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Summary. We present a novel multi-spectral approach for face recognition using
visual imagery as well as the physiological information extracted from thermal fa-
cial imagery. The main point of this line of research is that physiological information
available only in thermal infrared, can improve the performance and enhance the
capabilities of standard visual face recognition methods. For each subject in the
database, we store facial images collected simultaneously in the visual and thermal
bands. For each of the thermal images, we first delineate the human face from the
background using the Bayesian framework. We then extract the blood vessels present
on the segmented facial tissue using image morphology. The extracted vascular net-
work produces contour shapes that are unique to each individual. The branching
points of the skeletonized vascular network, referred to as thermal minutia points
(TMPs), are an effective feature abstraction. During the classification stage, we
match the local and global structures of TMPs extracted from the test image with
those of the corresponding images in the database. We fuse the recognition results
of our thermal imaging algorithm with those of a popular visual imaging algorithm.
We have conducted experiments on a large database of co-registered visual and
thermal facial images. The good experimental results show that the proposed fusion
approach has merit and promise.

1 Introduction

Biometrics has received a lot of attention during the last few years both from
the academic and business communities. It has emerged as a preferred al-
ternative to traditional forms of identification, like card IDs, which are not
embedded into one’s physical characteristics. Research into several biometric
modalities including face, fingerprint, iris, and retina recognition has produced
varying degrees of success [1]. Face recognition stands as the most appealing
modality, since it is the natural mode of identification among humans and is
totally unobtrusive. At the same time, however, it is one of the most chal-
lenging modalities [2]. Research into face recognition has been biased towards
the visual spectrum for a variety of reasons. Among those is the availability
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and low cost of visual band cameras and the undeniable fact that face recog-
nition is one of the primary activities of the human visual system. Machine
recognition of human faces, however, has proven more problematic than the
seemingly effortless face recognition performed by humans. The major culprit
is light variability, which is prevalent in the visual spectrum due to the reflec-
tive nature of incident light in this band. Secondary problems are associated
with the difficulty of detecting facial disguises [3].

As a solution to the aforementioned problems, researchers have started
investigating the use of thermal infrared for face recognition purposes [4, 5, 6].
However, many of these research efforts in thermal face recognition use the
thermal infrared band only as a way to see in the dark or reduce the deleterious
effect of light variability [7, 8]. Methodologically, they do not differ very much
from face recognition algorithms in the visual band, which can be classified
as appearance-based [9, 10] and feature-based approaches [11, 12].

Recently, attempts have been made to fuse the visual and thermal infrared
modalities to increase the performance of face recognition [13, 14, 15, 16, 17,
18]. However, almost all these approaches use similar algorithms for extract-
ing features from both visual and thermal infrared images. In this chapter,
we present a novel approach to the problem of thermal facial recognition that
realizes the full potential of the thermal infrared band. Our goal is to promote
a different way of thinking in the area of face recognition in thermal infrared,
which can be approached in a distinct manner when compared with other
modalities. It consists of a statistical face segmentation and a physiological
feature extraction algorithm tailored to thermal phenomenology. The use of
vessel structure for human identification has been studied during recent years
using traits such as hand vessel patterns [19, 20] and finger vessel patterns
[21, 22]. Prokoski et al. anticipated the possibility of extracting the vascu-
lar network from thermal facial images and using it as a feature space for
face recognition [23]. However, they did not present an algorithmic approach
for achieving this. We present a full methodology to extract and match the
vascular network from thermal facial imagery [24].

Figure 1 depicts the essence of the proposed multi-spectral face recognition
methodology. The goal of face recognition is to match a query face image
against a database of facial images to establish the identity of an individual.
We collect both thermal and visual facial images of the subject whose identity
needs to be tested. We extract the thermal minutia points (TMPs) from the
thermal facial image and match them against TMPs of subjects already stored
in the database. We then extract the principal components (eiganfaces) from
the visual face image and project it to the face space constructed from visual
database images. The eigenspace match score is fused with the TMP match
score to produce the final match score.
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Fig. 1. Multi-spectral face recognition methodology.

Fig. 2. Generic maps of the superficial blood vessels on the face - courtesy of Primal
Pictures [25]: (a) Overview of arterial network. (b) Overview of venous network. (c)
Arteries and veins together under the facial surface.

