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Abstract

In this paper we present a novel method for estimation of
blood flow speed and vessel location from thermal video.
The method is based on a bioheat transfer model that re-
flects the thermo-physiological processes in a skin region
proximal to a major vessel. The model assumes the form
of a partial differential equation (PDE) with boundary con-
ditions. Initially, we test the soundness of our model by
performing direct numerical simulation. Then, we solve
the inverse problem both in steady and dynamic states on
data provided by a thermal imaging system. Our method
opens exciting possibilities in biometrics and biomedicine.
Among others, it promises to revolutionize polygraph exam-
inations by eliminating wiring and improving accuracy. It
also establishes the feasibility of continuous 2D physiologi-
cal monitoring of human patients in a contact-free manner.

1. Introduction
We have shown in a sequence of papers that analysis of ther-
mal imagery holds great promise both for polygraph pur-
poses [1, 2, 3] and for biomedical applications [4, 5, 6].
There are several advantages to this method:

1. It is a touchless technique. This is very important in
the context of physiological measurements where it is
crucial that the subject feels as comfortable as possi-
ble. Examples include the cases of polygraph tests or
continuous physiological monitoring of patients.

2. After appropriate processing, the thermal imagery can
yield quantitative information about variables other
than temperature, like blood flow speed, respiratory,
and perspiratory function. These variables provide in-
formation similar or complementary to that of tradi-
tional polygraph channels [3, 5]. They also constitute
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a set of vital signs, suitable for monitoring patients
with cardiac or other problems. As opposed to tradi-
tional physiological measurements, all these variables
can now be extracted from a single sensing regime and
provide 2D information.

In this paper we focus on the computation of blood flow
properties in vessels proximal to the skin. We use thermal
video as the only source of data. Most other methods oper-
ate on data provided by thermistors or some type of contact
sensing, like Doppler ultrasound probe.

Since we are interested in bioheat transfer describing the
heat processes in the first few millimeters below the surface
of the body, the vascularity of the underlying tissue cannot
be neglected. Several models have been proposed in the
past to address this problem. We refer to [7] for a general
discussion on bioheat transfer processes and models, and to
[3] for the general background on the computation of per-
fusion rate in skin with an underlying dense vascular struc-
ture. The legacy models can be decomposed roughly into
two categories:

Continuum Models These models relate the blood perfu-
sion rate to the temperature as a function of the effec-
tive conductivity of the tissue and the source of heat in
the body core [3, 8, 9, 12]. Continuum models fail to
take into account the heterogeneity of tissues as well
as the position and shape of large vessels.

Geometric Models These models are based on the exhaus-
tive description of the geometry of the vascular system,
which accounts for all local variations of the tempera-
ture near the individual vessels [10, 11]. They cannot
be easily generalized because of the great complexity
and variability of the vasculature in the tissue layers
under the skin.

In the context of bioheat modeling one can formulate
several mathematical problems. A mathematical problem
of interest is to retrieve the vessel location as well as the
blood flow speed for a given vessel proximal to the skin,
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from the thermal imagery that provides the skin tem-
perature over time. In real life applications we may not
have enough data to solve this problem and the data may be
noisy. This paper presents a general procedure to solve the
problem by recovering missing information on vessel mor-
phology and blood flow fluctuations. The proposed method
is novel in the sense that it does not conform neither to the
continuum nor to the geometric paradigms, but it attempts
to marry the advantages of both. Our method can be used
both in polygraph and biomedical applications.

In Section 2 we introduce the model and identification
parameter problem. In Section 3 we present our methodol-
ogy in some detail. In Section 4 we conclude the paper and
discuss our future plans.

2 Overview of the Model

Our model describes heat transfer in the vicinity of a large
vessel proximal to the skin. We assume that the vessel acts
as a volumetric heat source for the surrounding four-layer
tissue structure. These layers are successively, in positive
z direction, the skin, the fat, the muscle, and the core (see
Figure 1). We also assume that each layer is isotropic with
respect to thermal conductivity K(z), metabolic heat rate
qM (z), density ρ, and specific heat c of the tissue. The heat
effect of the vessel on the skin temperature depends on the
vessel’s location and shape as well as the blood flow speed
and temperature.

