
 

Imaging the Cardiovascular Pulse 

Nanfei Sun 

Dept. of Computer Sc. 

Univ. of Houston 

Houston, TX 

nsun@mail.uh.edu

Marc Garbey 

Dept. of Computer Sc. 

Univ. of Houston 

Houston, TX 

garbey@cs.uh.edu

Arcangelo Merla 

Dept. of Clinical Sc. 

Univ. G. D’Annunzio 

Chieti, Italy 

a.merla@itab.unich.it

Ioannis Pavlidis 

Dept. of Computer Sc. 

Univ. of Houston 

Houston, TX 

ipavlidi@central.uh.edu

Abstract 

 We have developed a novel method to measure 

human cardiac pulse at a distance. It is based on the 

information contained in the thermal signal emitted 

from major superficial vessels. This signal is 

acquired through a highly sensitive thermal imaging 

system. Temperature on the vessel is modulated by 

pulsative blood flow. To compute the frequency of 

modulation (pulse), we extract a line-based region 

along the vessel. Then, we apply Fast Fourier 

Transform (FFT) to individual points along this line 

of interest to capitalize on the pulse propagation 

effect. Finally, we use an adaptive estimation 

function on the average FFT outcome to quantify the 

pulse. We have tested the accuracy of our method on 

5 subjects with highly successful results. The 

technology is expected to find applications among 

others in sustained physiological monitoring of 

cardiopulmonary diseases, sport training, sleep 

studies, and psychophysiology (polygraph). 

1. Introduction 

Monitoring of cardiac pulse is widely used in 

health care, sport training, sleep studies, and psycho-

physiological (polygraph) examinations. Various 

contact measurement methods have been developed 

to estimate a subject’s cardiac pulse. The golden 

standard for pulse measurement is Electro-Cardio-

Graphy (ECG) [1]. ECG records the differences of 

the electric potential generated in different regions of 

the body due to the propagation of the action 

potential in the cardiac muscular fibers. ECG 

recording requires the use of a signal amplifier and at 

least three electrodes.  

When one is interested mainly in the cardiac 

frequency and not in the exact shape of the cardiac 

signal, simpler pulse measurement devices can be 

used. Such devices compute the pulse through 

indirect effects of blood flow change in the vascular 

network of a tissue.  

The piezoelectric transducer is a classical cardiac 

pulse measurement device, which registers local 

changes in blood pressure associated to the cardiac 

activity as a voltage signal. It is instrumented with a 

probe that is typically attached to a finger of the 

subject [2]. This is a reliable method, but it is very 

sensitive to motion. The subject must stay still, 

because even slight finger motion will introduce 

substantial noise and cause signal fading. We use a 

piezoelectric device as the ground truth standard of 

comparison against our thermal imaging analysis 

method [3].  

Doppler ultrasound is a more advanced 

technology, which has been used to collect blood 

velocity spectra. The full pulse waveform of the 

carotid has been recovered based on the blood 

velocity spectra by D.W. Holdsworth et al. in 1999 

[4].

To the best of our knowledge, no contact-free pulse 

measurement method based on passive sensing has 

been demonstrated so far. Recently, Pavlidis et al. 

have proposed a series of bioheat and statistical 

models that in combination with customized highly 

sensitive thermal imaging hardware can measure 

various physiology variables from several feet away 

from the subjects. These include contact-free 

measurements of perfusion [5], vessel blood flow [6], 

and breathing rate [7]. 

In this paper, we describe an FFT based signal 

processing method to estimate in a contact-free 

manner the cardiac pulse of human subjects using 

thermal video sequences. We present a brief 

introduction to the pulse physiology in section 2. In 

section 3, we describe how to select and track the 

line-shaped region of interest on the tissue imagery. 

In section 4, we describe a novel method to apply 

FFT along this line-shaped region to capitalize upon 

the pulse propagation effect. In section 5, we describe 

the estimation function we apply on the average FFT 

result to extract the heartbeat frequency. In section 6 
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we discuss the experimental setup and results. We 

conclude the paper in section 7. 

2. Cardiovascular Pulse 

The cardiovascular pulse is generated in the heart, 

when the chambers contract and blood bursts into the 

aorta from the left chamber. The blood travels 

through the arterial network and returns back to the 

heart through the vein network. Different mechanical 

processes are involved into the propagation of the 

cardiac pulse. Therefore, the pulse waveform can be 

described in terms of blood velocity, blood flow rate, 

and blood pressure. A comprehensive annotation to 

the pulse waveform was presented by D. W. 

Holdsworth in 1999 [4]. In that research, 

measurements were carried out on the carotid of the 

subjects by using Doppler ultrasound. Seven feature 

points correlated to the vascular fluid dynamics were 

identified as waveform descriptors (see Figure 1(a)). 

