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Abstract

The performance of Computer Vision algorithms has
made great strides and it is good enough to be useful in
a number of civilian and military applications. Algorithm
advancement in Automatic Target Recognition (ATR) in par-
ticular, has reached a critical point. State-of-the-art ATRs
are capable of delivering robust performance for certain
operational scenarios. As Computer Vision technology ma-
tures and algorithms enter the civilian and military market-
place as products, the lack of a formal testing theory and
tools becomes obvious. In this paper, we present the de-
sign and implementation of a Ground Truth Tool (GTT) for
Synthetic Aperture Radar (SAR) imagery. The tool serves
as part of an evaluation system for SAR ATRs. It features
a semi-automatic method for delineating image objects that
draws upon the theory of deformable models. In compari-
son with other deformable model implementations, our ver-
sion is stable and is supported by an extensive Graphical
User Interface (GUI). Preliminary experimental tests show
that the system can substantially increase the productivity
and accuracy of the Image Analyst (IA).

1 Introduction

Until recently, the emphasis in the Computer Vision
community was more on the development of algorithms and
less on their experimental evaluation. Researchers used to
demonstrate the experimental validity of their algorithms
on an arbitrary and limited set of images. As some of
these algorithms mature and move towards the productiza-
tion phase, they necessitate the use of a formal evaluation
method and tools. This may involve the testing of the algo-
rithm against a representative sample of images. Since in
product evaluation we need to establish statistical variabil-
ity, the imagery sample is usually in the order of thousands.

Computer Vision algorithms could be considered as
transformations from the image domain to the annotated im-
age domain. In other words, a Computer Vision algorithm
produces a segmented image, the various parts of which are
labeled. Therefore, the test imagery needs to be segmented
and labeled by anobjective agent(ground truth) in order
to evaluate the quality of the algorithm’s output. In statis-
tical and neural network algorithms, part of the annotated
imagery is also used as a training sample.

As mentioned earlier, the testing imagery can be quite
voluminous and therefore, its ground truth can prove labor-
and cost-intensive. This is especially true in the case of
model-based ATRs. Model-based ATRs should perform re-
liably under a variety of operating conditions and hence
should be subjected to extensive testing. In addition, model-
based ATRs usually employ SAR sensor phenomenology
which relates to images far different than the visible range
images. This means that the ground truth is performed by
trained IAs which increases the cost even further.

The most time consuming and demanding part of image
ground truth is the segmentation part. Since in this paper we
concentrate rather on this aspect and not on image labeling,
when we refer to ground truth we mean image segmentation
only. So far, in the ATR domain, ground truth of images is
performed usually by hand. The user delineates the objects
of interest in the image using the pointing device (usually a
computer mouse) and a suitable GUI.

There is a clear need for a semi-automatic ground truth
method that will minimize human input, increase speed and
accuracy, and work for all images irrespectively of operat-
ing scenarios. We have designed and implemented a ground
truth tool that performs along these guidelines. It draws
upon the theory of “snakes” first introduced by Kasset al.
[4].

The objects of interest in military SAR images are targets
and their shadows. The targets appear very different from
their shadows. Targets feature jagged bright areas inter-
spersed with small gaps. Shadows feature a single smooth



and continuous dark area. Accordingly, we developed two
snake varieties for the ground truth of SAR images. The first
one works as an elastic contour that contracts and slithers
from outside in and is more suitable for target delineation.
The second one works as a balloon that expands from inside
out and is more suitable for shadow delineation. A key el-
ement of our approach is a well thought user interface that
frees the user from the intricacies of the task. Another key
element, is the effort we put to achieve stable behavior from
the tool. Stability is the major problem of “snakes,” and is
what usually prevents them from becoming practical. Some
preliminary use of the ground truth tool shows significant
advantages over the traditional manual method.

We have structured the rest of the paper as follows: In
Section 2 we present an overview of the ground truth sys-
tem. In Section 3 we present in some detail the snake vari-
ety for segmenting shadows. Then, in Section 4 we present
the snake variety for segmenting targets. Comparative ex-
perimental results between the manual delineation method
and the snake delineation method are presented in Section
5. The paper concludes in Section 6.

2 System Overview

The design of the GTT presented algorithmic as well as
systems challenges. The algorithmic challenges were ad-
dressed through the development of semi-automatic object
extractors based on “snakes.” The systems challenges were
addressed through object-based design and methodology.