We consider a single large vessel running along the x di-
rection without traversing across the y direction (see Figure
1). An example of a major vessel proximal to the skin is the
radial vessel of the wrist (see Figure 2). The thermal con-
duction in the tissue surrounding the vessel is dominant in
directions parallel (x) and perpendicular (z) to the skin. We
can neglect heat transfer along the (y) axis because of the
presence of other vessels, periodically arranged and similar
to that considered. Therefore, our 2D model assumes the
following form:

ρ c
∂Θ
∂t

− ∂

∂x
(K(z)

∂Θ
∂x

) − ∂

∂z
(K(z)

∂Θ
∂z

) =

qBL(x, t) + qM (x, z), (x, z) ∈ (0, L) × (0, D), (1)

where qM is the volumetric metabolic heat while qBL is the
heat due to blood flow speed ubl in a vessel assimilated to a
line source z = S(x). K(z) is the thermal conductivity of
a particular layer, while ρ and c are the tissue density and
specific heat respectively.

We impose the following boundary conditions:

Θ(x, D, t) = Θcore, x ∈ (0, L), (2)

Θ(x, 0, t) = Θskin(x, t), x ∈ (0, L), (3)

(a)

(b)

Figure 1: (a) Four-layer tissue structure hypothesized by our
model along with the coordinate system convention. The
red curve represents the assumed position and shape of the
vessel. (b) Cross section of the tissue.

∂Θ
∂z

(x, 0, t) = λ (Θ(x, 0, t) − Θair) +

qir, x ∈ (0, L), (4)

∂Θ
∂x

(0/L, z, t) = 0, z ∈ (0, D). (5)

λ is the convection heat transfer coefficient, which de-
pends on air flow. According to [13]: λ = 2.7 +
7.4 (vair)0.67 (W/m2 K), where vair is the air speed in
(m/s). qir is the radiation heat flux: qir = σ ε (Θ4

skin −
Θ4

wall), where σ is the Stefan-Boltzmann constant and ε is
the skin emissivity. Θwall is approximated by the tempera-
ture of the air.

The heat source term associated with blood flow is as-
sumed to have the decomposition qBL = ubl(t)r(x, z),
where ubl is the unknown blood flow speed in the ves-
sel. We assume that the vessel is centered on the curve
z = S(x). Then, we take for r(x, z) the modified bell func-
tion:

r(x, z) = µ exp(− (z − S(x))2

πν2
app

).

νapp is the apparent radius of the vessel seen as a heat
source. µ is defined as follows:

µ = ρblcb
A

V
(Θvessel(x, z, t) − Θ(x, z, t)) (J/m4), (6)

where ρbl and cbl are the density and the specific heat of
blood respectively, A is the vessel cross section, and V is the
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Figure 2: Thermal image of the wrist.

control volume of tissue. We assume that the temperature of
the blood in the vessel is the same as the core temperature
Θvessel = Θcore.

In constructing our model, we have assumed that there is
no heat flux between the domain of interest (0, L) × (0, D)
with the rest of the body. The initial condition for the model
will be defined later on.

The mathematical problem is to retrieve the unknown
vessel location z = S(x) and blood flow speed ubl(t) from
the skin temperature Θskin obtained with an infrared cam-
era.

