysis 
of the angles 6f( i ,n)  and Ob(i,n), one can determine 
whether or not the pair of points i f n is part of t4he 
corner domain of i and, in addition, one can estimate 
the importance of the contribution of these points. 

Determining the conditions for which a pair i 3: n 
belongs to the corner domain of vertex i is straiglht- 
forward. The angles Bf(i,n) and Ob(i,n) must satisfy 
the following inequality: 

7r 7r 
e f ( i , n )  < - and eb(i ,n)  c 2. (2) 2 

The importance I M P ,  of the contribution of each 
pair i f n to the making of the candidate corner i is 
calculated by the empirical formula 

I M P J ~ ,  n) = cos(eb(i, * cos(ef(i, .)I. 1(3) 

The trigonometric function cos was used for its 
adequate behavior in the range of angles concerned, 
whereas the multiplication operation takes into ac- 
count the required simultaneous effect of the pair of 
points i f n to make the vertex i important. 

The total contribution of the first Ncd(i) points be- 
longing to the corner domain of i (the ones that satisfy 
the inequality (2)) is calculated by 

N c d ( i )  

Tlc( i )  = IMPc(i ,n) .  (4) 
n=l 

The identification of the corner segmentation poi:nts 
from the function T I c ( i )  is very simple because this 
function usually comes in the form of groups of 
nonzero values spaced by a group of zero values. Each 
of the nonzero groups represents a corner, and the 
maximum value of each group is said to be the corner’s 
apex, where the corner segmentation point is placed. 

3.2 Key Flat Point Determination 

While corners atre the perceptually most important 
parts in a curve, corners alone provide insufficient data 
for an accurate reconstruction of the curve. The sit- 
uation improves dramatically if we provide some key 
points with rather flat surroundings, that lie between 
corners, as extra segmentation points. The way we lo- 
cate these flat points is conjugate to the way we locate 
the corner points. 

Figure 2: Geometric model for key flat point deter- 
mination. 

More precisely, a separate processing step is tak- 
ing place for the location of the key f lat  points. The 
geometric parameters shown in Fig. 2 are the same 
with these in Fig. 1 and are calculated for each pair 
of neighbors i f n (for n = 1 ,2  ...) of every point i 
of the curve. This time, however, the larger the an- 
gles Of(i ,n) ,  Ob(i,n) are than ;, the more the corre- 
sponding pair of neighboring points contributes to the 
flatness of point i. As a result, by a suitable analysis 
of the angles @(i,n) and &,(i,n), one can determine 
whether or not the pair of points i f n is part of the 
flat domain of i and, in addition, can estimate the 
importance of the contribution of these points to the 
flatness of point i. 

The angles Of(i ,n)  and &(i, n) must satisfy the fol- 
lowing inequality: 

(5) 
7r 7r 

Bf( i ,n)  > - OT Ob(i,n) > -. 
The importance I M P f  of the contribution of each 

pair i f n  to the making of the candidate key flat point 
i is calculated by the empirical formula 

2 2 

 IMP^(^,^) =I cos(eb(i,n)) I * I cos(ef(i,n)) 1 . (6) 

In contrast to equation (3), equation (6) uses the 
absolute value of the trigonometric function cos since 
the range of the angles O f  and/or Ob features now 5 as 
a lower and not as an upper limit. The total contri- 
bution of the first N f d ( i )  points belonging to the flat 
domain of i (the ones that satisfy the inequality ( 5 ) )  
is calculated by 
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Nt d (i) 

T I f ( i )  = 1 IMPf(i,72). (7)  
n=l 

The identification of the key flat segmentation 
points from the function T l f ( i )  is again very sim- 
ple because this function, like the conjugate function 
TI,(i) in equation (4), usually comes in the form of 
groups of nonzero values spaced by a group of zero 
values. Each of the nonzero groups represents a flat 
or round segment, and the maximum value of each 
group is said to be the key flat point for the specific 
flat or round segment. 

In the case of a completely round target, like a cir- 
cle, there will be no corners and there will be one huge 
continuous run of points with nonzero T I f  values. The 
point with the maximum T I f  value, will be the only 
one key flat point of the curve. Actually, it will also 
be the only segmentation point, since there are no 
corner segmentation points for round objects. This 
is obviously a degenerate shape description. To over- 
come this difficulty, when the algorithm senses that 
the length of a key flat point run is close to  the length 
of the curve, it partitions the large run to four sub- 
runs of equal length and assigns four key flat points 
instead of one to the original run. The number four 
was chosen because in the extreme case of a perfect 
circle, we need at least four equidistant control points 
for an accurate reconstruction of the original shape by 
using a spline representation. 

4 Experimental Results 

The algorithm was tested with the outline curves 
of two characteristic objects (see Figs. 3 and 7) we 
use for target tracking in our robotic experimental 
setup. It was also tested with the outline figure of a 
pedestrian image (see Fig. 11) taken from our Intelli- 
gent Transportation System experimental setup. The 
outline curve of the object is produced by applying 
an edge following algorithm on the difference image 
produced from the original dynamic scene. The same 
curves were also subjected to  segmentation by the B 
& P and P algorithms for comparison purposes. 