GTT was developed in response to the needs of the
Wright Laboratory of the U.S. Air Force for evaluating the
Moving and Stationary Target Acquisition and Recogni-
tion (MSTAR) system. MSTAR is a state-of-the-art model-
based ATR with unprecedented testing needs [5]. It requires
the ground truth of several thousands of SAR images just
for evaluation purposes. MSTAR represents a paradigm
shift in the ATR domain and gives us a flavor of things to
come. Ground truth consists of two main operations: image
segmentation and image labeling. Image segmentation for
ground truth purposes is traditionally performed by hand.
This is not a cost effective solution, however, for the case of
MSTAR because of the sheer volume of imagery involved.
Image segmentation is one of the primary research prob-
lems in computer vision for which no satisfactory solution
yet exists. Therefore, a fully automated segmentation tool
that would perform reliably is still not within our reach. In
contrast, semi-automatic segmentation methods, when de-
signed appropriately and coupled with a good GUI produce
robust and attractive systems.

We based our algorithmic approach for the semi-
automatic object extractor to thestatistical snakesdevel-
oped by Ivinset al. [3]. We chose this type of snakes
because they were applied successfully in medical images

(Nuclear Magnetic Resonance and Computer Tomography)
which bear some phenomenology similarities with mili-
tary SAR images. We appropriately modified the statistical
snakes to fit the task at hand. In particular, we developed
two varieties: one for capturing targets and another for cap-
turing target shadows. The background can result from sim-
ple image differencing once the positions of the targets and
their shadows are known. A very important component of
our approach is the careful design of the user interface. The
user interface allows the user to complete the object extrac-
tion in two steps; one for denoting the approximate position
of the object in the image and one for controlling the termi-
nation of the snake.

At the system level, we had to build an open system,
amenable to expansion and with minimal maintenance re-
quirements. We had also, to incorporate in our design, and
modify if appropriate, some legacy code related to the tradi-
tional hand segmentation tool. To meet the above challeng-
ing specifications we opted for an object based approach.
Fig. 1 shows the object diagram of the GTT. The develop-
ment methodology and the notation conform to the Booch
method [1]. Object diagrams show the existence of objects
and their relationships and provide a trace of the system’s
behavior.
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Figure 1: Object diagram of the GTT.

The scenario of a typical GTT use starts with the extrac-
tion of a Region of Interest (ROI) or with Image Annotation.
We define as ROI in a wide area image, a portion that con-
tains a sinlge target and its shadow. Image Annotation refers
to the specification of the operational conditions and the im-
age type. Either of these operations could be executed first,
at the discretion of the user, and this is why they are pre-
ceded by the same sequence numeral in Fig. 1. Object De-
lineation and Labeling should follow. Finally, the Ground
Truth Tool invokes a registerImg() operation upon the Im-
age Register object that registers the ground truth products
in the Labeled Image Base.
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3 Shadow Snake

Target shadows in SAR images usually feature a single
connected region of dark color degradations. It is the region
from which the SAR sensor does not get almost any returns
due to the target geometry. Since the region is usually con-
nected and almost uniform in the center, it is a legitimate
candidate for the application of aballoon. Balloons are
snakes that inflate from the inside out until they hit strong
edges. We based our balloon approach on thestatistical
snakeproposed by Ivinset al. [3] because in comparison
to the original balloon model [2] features three major im-
provements:

1. Adaptive control of the pressure force.

2. Insertion and deletion of boundary elements as the
model expands and contracts.

3. Control of boundary intersections.

The above improvements worked well on medical images,
an indication that would rather work well on SAR images
too, since the relevant sensor phenomenologies bear simi-
larities. We will elaborate on the above issues and describe
our shadow snake implementation, emphasizing where ap-
propriate, the innovations we introduced in the original
method of Ivinset al. [3].

We define as ashadow snakea two dimensional curve
s(�) = (x(�); y(�)). The curve can be considered as a
band the mechanical properties of which are specified by
the following energy functional:

Eshadow = Etension +Estiffness +Epressure; (1)

where,
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The energy termEtension makes the snake behave like
an elastic band by introducing tension. The energy term
Estiffness makes it resist bending by introducing stiffness.
Finally, the energy termEpressure is an isotropic pressure
potential that controls the evolution of the area enclosed by
the snake. Contrary to the implementation in [3] we have
not included an energy term that is generated by highlighted
image edges (Eedge). We found that the pressure term alone
produces satisfactory behavior. TheEedge term plays a cru-
cial role in establishing a stopping condition. Since the

snake expansion is controlled by the user through the point-
ing device, theEedge energy factor is not necessary. This
makes the method more computationally efficient. Giving
the user the power to stop the snake expansion at his/her
discretion, was a design decision we arrived at after inter-
viewing several IAs. IAs consistently felt that they would
like GTT to do most of the work for them, but they expected
to have some control over the final object shape. This is
a reasonable attitude in the SAR image domain, because
sometimes edge segments give false impression about the
extent of the target or its shadow. Therefore, image edges in
this sensor modality cannot always be considered a reliable
termination point.