2 Physiological Feature Extraction from Thermal Images

A thermal infrared camera with good sensitivity (NEDT > 0.0250C) provides
the ability to directly image superficial blood vessels on the human face [26].
The pattern of the underlying blood vessels (see Figure 2) is characteristic
to each individual, and the extraction of this vascular network can provide
the basis for a feature vector. Figure 3 outlines the architecture of the feature
extraction algorithm.
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Fig. 3. Architecture of physiological feature extraction algorithm.

2.1 Face Segmentation

Due to its physiology, a human face consists of ‘hot’ parts that correspond to
tissue areas that are rich in vasculature and ‘cold’ parts that correspond to
tissue areas with sparse vasculature. This casts the human face as a bimodal
temperature distribution entity, which can be modeled using a mixture of
two Normal distributions. Similarly, the background can be described by a
bimodal temperature distribution with walls being the ‘cold’ objects and the
upper part of the subject’s body dressed in cloths being the ‘hot’ object.
Figure 4(b) shows the temperature distributions of the facial skin and the
background from a typical thermal facial image. We approach the problem
of delineating facial tissue from the background using a Bayesian framework
[24, 27], because we have apriori knowledge of the bimodal nature of the scene.

We call θ the parameter of interest, which takes two possible values (skin
s or background b) with some probability. For each pixel x in the image at
time t, we draw our inference of whether it represents skin (i.e., θ = s) or
background (i.e., θ = b) based on the posterior distribution p(t)(θ|xt) given
by:

p(t)(θ|xt) =

{
p(t)(s|xt), when θ = s,

p(t)(b|xt) = 1− p(t)(s|xt), when θ = b.
(1)

We develop the statistics only for skin and then the statistics for the back-
ground can easily be inferred from Equation (1).

According to the Bayes’ theorem:

p(t)(s|xt) =
π(t)(s)f(xt|s)

π(t)(s)f(xt|s) + π(t)(b)f(xt|b)
. (2)

Here, π(t)(s) is the prior skin distribution and f(xt|s) is the likelihood for pixel
x representing skin at time t. In the first frame (t = 1) the prior distributions
for skin and background are considered equiprobable:
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π(1)(s) =
1
2

= π(1)(b). (3)

For t > 1, the prior skin distribution π(t)(s) at time t is equal to the posterior
skin distribution at time t− 1:

π(t)(s) = p(t−1)(s|xt−1). (4)

The likelihood f(xt|s) of pixel x representing skin at time t ≥ 1 is given by:

f(xt|s) =
2∑

i=1

w(t)
si

N(µ(t)
si

, σ2(t)
si

), (5)

where the mixture parameters wsi(weight), µsi(mean), σ2
si

(variance) : i =
1, 2 and ws2 = 1−ws1 of the bi-modal skin distribution can be initialized and
updated using the EM algorithm. For that, we select N representative facial
frames (off-line) from a variety of subjects that we call the training-set. Then,
we manually segment, for each of the N frames, skin (and background) areas,
which yields Ns skin (and Nb background) pixels as shown in Figure 4(a).

(a) (b) (c)

Fig. 4. Skin and Background: (a) Selection of samples for EM algorithm. (b) Corre-
sponding bi-modal temperature distribution of background region. (c) Correspond-
ing bi-modal temperature distribution of skin region.

To estimate the mixture parameters for the skin, we initially provide
the EM algorithm with some crude estimates of the parameters of interest:
ws0 , µs0 , σ

2
s0

. Then, we apply the following loop for k = 0, 1, ..:
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=
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where i = 1, 2 and j = 1, ..., Ns. Then, we set k = k + 1 and repeat the loop.
The condition for terminating the loop is:

|w(k+1)
si

− w(k)
si
| < ε, i = 1, 2. (6)

(a) (b)

Fig. 5. Segmentation of facial skin region: (a) Original thermal facial image. (b)
Result of Bayesian segmentation.