3 Model Computation

We perform both direct simulation and solve the inverse
problem. In each case we solve both the steady state and
dynamic problems. To facilitate the solution we derive a
normalized formulation of the model. The PDE of the nor-
malized model is:

∂θ

∂t
− ∂

∂x
(K̃(z)

∂θ

∂x
) − γ

∂

∂z
(K̃(z)

∂θ

∂z
) =

µ̃ ubl(t) (1 − θ) exp(− (γz − S̃(x))2

η
) + q̃M (x, z),

(x, z) ∈ (0, 1) × (0, 1). (7)

µ̃ and γ are normalization constants. The normalized
boundary conditions are rewritten as:

θ(x, 1, t) = 1, x ∈ (0, 1), t ∈ (0, T ), (8)

θ(x, 0, t) = θs(x, t), x ∈ (0, 1), t ∈ (0, T ), (9)

∂θ

∂z
(x, 0, t) = βθ(x, 0, t), x ∈ (0, 1), t ∈ (0, T ). (10)

∂θ

∂x
(0, z, t) =

∂θ

∂x
(1, z, t) = 0,

z ∈ (0, 1), t ∈ (0, T ). (11)

This model becomes complete once we provide an initial
condition θ(x, z, 0), where x ∈ (0, 1) and z ∈ (0, 1).

3.1 Direct Simulation in Steady State - 2D
Model

For a known vessel location S̃(x) and known blood flow
speed ubl(t), we can obtain a well posed problem even when
we drop boundary condition (9) or (10). We are going to
present a direct simulation of the model by dropping bound-
ary condition (9). Let us consider the steady state problem
for (x, z) ∈ (0, 1) × (0, 1) and γ = 1:

− ∂

∂x
(K̃(z)

∂θ

∂x
) − ∂

∂z
(K̃(z)

∂θ

∂z
) =

µ̃ ubl(t) (1 − θ) exp(− (z − S̃(x))2

η̃
) + q̃M (x, z), (12)

with boundary conditions (8), (10), and (11).
This problem is well posed and has a unique continuous

solution. The solution is C1 but has second order derivative
in the z direction with finite jump at the line of disconti-
nuities z = Ct of the thermal conductivity K. We use a
Finite Volume (FV) approximation with centered cells of
size hx × hz on a regular space grid. Let us denote θi,j the
average value of θ in the centered FV cells. The discrete
version of Equation (12) is:

−hz (Φi+1/2,j −Φi−1/2,j)−hx (Φi,j+1/2−Φi,j−1/2) =

hx hz (µ̃ u(t)(1−θi,j) exp(− (zj − S̃(xi))2

η̃
)+q̃M (xi, zj)),

in the cell centered in (xi, zj),

xi = hx/2 +
i − 1

Nx − 1
hx, i = 1..Nx,

zj = hz/2 +
j − 1

Nz − 1
hx, i = 1..Nz.

The heat flux values at the wall of the cells are approxi-
mated with:

Φi+1/2,j = Ki+1/2,j
θi+1,j − θi,j

hx
, i = 1..Nx − 1,

Φi,j+1/2 = Ki,j+1/2
θi,j+1 − θi,j

hz
, j = 1..Nz − 1,

and

Ki+1/2,j =
1
2
(Ki+1,j+Ki,j), Ki,j+1/2 =

1
2
(Ki,j+1/2+Ki,j).

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04) 

1063-6919/04 $20.00 © 2004 IEEE 



Using the boundary conditions on Φ and θ we obtain a
classic linear system:

M θhx,hz = δhx,hz .

M is pentadiagonal matrix of size (Nx × Nz)2. θhx,hz is
a matrix of size Nx × Nz reshaped from the 2D unknown
solution’s array (θi,j)i=1..Nx,j=1..Nz

column-wise or row-
wise. If Nx < Nz, we choose to reorder θhx,hz by column
in order to minimize the bandwidth of the linear system:
Z = 2Nx + 1.