Starting from an initial circular arrangement the snake is
subjected to an iterative energy minimization process that is
defined from the differentiation of Eq. (1). In particular, the
snake moves in the image plane according to the following
equation:
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The first term on the right-hand side of the equation repre-
sents the tension forceFtension in the snake that is produced
by the energy termEtension. The second term represents
the stiffness forceFstiffness and is produced by the energy
termEstiffness. The last term represents the pressure force
Fpressure and is produced by the energy termEpressure.
I(s) is the original image.� and� are the mean and stan-
dard deviation of the pixel values from a portionIseed(s) of
the imageI(s). Iseed(s) is defined interactively by the user
to be within the shadow area and is called theseed region.
The terms�, �, �, and� are user defined constants.

Four alternate pressure forces are proposed in [3]: bi-
nary, linear, quadratic, and sigmoid. As can be seen in Eq.
(5), we chose the linear pressure force model. The reason
is that it expresses best the pixel variance of shadows in
SAR images: almost zero in the center, but growing about
linearly towards the outer shadow boundary. The snake ex-
pands rapidly when the image pixels that it encounters have
approximately the same value as the mean� of the seed
region. In our case, this happens within the target shadow
area. Whenj I(s) � � j= �� the pressure force will be
zero, bringing the model to a virtual stop. In our case, this
happens after the snake has overstepped the outer boundary
of the target shadow and started encountering pixel values
that are� standard deviations away from the mean�. Some
oscillation may take place at this point but since the user
controls the minimization process through the GUI can stop
it at will.

The values of the user defined constants have been spec-
ified experimentally to be as follows:� = 1:0, � = 1:0,
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Figure 2: Snapshots of the snake evolution inside the shadow area of a target. The figures do not depict the original SAR
image but its corresponding pressure field.

� = 1:0, and� = 0:02. These values are valid for typi-
cal SAR images only. In case of another sensor modality,
like IR, the above values have to be re-specified and entered
through the GUI. The user can capture and label the target
shadow of a SAR image by performing three steps. In the
first step (mouse click), he/she has to specify the seed region
to be somewhere within the shadow area. In the second step
(mouse click), he/she has to specify the initial placement
of the snake to be also somewhere within the shadow area.
In the third step, he/she controls the iterative minimization
process which can stop at will.

(b)

(a) (c)

Figure 3: (a) Original SAR image. It depicts a Russian
armored personnel carrier (BMP) shot at a150 depression
angle. (b) Labeled shadow chip segmented by hand. (c)
Labeled shadow chip segmented by snake.

Fig. 2 presents a visualization of the snake motion in one
of the SAR images we used in our experiments. Actually,
the figure depicts not the original SAR image but its corre-
sponding pressure field as it was computed after the speci-
fication of the seed region by the user. Brighter spots rep-
resent areas of lower pressure while darker spots represent
areas of higher pressure. The snake expands from the center
portion of the target shadow (solid gray area). The expan-

sion is primarily driven from the pressure forceFpressure
which pushes the snake boundary from the central higher
pressure area towards the outer lower pressure areas. The
forcesFtension andFstiffness play a regularization role.
The end result in the form of a labeled (color coded) chip is
shown in Fig. 3(c). Fig. 3(a) shows the original SAR image
upon which the shadow snake was applied. Fig. 3(b) shows
the labeled chip of the target shadow segmented manually
by a SAR expert. The reader may notice that the labeled
chips (b) and (c) are very similar and in conformance with
the general shadow shape of the original image (a). The
only difference appears to be in the greater amount of shape
detail captured by the snake.

4 Target Snake

Target regions in SAR images differ fundamentally from
their shadows. They feature much greater variance of pixel
values than the corresponding shadows. Parts of the metal
skeleton of the target function as corner reflectors to the
radar beam and show as bright spots in the image. Other
parts scatter somewhat the radar beam and appear as spots
of moderate intensity. Spots of high and moderate inten-
sity are intermixed in the target area producing a distinct
non-uniform texture. If we used part of the target area as
the seed region, the resulting mean� pixel intensity would
be far less useful than the case of the shadow. Interspersed
corner reflectors would most likely lie outside the�� range
prescribed by Eq. (5). Hence, they will function as faulty
stopping points in the expansion of the snake curve. Also,
the rather thin and concave shape of many SAR targets does
not facilitate the initial placement of the balloon snake in its
interior.