We apply a similar EM process for determining the initial parameters of the
background distributions. Once a data point xt becomes available, we decide
that it represents skin if the posterior distribution for the skin p(t)(s|xt) > 0.5
and that it represents background otherwise. Figure 5(b) depicts the visual-
ization of Bayesian segmentation on the subject shown in Figure 5(a). Part of
the subject’s nose has been erroneously classified as background and a cou-
ple of cloth patches from the subject’s shirt have been erroneously marked
as facial skin. This is due to occasional overlapping between portions of the
skin and background distributions. The isolated nature of these mislabeled
patches makes them easily correctable through post-processing. We apply
our three-step post-processing algorithm on the binary segmented image. Us-
ing foreground (and background) correction, we find the mislabeled pixels in
foreground (and background) and remove them. The specific algorithm that
achieves this is the following:
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i. Label all the regions in the foreground and background using a simple
flood-fill or connected component labeling algorithm [28]. Let the fore-
ground regions be Rf (i), i = 1, . . . , Nf , where Nf represents the num-
ber of foreground regions, and let the background regions be Rb(j), j =
1, . . . , Nb, where Nb represents the number of background regions.

ii. Compute the number of pixels in each of the foreground and background
regions. Find the maximum foreground (Rmax

f ) and background (Rmax
b )

areas:
Rmax

f = max{Rf (i), i = 1, . . . , Nf},

Rmax
b = max{Rb(i), i = 1, . . . , Nb}.

iii. Change all foreground regions that satisfy the condition Rf (i) < Rmax
f /4

to background. Similarly, change all background regions that satisfy the
condition Rb(i) < Rmax

b /4 to foreground. We found experimentally that
outliers tend to have an area smaller than one fourth of the maximum
area, and hence can be corrected with the above conditions. Figure 6
shows the result of our post-processing algorithm.

2.2 Segmentation of Superficial Blood Vessels

Once a face is delineated from the rest of the scene, the segmentation of
superficial blood vessels from the facial tissue is carried out in the following
two steps [26, 27]:

i. The image is processed to reduce noise and enhance edges.
ii. Morphological operations are applied to localize the superficial vascula-

ture.

In thermal imagery of human tissue the major blood vessels have weak
sigmoid edges, which can be handled effectively using anisotropic diffusion.
The anisotropic diffusion filter is formulated as a process that enhances object
boundaries by performing intra-region as opposed to inter-region smoothing.
The mathematical equation for the process is:

∂I(x̄, t)
∂t

= ∇(c(x̄, t)∇I(x̄, t)). (7)

In our case I(x̄, t) is the thermal infrared image, x̄ refers to the spatial
dimensions, and t to time. c(x̄, t) is called the diffusion function. The discrete
version of the anisotropic diffusion filter of Equation (7) is as follows:

It+1(x, y) = It +
1
4
∗ [cN,t(x, y)∇IN,t(x, y)

+ cS,t(x, y)∇IS,t(x, y) + cE,t(x, y)∇IE,t(x, y)
+ cW,t(x, y)∇IW,t(x, y)]. (8)
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Fig. 6. Segmentation of facial skin region: (a) Original thermal facial image. (b)
Binary segmented image. (c) Foreground regions each represented in different color.
(d) Background regions each represented in different color. (e) Binary mask after
foreground and background corrections. (f) Final segmentation result after post-
processing.
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The four diffusion coefficients and four gradients in Equation (8) corre-
spond to four directions (i.e., North, South, East & West) with respect to the
location (x,y). Each diffusion coefficient and the corresponding gradient are
calculated in the same manner. For example, the coefficient along the north
direction is calculated as follows:

cN,t(x, y) = exp(
−∇I2

N,t(x, y)
k2

), (9)

where IN,t = It(x, y + 1)− It(x, y).
Image morphology is then applied on the diffused image to extract the

blood vessels that are at a relatively low contrast compared to that of the sur-
rounding tissue. We employ for this purpose a top hat segmentation method,
which is a combination of erosion and dilation operations. Top hat segmen-
tation takes two forms. First form is the white top hat segmentation that
enhances the bright objects in the image, while the second one is the black
top hat segmentation that enhances dark objects. In our case, we are in-
terested in the white top hat segmentation because it helps with enhancing
the bright (‘hot’) ridge like structures corresponding to the blood vessels. In
this method the original image is first opened and then this opened image is
subtracted from the original image as follows:

Iopen = (I 	 S)⊕ S,

Itop = I − Iopen, (10)

where I, Iopen, Itop are the original, opened, and white top hat segmented
images respectively, S is the structuring element, and 	, ⊕ are morphologi-
cal erosion and dilation operations respectively. Figure 7(a) depicts the result
of applying anisotropic diffusion to the segmented facial tissue shown in Fig-
ure 4(b), and the Figure 7(b) shows the corresponding blood vessels extracted
using white top hat segmentation.