Figure 3 shows a solution of the steady problem (12)
with boundary conditions (8), (10), (11) and the vessel lo-
cation given by the formula:

S(x) = 0.5 S0 ∗ (1 − cos(2 π x)) + S1. (13)

We assume that the vessel is located in the muscle layer with
parameter values S0 = S1 = 0.2. Figure 4 shows the sensi-
tivity of the the skin temperature as a function of the blood
flow speed in the vessel. Figure 5 shows the sensitivity
of the skin temperature as a function of the vessel’s depth.
These results are in qualitative agreement with our expecta-
tions. As a matter of fact, the skin temperature varies mono-
tonically as a function of the vessel’s depth z as well as its
blood flow speed ubl. Let us note that the skin temperature
always stays bounded between the core temperature θ = 1
and a minimum constant value corresponding to zero blood
flow speed. We will denote this minimum value as θ0. Any
dimensionless θskin obtained from thermal imaging outside
the range (θ0, 1) will be a strong indication that the param-
eter values of the model or the model itself are not relevant.

Figure 3: Steady state simulation: The top row shows on
the left the vessel heat source qBL and on the right the 3D
temperature map. The middle row shows the corresponding
contour plots. The bottom row shows on the left a cross-
section of the heat source and on the right the spatial varia-
tion of skin temperature.

Figure 4: Influence of blood flow speed on the skin temper-
ature in the steady simulation.

Figure 5: Influence of vessel’s depth on the skin tempera-
ture in the steady simulation.

3.2 Direct Simulation in Steady State - 3D
Model

Next, we develop a 3D model instead of a 2D. In the 3D
case we consider a periodic solution in the y direction. The
PDE of the 3D model is:

− ∂

∂x
(K̃(z)

∂θ

∂x
) − ∂

∂z
(K̃(z)

∂θ

∂z
) − K̄

∂2θ

∂y2
=

µ̃ u(t) (1 − θ) exp(−y2

η̃
) exp(− (z − S̃(x))2

η̃
) +

q̃M (x, y, z), (x, y, z) ∈ (0, 1) × (0, 1) × (0, 1), (14)

with boundary conditions (8), (10), and (11) complemented
with periodic boundary conditions in the y direction. Fur-
thermore, the vessel is located on the line y = 0, z = S(x).
We take for K̄ an average value of the thermal conductivity,
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K̄ = 0.6.
We construct our solution as a cosine expansion:

θ(x, y, z, t) = Σk=0..Ny
θk(x, z, t) cos(2πk

y

d
).

We can use a fast cosine transform to convert the vessel heat
source qBL from physical space to Fourier space at each
time step. We use a semi-implicit scheme in time where
qbl is evaluated at the previous time step. The stability con-
straint on the time step is of the same order with what is
required to get an accurate solution in our application, i.e.,
dt ≈ 1/31.

With the same test case as in the 2D model, the compu-
tation of the 3D steady solution gives the skin temperature
in the rectangle (0, 1) × (0, 1). Figure 6 reports on this so-
lution. From the normalized variable θ, we can check that
the temperature variation in the y direction is of the order of
10%, with the hottest points situated in the vertical sense.

Figure 6: Temperature of the skin in the rectangle (0, 1) ×
(−1, 1) with a vessel located at y = 0.

3.3 Direct Simulation in Dynamic State

We compute the direct simulation in dynamic state with the
same discretization in space as in the steady state case and
a first order implicit Euler scheme in time:

θn+1 − θn − dt hz (Φn+1
i+1/2,j − Φn+1

i−1/2,j) −
dt hx (Φn+1

i,j+1/2 − Φn+1
i,j−1/2) =

dt hx hz (µ̃ u(t)(1 − θn+1
i,j ) exp(− (zj − (̃S)(xi))2

ν̃
) +

q̃M (xi, zj)), (15)

where θn
i,j denotes the temperature at time n dt.

We keep the time step dt the same order as that of the
space steps hx, hy . At each time step we have to solve a
linear system with matrix Id − dt M to obtain θn+1. The
matrix M is time dependent since the blood flow speed in

the vessel is time dependent. Therefore, we may use an it-
erative solver starting from the solution at the previous time
step. Furthermore, the pre-conditioner does not need to be
updated in all time steps.