Comparing 3560 carotid waveforms from 17 subjects, 

the study reported negligible contralateral differences. 

This indicated that pulse waveforms of normal 

subjects have similar shapes. 

In our study, we are interested in monitoring 

cardiovascular pulse through analysis of skin 

temperature modulation. Pulsative blood flow 

modulates tissue temperature because of the heat 

exchange by convection and conduction between 

vessels and surrounding tissue. Such modulation is

more pronounced in the vicinity of major superficial 

blood vessels.  

In [6] we have proposed a model to simulate the 

heat diffusion process on the skin initiated by the core 

tissue and a major superficial blood vessel. We also 

took into account noise effects due to the 

environment and instability in the blood flow. Our 

simulation demonstrated that the skin temperature 

waveform is directly analogous to the pulse 

waveform. But, its exact shape is smoothed, shifted, 

and noisy with respect to the originating pulse 

waveform due to the diffusion process and air flow.

Figure 1(b) shows the skin temperature modulation 

computed by the 2D unsteady bioheat model in [6]. 

Comparing Figure 1(a) with Figure 1(b), we observe 

that some feature points, which provide fine detail, 

are missing, but the basic waveform shapes are still 

similar. This indicates that the pulse can be recovered 

from the skin temperature modulation recorded with a 

highly sensitivity thermal camera and processed 

through an appropriate signal analysis method. 

3. Regions of Interest 

As a consequence of the tissue thermal diffusion, 

modulation of skin temperature is strongest along the 

superficial blood vessels. This is also predicted by 

our bioheat transfer model reported in [6] and has 

been verified by our experiments. Based on clinical 

and anatomical knowledge [8][9], we extract the 

cardiac pulse either from the radial artero-venous 

complex, or the external carotid complex, or the 

frontal branch of the superficial temporal artero-

venous complex (see Figure 2). 

Presently, we select the skin footprint of the vessel 

complex by manually drawing a line on the imagery 

through the graphical user interface. Therefore, the 

outcome depends on the skill and knowledge of the 

operator. In the future, vessel localization can be 

performed automatically by the computer, based on a 

superficial blood vessel segmentation method 

proposed by Pavlidis et al. [10] 

(a) 

(b)

Figure 1:  Pulse waveform given in: (a) Doppler 
ultrasound format [4]; (b) temperature modulation format 
produced by the 2D unsteady bioheat model [6]. 

(a)      (b)      (c) 

Figure 2: (a) Radial vessel complex. (b) Carotid vessel 
complex. (c) Superficial temporal vessel complex. 
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4. Pulse Measurement Methodology 

Our method is based on the assumption that 

temperature modulation due to pulsating blood flow 

produces the strongest thermal signal on a superficial 

vessel. This signal is affected by physiological and 

environmental thermal phenomena. Therefore, the 

resulting thermal signal that is being sensed by the 

infrared camera is a composite signal, with the pulse 

being only one of its components. Our effort is 

directed into recovering the frequency of the 

component signal with the highest energy content. 

This is consistent with our hypothesis of pulse 

dominance in the thermal field of a superficial vessel. 

As we mentioned in Section 3, we select 

interactively the pulse taking location in the first 

frame of the thermal video. A prerequisite to accurate 

pulse measurement is motion tracking.  Even when 

subjects are instructed to stay put, they still exhibit 

slight movements due to motor functions. We use a 

conditional density propagation tracker [11] with 

thresholding as its feedback mechanism. The tracker 

allows meaningful application of Fourier analysis on 

the vessel’s region of interest in the presence of tissue 

motion. Based on the outcome of Fourier analysis an 

estimation function computes the cardiac pulse. 

Figure 3 illustrates the general steps of our 

methodology. 

Considering that the blood vessel is a long, narrow 

structure, the pulse propagation phenomenon causes 

slight phase shift on the temperature profiles along 

the blood vessel. This may weaken the signal if we 

use conventional signal recovery methods in the time 

domain. Each pixel along the blood vessel has a 

unique periodical temperature profile, which is 

shifted with respect to the others. As Figure 4 shows, 

averaging these temperature profiles may weaken the 

signal. Although, the temperature profiles of the 

pixels along the blood vessel are shifted in the time 

domain, their frequency should remain the same 

(unshifted). Therefore, by operating on the frequency 

domain and combining appropriately the power 

spectra of these temperature profiles we can reinforce 

the signal instead of weakening it.  We apply Fourier 

analysis in a novel manner to capitalize upon the 

pulse propagation effect and extract the dominant 

pulse frequency: 

First Step: We select a straight segment L along 

the center line of a large superficial blood vessel. The 

algorithm expands symmetrically L  into an 

elongated rectangle R . The width of this rectangle 

depends on the width of the vessel on the thermal 

imagery. For a subject imaged at 6 ft with a 50 mm 

lens the rectangle’s width is 3-7 pixels. By 

convention, we place the x axis of our coordinate 

system along the width and the y axis along the length 

of the vessel (see Figure 5). 