Fig. 7. Vascular network extraction: (a) Original segmented image. (b) Anisotrop-
ically diffused image. (c) Blood vessels extracted using white top hat segmentation.
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2.3 Extraction of TMPs

The extracted blood vessels exhibit different contour shapes between subjects.
We call the branching points of the blood vessels Thermal Minutia Points
(TMPs). TMPs can be extracted from the blood vessel network in ways sim-
ilar to those used for fingerprint minutia extraction. A number of methods
have been proposed [29] for robust and efficient extraction of minutia from
fingerprint images. Most of these approaches describe each minutia point by at
least three attributes, including its type, its location in the fingerprint image,
and the local vessel orientation. We adopt a similar approach for extracting
TMPs from vascular networks, which is outlined in the following steps:

i. The local orientation of the vascular network is estimated.
ii. The vascular network is skeletonized.
iii. The TMPs are extracted from the thinned vascular network.
iv. The spurious TMPs are removed.

Local orientation Ψ(x, y) is the angle formed at (x, y) between the blood
vessel and the horizontal axis. Estimating the orientation field at each pixel
provides the basis for capturing the overall pattern of the vascular network.
We use the approach proposed in [30] for computing the orientation image
because it provides pixel-wise accuracy.

Next, the vascular network is thinned to one-pixel thickness [31]. Each
pixel in the thinned map contains a value of 1 if it is on the vessel and 0 if it
is not. Considering 8-neighborhood (N0, N1, ..., N7) around each pixel, a pixel
(x, y) represents a TMP if (

∑7
i=0 Ni) > 2 (see Figure 8).

Fig. 8. Thermal Minutia Point (TMP) extracted from the thinned vascular network.

It is desirable that the TMP extraction algorithm does not leave any spuri-
ous TMPs since this will adversely affect the matching performance. Removal
of clustered TMPs (see Figure 9(a)) and spikes (see Figure 9(b)) helps to
reduce the number of spurious TMPs in the thinned vascular network.
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Fig. 9. Spurious TMPs: (a) Clustered TMPs. (b) Spike formed due to a short
branch.

The vascular network of a typical facial image contains around 50-80
genuine TMPs whose location (x, y) and orientation (Ψ) are stored in the
database. Figure 10 shows the results of each stage of the feature extraction
algorithm on a thermal facial image.

2.4 Matching of TMPs

Numerous methods have been proposed for matching fingerprint minutiae,
most of which try to simulate the way forensic experts compare fingerprints
[29]. Popular techniques are alignment-based point pattern matching, local
structure matching, and global structure matching. Local minutiae matching
algorithms are fast, simple, and more tolerant to distortions. Global minutiae
matching algorithms feature high distinctiveness. A few hybrid approaches [32,
33] have been proposed where the advantages of both local and global methods
are exploited. We use a hybrid method [32] to perform TMP matching.

For each TMP M(xi, yi, Ψi) that is extracted from the vascular network,
we consider its N nearest-neighbor TMPs M(xn, yn, Ψn), n = 1, ..., N . Then,
the TMP M(xi, yi, Ψi) can be defined by a new feature vector:

LM = {{d1, ϕ1, ϑ1}, {d2, ϕ2, ϑ2}, ..., {dN , ϕN , ϑN}, Ψi} (11)

where

dn =
√

(xn − xi)2 + (yn − yi)2

ϕn = diff(Ψn, Ψi), n = 1, 2, ..., N

ϑn = diff

(
arctan

(
yn − yi

xn − xi

)
, Ψi

)
(12)