In the dynamic direct simulation we are interested to
compute the oscillations of the temperature on the skin as
a function of the oscillating blood flow speed (cardiac cy-
cle). We consider the following heat source term related to
blood flow:

ubl(t) = 1. + 0.3 ∗ (exp (−7 ∗ sin(πωt)2) − 0.5).

We take ω = 1 to simulate a cardiac pulse of 60 beats per
minute. In our simulation we start with an initial condition
that is the steady solution corresponding to the blood flow
speed at t = 0.

The grid of computation is fixed to Nx = Nz = 64 and
the time step is of the order of 1/31, which corresponds to
the time step between two frames in our thermal video. Fig-
ures 7 and 8 give a representative example of our dynamic
direct simulation. We consider here the same parameter val-
ues as in the steady state example in Figure 3.

Figure 7: Skin temperature with pulsating blood flow in the
vessel. The graph at the top shows the time variation of
blood flow speed in the vessel. The graph at the bottom
shows the time variation of skin temperature at location x =
0.5.

3.4 Inverse Problem

Initially, we solve our model in the steady state case. The
steady state case solution provides the unknown position
and shape of the vessel. Then, we use the steady state solu-
tion to solve the model in the time domain.
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Figure 8: Amplitude of the skin temperature change with
pulsating blood flow in the vessel. The graph shows the
amplitude as a function of location x.

3.4.1 Inverse Problem in Steady State

The first step of the inverse problem procedure is to identify
the average blood flow speed ūbl and the location of the ves-
sel z = S(x), from the time average of the time dependent
PDE model. Let us denote as θ̄ the average temperature in
time. Since the PDE is linear, we get:

− ∂

∂x
(K̃(z)

∂θ̄

∂x
) − ∂

∂z
(K̃(z)

∂θ̄

∂z
) =

µ̃ūbl(1 − θ̄) exp(− (z − S̃(x))2

η̃
) +

q̃M (z), (x, z) ∈ (0, lx) × (0, 1), (16)

with boundary conditions,

θ̄(x, 1) = 1, x ∈ (0, lx), (17)

θ̄(x, 0) = θ̄s(x), x ∈ (0, lx), (18)

∂θ̄

∂z
(x, 0) = β θ̄(x, 0), x ∈ (0, lx), (19)

∂θ̄

∂x
(0/1, z) = 0, z ∈ (0, 1). (20)

For reasons related to the optimization process that we will
follow, we are interested to solve the problem in a space
interval x ∈ (0, lx) that is no longer the unit interval. Let us
denote θobserved the skin temperature that we can retrieve
from the thermal imaging camera.

In the PDE system (16), (17), (18), and (20) the un-
knowns are the average blood flow speed ūbl and the vessel
location S(x). We can retrieve them by solving the mini-
mization problem with the following objective function:

||θ̄(x, 0) − θ̄observed||, (21)

where || || is the L2 norm. Unless we know the average
blood flow speed ūbl the identification of vessel location
S(x) is an undetermined problem. We may constrain the
optimization problem by assuming that ūbl takes values in a
given a priori estimated range (umin

bl , umax
bl ) and by having

morphological data on Smin ≤ S(x) ≤ Smax. For exam-
ple, we know that the blood flow speed is in the range of
30− 50 cm/sec [20]. Furthermore, we know that the depth
of the radial vessel is in the range of 3 − 4 mm, while the
depth of the ulnar vessels is in the range 4 − 7 mm. Based
on such data we assume that we have apriori a reasonable
estimate of the average blood flow speed ūbl and that the
vessel of interest lays in the muscle layer.

The inverse 2D problem should have a moderate num-
ber of unknowns. In order to minimize the dimension of
the search space we approximate S(x) with a trigonometric
polynomial:

S(x) = S0 + Σj=1..nSj cos(j ∗ π ∗ x), (22)

under the constraint Smin < S(x) < Smax. We may
eventually assume a given decay of the sequence of coef-
ficients Sj ∼ 1

jp assuming that the curve z = S(x) is a
Cp(0, 1) function. We also observe that we have restricted
ourselves to a vessel tangential to the skin at the end point,
i.e., S′(0/1) = 0. This restriction is consistent with the zero
flux boundary condition at the end point.