Second Step: We record the time evolution of the 

pixel matrix delineated by rectangle R  for N
frames ( N = 256 or 512). Thus, we produce a 3D 

matrix ( , , )A x y t , where 0 , 0x yx R y R≤ ≤  ≤ ≤ is

the spatial extent of rectangle R and 0 1t N≤ ≤ − is

the timeline. 

Third Step: We average the pixel temperatures 

along the x dimension. Thus, we derive a 2D matrix:  

0

1
( , ) ( , , ),

xR

xx

A y t A x y t
R =

′ =  (1) 

where 0 ,0 1yy R t N≤ ≤ ≤ ≤ − . This reduces the 

noise and “shrinks” the rectangular vessel region R
into an effective line, upon which the signal 

measurement will be performed.  

Figure 4: Temperature profiles of three different pixels 
along the exposed blood vessel compared to the 
average temperature profile. 

Figure 3: Pulse measurement methodology. 

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) 

1063-6919/05 $20.00 © 2005 IEEE 



Fourth Step: For each effective pixel on the 

measurement line we obtain the time evolution signal 

of its temperature: 

{ : ( ) ( , ), 0 1}.yy S t A y t t N′∀ =  ≤ ≤ −  (2) 

We apply the Fast Fourier Transform (FFT) on each 

of these signals to obtain the respective power 

spectra: 

{ : ( ( ))}yy S t∀ =yP Y  (3) 

The FFT method was first introduced by Cooley 

and Tukey (1965) [12]. Thereafter, it was used widely 

in signal analysis due to its high efficiency in 

comparison to other methods, such as the solution of 

linear equations or the correlation method [13]. We 

apply a classical decimation-in-time (Cooley and 

Tukey) 1D base-2 FFT method given in [14]. 

Fifth Step: We average all the power spectra 

computed in the previous step into a composite power 

spectrum: 

0

1
.

yR

y

yyR =

P = P  (4). 

5. Adaptive Estimation Function 

A fundamental question is what we report as the 

effective pulse along the timeline. The instantaneous 

computation described in Section 4 is not to be 

trusted literally since it may be affected occasionally 

by thermoregulatory vasodilation [15] and creeping 

noise. To address this problem we use an estimation 

function that takes into account the current 

measurement as well as a series of past 

measurements. 

The current power spectrum 0P of the temperature 

signal is being computed over the previous N frames 

(N = 256 or 512) by applying the process outlined in 

Section 4. We convolve the current power spectrum 

with a weighted average of the power spectra 

computed during the previous M time steps. We 

chose M=60, since at the average speed of 30 fps 

sustained by our system, there is at least one full 

pulse cycle contained within 60 frames even in 

extreme physiological scenarios. Therefore, the 

historical contribution to our estimation function 

remains meaningful at all times. 

Specifically, the historical frequency response at a 

particular frequency f  is given as the summation of 

all the corresponding frequency responses for the M

spectra, normalized over the total sum of all the 

frequency responses for all the historical M spectra: 

1 1 1

( ) ( ) / ( ).
M M F

i i

i i j

H f f j
= = =

= P P (5)

Finally, we convolve the historical power 

spectrum H with the current power spectrum to filter 

out transient features. We then designate as pulse the 

frequency pulsef  that corresponds to the highest 

energy value of the filtered spectrum within the 

operational frequency band.  

6. Experimental Results 

We have used a high quality Thermal Imaging (TI) 

system for data collection [16]. We have recorded 25 

thermal clips from 5 subjects while resting in an 

armchair. Concomitantly we have recorded ground-

truth pulse signals with PowerLab/4SP from AD 

Instruments featuring an MLT 1010 piezoelectric 

pulse transducer [17]. The sample has subjects of 

both genders, different ages, and with varying 

physical characteristics. In the case of wrist we have 

taken measurements before, during, and after the 

application of a forearm cuff. We have found no 

significant differences in the accuracy of the thermal 

imaging measurements among these scenarios. 

Because our thermal imaging system and the 

PowerLab/4SP data acquisition system have different 

frequency of sampling and perform measurements on 

a vastly different theoretical basis, we need first to 

normalize the experimental data from the two 

modalities in order to compare them.  