The function diff() calculates the difference of two angles and scales the result
within the range [0, 2π) [33]. Given a test image It, the feature vector of each
of its TMP is compared with the feature vector of each TMP of a database
image. Two TMPs M and M ′ are marked to be a matched pair if the absolute
difference between corresponding features is less than specific threshold values
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Fig. 10. Visualization of the various stages of the feature extraction algorithm: (a)
A typical thermal facial image. (b) Facial tissue delineated from the background.
(c) Vascular network extracted from thermal facial image. (e) Thinned vessel map.
(f) Extracted TMPs from branching points. (g) Spurious TMPs removed.
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{δd, δϕ, δϑ, δΨ}. The threshold values should be chosen in such a way that they
accommodate linear deformations and translations. The final matching score
between the test image and a database image is given by:

Score =
NUMmatch

max(NUMtest, NUMdatabase)
(13)

where NUMmatch represents number of matched TMP pairs, and NUMtest,
NUMdatabase represent number of TMPs in test and database images respec-
tively.

3 PCA-based Feature Extraction from Visual Images

Principal Component Analysis (PCA) is a well known approach for dimen-
sionality reduction of the feature space. It has been successfully applied in face
recognition [9, 34]. The main idea is to decompose face images into a small
set of feature images called eigenfaces, which can be considered as points in a
linear subspace called “face space” or “eigenspace”. Recognition is performed
by projecting a new face image into this eigenspace and then comparing its
position with those of known faces.

Fig. 11. Eigenfaces extracted from our training set that correspond to decreasing
order of eigenvalues.

Suppose a face image consists of N pixels, so it can be represented by a
vector Γ of dimension N . Let {Γi|i = 1, . . . ,M} be the training set of face
images. The average face of these M images is given by
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Ψ =
1
M

M∑
i=1

Γi. (14)

Then, each face Γi differs from the average face Ψ by Φi:

Φi = Γi − Ψ ; i = 1, . . . ,M. (15)

A covariance matrix of the training images can be constructed as follows:

C = AAT , (16)

where A = [Φ1, . . . , ΦM ]. The top M ′ eigenvectors U = [u1, . . . , uM ′ ] of the
covariance matrix A, called eigenfaces, constitute the eiganspace. Figure 11
shows the top six eigenfaces extracted from our training set in decreasing
order. Given a test image, Γtest, it is projected to the eigenspace and an Ωtest

vector is obtained as follows:

Ωtest = UT (Γtest − Ψ). (17)

The distances between this vector and the projected vectors from the training
images are used as a measure to find the best match in the database. Any
standard distance measure such as Euclidean distance, Mahalanobis distance,
or MahCosine measure can be used to compare the vectors [17].

4 Experimental Results and Discussion

We used the Equinox Corporation’s database in our experiments. It is a large
database of both infrared (short-, mid-, and long-wave) and visual band im-
ages available for public download at equinoxsensors.com/products/HID.html.
Image frame sequences were acquired at 10 frames/sec while the subject was
reciting the vowel sequence ”a,e,i,o,u”. The database also consists of subject
images wearing glasses and with expressions of happiness, anger and surprise,
which were used to account for variation in poses. In order to induce variabil-
ity in visual band images, three different illumination conditions were used
during acquisition - frontal, frontal-left, and frontal-right. For each subject in
the database subset we used, images were acquired simultaneously from visual
and mid-wave infrared cameras.

We used a total of 4552 co-registered visual and mid-wave infrared images
for our experiments, which comprised of 45 different subjects. For each sub-
ject, we used 3 training images (one per each illumination condition). If the
subject was wearing glasses, we included images with and without glasses in
the training set. Figure 12 shows the training examples of two subjects from
the database. For each test image, we applied the physiological face recog-
nition algorithm on the thermal image and the PCA algorithm on its visual
counterpart. Finally, we applied decision fusion by combining the scores from
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Fig. 12. Sample training images of two subjects (one subject per row) in the
database.

the visual and thermal infrared recognition algorithms. Specifically, the fusion
was performed by combining the individual scores from each of the algorithms.
We found from our experiments that the physiological algorithm on thermal
images performed slightly better than the PCA algorithm on visual imagery.
The rank 1 recognition rate for thermal images was 97.74%, whereas that of
visible images was 96.19%. Since the mismatches in each of these experiments
were disjoint, fusion yielded an increase in performance with a rank 1 recogni-
tion rate of 98.79%. Figure 13 shows the CMC curves for the visual, thermal,
and fusion algorithms.