The comparative experiments between the three 
segmentation algorithms were designed in the follow- 
ing way. As it was explained in the previous sec- 
tion, no parameters needed to be fixed in our P & 
P algorithm. The algorithm produced a set of con- 
trol points for each curve that accurately described 
the original figure. The accuracy of description has 
been tested by using the control points as interpolating 

points for cardinal splines. The resulting spline curves 
almost completely coincided with the corresponding 
original curves. A careful parameter tuning for the 
other two segmentation algorithms was performed for 
each curve. This happened in order for the algorithms 
to produce sets of control points that deliver similarly 
accurate descriptions of the original figures. Apart 
from the fact that parameter tuning was needed for 
the B & P and P algorithms, our algorithm produced 
substantially fewer control points for the same fine de- 
scriptive results. 

Figure 3: A rectangu- 
lar target (black blob). 

Figure 4: Rectangular 
outline segmented by P 
& P. 

Figure 5:  Rectangular 
outline segmented by B 
& P. 

Figure 6: Rectangu- 
lar outline segmented 
by P. 

In the case of the rectangular target (Figs. 3 
through 6 ) ,  it is apparent the way our P & P algo- 
rithm works. The corners have been detected by the 
corner detection part of the algorithm, while the key 
flat points fall somewhere between the corners. The 
working logic is more obscure in the case of the B & P 
algorithm and even more so in the case of P algorithm, 
that seems to work simply by brute force. 

In the case of the balloon target (Fig. 7), our al- 
gorithm (Fig. 8) selects only key flat points since 
the figure is round and there are no prominent cor- 
ners. In the parts of the curve where the curvature 
changes more rapidly, there is a denser concentration 
of control points. In the parts of the curve where the 
curvature changes more slowly, the control points are 
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Figure 12: Pedestrian 
outline segmented by 
our algorithm. 

Figure 7: A balloon 
target. 

Figure 8: Balloon out- 
line segmented by P & 
P. 

Figure 11: A pedes- 
trian target. 

Figure 9: Balloon out- 
line segmented by B & 
P. 

Figure 10: Balloon 
outline segmented by 
P. 

more evenly and sparsely distributed. Such a distri- 
bution scheme makes both theoretical and intuitive 
sense. Again, the distribution of control points is less 
well thought in the other two algorithms. 

In the case of pedestrian tracking (Fig. ll), the 
outline figure is a rather complex true real world fig- 
ure. Our algorithm still outperforms the other two. 
It achieves this, lby distributing control points more 
densely in parts of rapid curvature change and more 
sparsely in parts of slow curvature change. By fol- 
lowing such a consistent strategy, the algorithm while 
economizes in control points it still delivers superior 
shape description. 

In Fig. 15, bar charts that show the performance 
of the three segmentation algorithms for the various 
target types are presented. The results correspond 
to control point sets with highly accurate descriptive 
power for all three algorithms. It is apparent, that our 
P & P algorithm delivers the same high descriptive 
accuracy with the other two algorithms by utilizing a 
smaller number of control points. Interestingly, our 
algorithm performs comparatively better as the shape 
of the targets becomes increasingly complex. 

Figure 13: Pedestrian 
outline segmented by B 
& P. 

5 Summary 

Figure 14: Pedestrian 
outline segmented by P 
& H. 

A new curve segmentation algorithm for locating 
control points for deformable-model-based tracking 
has been described. Comparatively to other curve seg- 
mentation algorithms, the proposed algorithm delivers 
the minimal amount of control points for the same fine 
descriptive detail. Moreover, no parameters need to be 
fixed and the algorithm performs equally well for any 
type of curve. The algorithm achieves such results by 
segmenting the curve at its corner and some key flat 
points only. Its net effect is to distribute control points 
more densely at  parts with high curvature change rate 
and more sparsely at  parts with slow curvature change 
rate. 

On one hand, the proposed algorithm completely 
automates the deformable-model-based robotic track- 
ing and on the other hand optimally solves the contra- 
dictory requirements of using as few control points as 
possible for the deformable model, that still describe 
accurately the original figure. 

The same algorithm can be used successfully not 
only in robotic deformable-model-based tracking but 
also in other deformable-model-based tracking appli- 
cations like pedestrian tracking. Moreover, it can also 
be used as a generic segmentation algorithm. 
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Rectangle Balloon Pedestrian 

Figure 15: Performance in terms of number of con- 
trol points for the three segmentation algorithms. The 
number of control points yielded in each case is shown 
at the top of the corresponding bar. 

At the current implementation, the time complex- 
ity of the algorithm is O ( N 2 ) ,  where N is the number 
of points that comprise the curve. Although, the al- 
gorithm still runs in real time for the usual real-world 
targets, it can easily be made faster. This can be 
achieved if we exploit the optimal substructure of the 
way corners and key flat points are found, by using 
dynamic programming techniques. 
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