The PowerLab/4SP data acquisition system 

(ground truth) collects 100 samples per second, while 

our thermal imaging system acquires 30 frames per 

second. We average the ground truth output data 

every ten samples while the infrared thermal imaging 

data every three samples (frames). Based on this 

normalization, we have compared the average 

cardiovascular pulse rate computed by our imaging 

method to that reported by the ground-truth 

instrument for all the subjects in our data set. 

TABLE I shows the detailed profile of our 

comparative experiment and the average pulse 

measurements reported by the two modalities. The 

Figure 5: Schematic diagram of the first three steps in
our Fourier analysis of the vessel temperature signal. 
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overall agreement between the two measurement 

methods is 98%. 

To quantify the linear correlation between the 

two measurement modalities, we have used the high 

Pearson product moment measure cP  [18]. By 

applying the Pearson formula on the data of TABLE 

I, we find that 0.994cP = , which indicates a strong 

degree of correlation. 

7. Conclusion 

We presented a novel measurement method of 

cardiovascular pulse. The method is based on thermal 

imaging and exploits the quasi-periodic properties of 

the cardiac pulse through Fourier signal analysis. An 

adaptive estimation function ensures robust selection 

of the pulse frequency in the presence of signal noise. 

Since the method is contact-free, passive, and highly 

automated (imaging tracker), it opens the way for 

sustained physiological measurements in the most 

transparent manner.  

Almost all the conventional methods require 

contact and hence they compromise the subject’s 

comfort and mobility, especially in long observational 

periods. Moreover, measurements by these methods 

are strongly affected by movement artifacts with no 

easy way to counteract them. 

Initially, our method may find applications in sleep 

studies, sport training, and psycho-physiological 

evaluations (polygraphy). In all these cases long 

observations are required and intrusive sensing is 

undesirable since it interferes with the subject’s 

function. Therefore, a contact-free highly automated 

pulse measurement method will bring considerable 

value. 

Our method exhibits a strong degree of linear 

correlation to a standard piezoelectric pulse 

measurement method we compared against. 

Although, the sample size is small and how well the 

method will scale up in a large data set is an open 

question, the feasibility of the approach has been 

clearly demonstrated. 
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TABLE I 
COMPARISON OF GROUND TRUTH AND THERMAL IMAGING PULSE MEASUREMENTS

Subject 

Number 
Video File 

Time Length 

(sec) 
Tissue 

Status of 

Pressure on 

Forearm 

Ground 

Truth Pulse 

in bpm ( x )

Thermal 

Imaging Pulse 

in bpm 

( y )

%

Accuracy

Subject 01 D005-001 132.3 Neck N/A 63.7 63.1 98.28 

Subject 01 D005-002 121.4 Neck N/A 60.3 60.8 99.22 

Subject 01 D005-003 123.3 Wrist No Pressure 62.1 62.9 98.68 

Subject 01 D005-011 120.7 Wrist No Pressure 67.9 68.0 99.88 

Subject 01 D005-012 210.4 Wrist Pressure  61.3 61.7 99.43 

Subject 01 D005-013 240.5 Wrist After Pressure  62.7 62.9 99.66 

Subject 02 D005-016 120.7 Neck N/A 82.7 80.5 98.01 

Subject 02 D005-017 120.7 Neck N/A 73.3 73.8 99.37 

Subject 02 D005-018 120.6 Wrist No Pressure 75.7 75.7 99.92 

Subject 02 D005-019 180.7 Wrist Pressure  74.8 74.6 99.76 

Subject 02 D005-020 180.6 Wrist After Pressure 78.5 78.2 99.72 

Subject 03 D005-040 120.2 Neck N/A 68.0 68.6 99.11 

Subject 03 D005-041 122.5 Neck N/A 65.6 66.5 98.68 

Subject 03 D005-042 120.7 Wrist No Pressure 63.8 64.3 99.32 

Subject 03 D005-044 123.7 Wrist After Pressure 68.2 68.3 99.34 

Subject 03 D005-046 122.1 Forehead N/A 67.4 67.8 99.34 

Subject 04 D005-060 125.1 Neck N/A 67.3 67.2 99.76 

Subject 04 D005-062 121.0 Wrist No Pressure 65.2 64.4 98.72 

Subject 04 D005-063 180.8 Wrist Pressure  63.7 64.7 98.54 

Subject 04 D005-064 181.3 Wrist After Pressure 72.1 71.1 98.66 

Subject 04 D005-066 183.4 Forehead N/A 66.8 67.3 99.27 

Subject 05 D005-079 120.9 Neck N/A 76.2 76.1 99.83 

Subject 05 D005-080 117.1 Neck N/A 72.6 71.9 99.03 

Subject 05 D005-081 120.8 Wrist No Pressure 70.7 71.7 98.67 

Subject 05 D005-085 188.6 Wrist After Pressure 73.2 73.5 99.59 
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