Fig. 13. CMC curves of the visual, thermal, and fusion face recognition algorithms.
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We noticed that the recognition performance from the physiological algo-
rithm on thermal images can be improved by estimating and eliminating the
incorrect TMPs as well as non-linear deformations in the extracted vascular
network caused due to large facial expressions and non-linear pose transfor-
mations. Figure 14 shows an example of non-linear deformations caused in the
vascular network between gallery and probe images of the same subject due
to pose and facial expression changes. Even though the matching algorithm
described in Section 2.4 works fine with linear transformations in the vascular
network, it affords small latitude in the case of non-linear transformations.
Our future work is directed towards addressing this issue.

Fig. 14. (a) Training image and (b) corresponding vascular network (overlaid over
the segmented image). (c) Test image of same subject exhibiting large facial expres-
sion and (d) corresponding vascular network (overlaid over the segmented image).

There are two major operational limitations in the current physiological
feature extraction method:

i. Glasses are opaque in the thermal infrared spectrum and hence block
important vascular information around eyes. Also, facial hair curtails the
radiation emitted from the covered surface of the skin, and may cause
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facial segmentation to break down. Figure 15 shows examples of failed
face segmentation when glasses and facial hair are present.

Fig. 15. (a) Thermal facial image with glasses and (b) result of segmentation. (c)
Thermal facial image with facial hair and glasses and (d) result of segmentation.

ii. The robustness of the method degrades when there is substantial perspi-
ration. This results in a highly non-linear shift of the thermal map that
alters radically the radiation profile of the face. A practical scenario where
such a case may arise is when a subject is imaged after a strenuous exer-
cise that lasted several minutes. Another such scenario may arise when a
heavily dressed subject is imaged in a very hot environment.
We have performed an experiment whereby a subject is imaged at the
following instances:
• In a baseline condition (Figure 16, image 1a)
• After 1 min of rigorous walking (Figure 16, image 2a)
• After 5 min of rigorous walking (Figure 16, image 3a)
• After 5 min of rigorous jogging (Figure 16, image 4a)
Column b of Figure 16 shows the corresponding vessel extraction results.
In the case of image 2a, the metabolic rate of the subject shifted to higher
gear, but perspiration is still not a major problem. One can find evidence
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of the higher metabolic rate by looking at the left temporal area, where
the region around the rich vasculature has become deeper cyan (hotter)
in image 2a with respect to image 1a. This is an example of a positive
linear shift (warming up), which the vessel extraction algorithm handles
quite well (see image 2b versus image 1b). As the exercise become more
strenuous and lasts longer, perspiration increases and introduces a nega-
tive non-linear shift (cooling down) in the thermal map. This is especially
pronounced in the forehead where most of the perspiration pores are. Due
to this, some unwanted noise starts creeping in image 3b, which becomes
more dramatic in image 4b. The performance of the vessel extraction al-
gorithm deteriorates but not uniformly. For example, the vessel extraction
algorithm continues to perform quite well in the cheeks where perspira-
tion pores are sparse and the cooling down effect is not heavily non-linear.
In contrast, performance is a lot worse in the forehead area, where some
spurious vessel contours are introduced due to severe non-linearity in the
thermal map shift.

5 Conclusions

We have outlined a novel multi-spectral approach to the problem of face recog-
nition by the fusion of thermal infrared and visual band images. The corner-
stone of the approach is the use of unique and time invariant physiological
information as feature space for recognition in thermal imagery. The facial
tissue is first separated from the background using a Bayesian segmentation
method. The vascular network on the surface of the skin is then extracted
based on a white top-hat segmentation preceded by anisotropic diffusion.
Thermal Minutia Points (TMPs) are extracted from the vascular network
and are used as features for matching test to database images. The method
although young, performed well on a nontrivial database. We also applied a
PCA-based (eigenface) recognition approach on concomitant visual imagery.
We have shown that the recognition performance in the thermal domain is
slightly better than the visual domain, and that fusion of the two modali-
ties/methodologies is better than either one of them. In a nutshell, this re-
search demonstrated that standard visual face recognition methods can gain
in performance if they are combined with physiological information, uniquely
extracted in thermal infrared. The most notable outcome besides performance
increase is the striking complimentarily of the two modalities/methodolgogies
as it is revealed in the experimental results. It is the latter that renders fusion
a natural strategy that fits the problem.
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