To facilitate the search on S(x) we proceed with an in-
creasing degree n of the trigonometric expansion in (22)
with 1 ≤ n ≤ m. First, we look at the horizontal line
S(x) = C for which we can match on average the observed
skin temperature. Then, we look at the next order unknown
term in the expansion, and so on. We can make the method
more robust by starting from a lx > 1 and decaying lx until
the correct value, if a solution exists. We implement this
second procedure and use a Newton scheme to reach the
objective (21). The Jacobian matrix is approximated using
finite differences.

3.4.2 Inverse Problem in Dynamic State

In our application, we are mostly interested in the modula-
tion of blood flow speed in time. The identification process
of S(x) with an apriori estimate of ūbl can be seen as a first
order correction to compensate for the small temperature
variation on the skin along the length of the vessel (see Fig-
ure 9). We can now look for the even smaller temperature
variation that is the consequence of the blood flow pulsation
in the vessel.

Therefore, we use the vessel location derived from the
time average skin temperature θ̄observed and a given fre-
quency ω of the blood flow variation to get the amplitude
of the blood flow pulsation.
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Assuming that ubl = ūbl + Pf(ωt), t ∈ (0, T ), with f
a given periodic function of period 1

ω , we address the dy-
namic inverse problem, that is, to recover the amplitude of
the signal P such that the skin temperature for the time peri-
odic solution matches best the θobserved(x, t). We have im-
plemented this procedure using for the signal f a simple
sinus wave, i.e.,

ubl(t) = ūbl + P sin(ω t).

The objective function to minimize is:

||θ̂ω − θ̂observed,ω||, (23)

where θ̂ω represents the coefficient in the trigonometric
polynomial expansion of sin(ω t). The solution of the dy-
namic inverse problem is straightforward, since we are deal-
ing with the search of a single parameter.

Figure 9: The solution of the inverse problem for the steady
state model provides the vessel location (upper figure). In
normalized coordinates, the vessel is located between z =
0.2 and z = 0.4, which corresponds to the muscle layer. The
lower picture shows the experimental temperature profile
over the skin atop of the vessel and compares it to the theo-
retical profile obtained by the model.

4 Conclusion

We have used thermal video to compute various parameters
associated with blood flow. We have achieved this by cap-
italizing upon the physical meaning of the pixel values. In
more detail, the thermal and dynamic properties of blood
flow in large vessels are responsible for the control of the
skin temperature. A general bioheat transfer model, aimed
to describe the role of large vessels close to the skin, should
take into consideration the geometry and the anatomy of the

tissue surrounding the vessel, its thermal properties, and the
general energy balance between the vessel, the tissue, and
the environment. Moreover, hypotheses about the location
and the shape of the vessel should also be considered for a
realistic description of the bioheat transfer processes. The
model we propose tries to satisfy the above requirements
since it starts from a general energy balance for the tissue
surrounding the vessel, like in the Pennes´ approach [8],
but modifies the simplified Pennes´ model as follows:

1. It takes into account a modified bell shape for the ves-
sel. This shape formulation allows the model to adapt
to arbitrarily complex vascular geometry.

2. It assumes a multi-layer structure for the surrounding
tissue.

3. It assumes a modulation of the heat power of the vessel
through its blood flow speed control.

4. It considers the vessel as a heat source, since its actual
temperature is higher than the surrounding tissue.

Our work opens the way for multi-dimensional passive
and remote physiological measurements which can run con-
tinuously on a subject. This may have a profound effect on
psycho-physiology and preventive medicine. However, the
present paper is methodological and offers validation only
through simulation and limited laboratory testing. We are
currently performing extensive clinical tests to further as-
certain the experimental validity of our methods.
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