We addressed the above problems by modifying the
shadow snake as follows: We introduced thresholding to bi-
narize the pressure field. The user selects a threshold pixel
value that results in a mostly positive (+1) target region. Au-
tomatically, the area surrounding the target region assumes
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(a)

(b)

(c)

Figure 4: (a) Original SAR image. It depicts a Russian
armored personnel carrier (BMP) shot at a150 depression
angle. (b) Labeled target chip segmented by hand. (c) La-
beled target chip segmented by snake.

a mostly zero value (0). These binary values are used in the
pressure term of Eq. (5) in the place of the linear model.
Specifically, the motion equation for the target snake be-
comes:

@s

@t
= �
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@�2
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(T (s)� 1) : (6)

whereT (s) = 0 or 1 and represents the thresholded image
functional. The user defined constants�, �, and� main-
tain the same values as in the case of shadow snake. The
pressure force in Eq. (6) is maximal whenT (s) = 0. In
other words, the snake moves rapidly when it encounters
thresholded pixels that belong mostly to the background.
For this, the user places initially the snake not inside the
target but around the target. The snake then moves rapidly
towards the mostly positive pressure area of the target. Once
it oversteps the target boundary it comes to a virtual stop
becauseT (s) = 1 for the most part which means minimal
pressure force. This arrangement of the target snake results
mostly in a contraction (and not an expansion) of the initial
snake curve during the iterative minimization process. The
user freezes the snake once he/she is satisfied with the ap-
proximation of the target outline. During the contraction,
the snake may stumble upon positive pressure outliers due
to imperfect thresholding. This may result temporarily to
curve self-intersections which are untangled following the
method in [3].

The user can capture and label the target of a SAR image
by performing three steps. In the first step (mouse click)
he/she selects the threshold value. The selection of the
threshold value takes place in a very intuitive manner. The
user moves a threshold slider while he/she views in real time
how the pressure field of the image changes. He stops when
he feels that the pressure field makes justice to the shape

of the target. In the second step (mouse click) the user po-
sitions the initial snake curve around (and not inside) the
target. In the third and final step the user controls the iter-
ative minimization process which can stop at will. Fig. 4
mirrors Fig. 3 for the case of the target.

5 Experimental Results

After some preliminary use of the GTT and especially
its snake facilities, IAs at our lab found that they can per-
form image ground truth at a fraction of the time they spent
in the past. They also found, that ground truth through
mouse clicks is considerably less tiresome than ground truth
through hand delineation. The question, however, is how
accurate the snake tools are comparatively with the manual
method. Some relevant performance measures have been
reported in the literature [6]. Admittedly, there is no objec-
tive way to define the “true” boundaries of the target and its
shadow in a SAR image. The snake algorithms are to be
used to aid IAs who would otherwise extract the boundaries
manually. Therefore, we chose to evaluate the target and
shadow snake algorithms by checking the consistency of
their results with the corresponding manual measurements.
As manual measurements we took the hand delineations of
targets and shadows from9 typical military SAR images.
The delineations were carefully performed by a SAR ex-
pert and they can be safely considered as templates. Snake
delineations were performed by two different users on the
same set of images. Our method of comparison checks the
amount of overlap between the corresponding labeled chips
in the case of hand delineation (the templates) and in the
case of snake delineation.
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Figure 5: Comparison of manually generated shadow
curves (templates) with shadow snake curves. The Overlap
Area corresponds here to the intersection of the Template
Area and the Shadow Snake Area.

Fig. 5 shows the experimental evaluation diagram for the
case of the shadow snake and Fig. 6 for the target snake. If
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Figure 6: Comparison of manually generated target curves
(templates) with target snake curves. The Overlap Area cor-
responds here to the intersection of the Template Area and
the Target Snake Area.

the plotted point is(1; 1) the target or shadow segmented by
the snake is exactly the same with the corresponding target
or shadow delineated manually by the SAR expert. There-
fore, the closer the points are to the(1; 1) corner, the better
the performance of the snake. As can be seen in the figures
the performance of both snakes is almost identical to the
SAR expert.

6 Summary and Conclusions

We have designed and implemented a new system (GTT)
for performing ground truth operations on SAR images.
The two most important components of our system are two
snake tools: one for delineating targets and one for delin-
eating shadows. The snakes have been designed in a way
that addresses the challenges present in the SAR imagery.
IA feedback verified that ground truth with the snake tools
is considerably faster and easier than manual ground truth.
This is especially important for the mission of GTT which
is the ground truth of thousands of SAR images for the
evaluation of MSTAR. Comparative experiments, have also
demonstrated that shadow and target snake segmentations
are as good as careful manual delineations by SAR experts.
In the near future, we plan on enhancing the labeling mecha-
nism of GTT by indexing object attributes such as geometry
and texture.
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