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29.1 Introduction

Biometrics has received a lot of attention in the last few years both from the academic and business
communities. It has emerged as a preferred alternative to traditional forms of identification, like card
IDs, which are not emedded into one’s physical characteristics. Research into several biometric modalities
including face, fingerprint, iris, and retina recognition has produced varying degrees of success [1]. Face
recognition stands as the most appealing modality, since it is the natural mode of identification among
humans and totally unobtrusive. At the same time, however, it is one of the most challenging modalities
[2]. Faces are 3D objects with rich details that vary with orientation, illumination, age, and artifacts (e.g.,
glasses).

Research into face recognition has been biased towards the visible spectrum for a variety of reasons.
Among those is the availability and low cost of visible band cameras and the undeniable fact that face
recognition is one of the primary activities of the human visual system. Machine recognition of human
faces, however, has proved more problematic than the seemingly effortless face recognition performed
by humans. The major culprit is light variability, which is prevalent in the visible spectrum due to the
reflective nature of incident light in this band. Secondary problems are associated to the difficulty of
detecting facial disguises [3].

As a cure to the aforementioned problems, researchers have started investigating the use of thermal
infrared for face recognition purposes [4,5]. Efforts were directed into solving three complementary
problems: face detection, feature extraction, and classification (see Figure 29.1) [6,7]. Face detection is a
prerequisite step, since a face cannot be recognized unless first it is detected in the scene. Feature extraction
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follows face detection and reduces the face to a succinct mathematical description — the feature vector.
Classification operates upon the feature vector and matches the incoming face to one of the records kept
in the database.

Many of the research efforts in thermal face recognition use the thermal infrared band as a way to see
in the dark or reduce the deleterious effect of light variability [8]. Methodologically, they do not differ
very much from face recognition algorithms in the visible band [9]. In this chapter, we will present a novel
approach to the problem of thermal facial recognition that realizes the full potential of the thermal infrared
band. It consists of a statistical face detection and physiological feature extraction algorithm tailored to
thermal phenomenology. We will not elaborate on classification, since we do not have to add anything
new in this part of the face recognition process. Our goal is to promote a different way of thinking in areas
where thermal infrared should be approached in a distinct manner with respect to other modalities.

29.2 Face Detection in Thermal Infrared

We approach the face detection problem in thermal infrared from a statistical point of view. Due to
its physiology, a typical human face consists of hot and cold parts. Hot parts correspond to tissue areas
that are rich in vasculature (e.g., periorbital and forehead). Cold parts correspond to tissue areas that
feature either sparse vasculature or multi-sided exposure to the environment (e.g., cheeks and nose).
This casts the human face as a bimodal distribution entity. The background can also be described by a
bimodal distribution. It typically consists of walls (cold objects) and the upper part of the subject’s body
dressed in clothes (hot objects). The bimodal distributions of the face and background vary over time, due
to thermophysiological processes and environmental noise respectively. Therefore, the problem renders
itself naturally to the Bayesian framework, since we have a priori knowledge of the bimodal nature of the
scene, which can be updated over time by the incoming evidence (new thermal frames from the camera).

29.2.1 Facial Tissue Delineation Using a Bayesian Approach

We consider an indoor area that is being monitored with a thermal infrared camera. The objective is to
detect and delineate a human face should this become available in the scene. The segmented face data
feed the feature extraction and classification modules, which complete the face recognition process (see
Figure 29.1). Initially, we consider the face detection problem at the pixel level and label every pixel as
either facial skin s or background b pixel.

In more detail, we use a mixture of two Normal distributions to model facial skin temperature. The
dominant mode is in the upper band of the values where usually about 60 to 70% of the probability mass
resides. The secondary mode is in the lower band of the values. For subjects in climate controlled rooms
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FIGURE 29.1 Architecture of a face recognition system. We will focus on face detection and feature extraction, where
thermal infrared warrants a totally different approach from the one usually undertaken in the literature.
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FIGURE 29.2 Temperature distributions of exposed skin and background from a set of facial thermal images in the
University of Houston database. The bimodal nature of the distributions is evident.

a typical temperature range for the dominant skin mode is ∼(32–35)◦C, while for the secondary mode is
∼(28–30)◦C. The latter may overlap with the background distribution since areas of the face like the nose
and ears have temperatures similar to the environment (see Figure 29.2).

Similarly, we use a mixture of two Normal distributions to model background temperature. The
dominant mode is in the lower band of the values where about 80% of the background probability mass
resides (typically, in the range ∼[27 to 29]◦C). The secondary background mode has its mean somewhere
between the two modes of the skin distribution and variance large enough to cover almost the entire band.
Therefore, the secondary background distribution includes some relatively high temperature values. These
are due to the fact that light clothes offer spots of high temperature (e.g., places where the clothes touch
the skin), which mimic the skin distribution but are not skin (see Figure 29.2).

For each pixel we have some prior distribution (information) available of whether this particular pixel
represents skin (π(s)) or background (π(b) = 1 − π(s)). Then, the incoming pixel value represents the
data (likelihood) that will be used to update the prior to posterior distribution via the Bayes theorem.
Based on the posterior distribution we will draw our inference of whether the specific pixel represents s
or b. At the end, this posterior distribution will be used as the prior for the next incoming data point.

We call θ the parameter of interest, which takes two possible values (s and b) with some probability.
The prior distribution at time t consists of the probabilities of the two complementary events, s and b.
Thus, we have:

π(t )(θ) =
{
π(t )(s), when θ = s
π(t )(b) = 1 − π(t )(s), when θ = b

(29.1)

The incoming pixel value xt has a conditional distribution f (xt |θ), which depends on whether the par-
ticular pixel is skin (i.e., θ = s) or background (i.e., θ = b). Based on our bimodal view of the skin and
background distributions we will have for the likelihood:

f (xt |θ) =
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There are ten parameters that are involved in the conditional distribution of Equation (29.2), namely,
2 weights, 4 means, and 4 variances. We will discuss later on, how to initialize and update these parameters.

The prior distribution, π(t )(θ), will be combined with the likelihood, f (xt | θ), to provide (via the
Bayes theorem) the posterior distribution p(t )(θ | xt ). Thus, we will have:

p(t )(θ | xt ) =
{

p(t )(s | xt ), when θ = s

p(t )(b | xt ) = 1 − p(t )(s | xt ), when θ = b
(29.3)

where according to the Bayes theorem:

p(t )(s | xt ) = π(t )(s)f (xt | s)

π(t )(s)f (xt | s) + π(t )(b)f (xt | b)
(29.4)

In the Bayesian philosophy the posterior distribution of the parameter of interest represents how the prior
information (distribution) is updated in light of new evidence (data). At every time point t our inference
(on whether the particular pixel represents s or b) will be based on the posterior distribution, p(t )(θ | xt ).

This posterior distribution will also be used to provide the prior distribution for the next stage. More
precisely:

π(t+1)(θ) =
{

π(t+1)(s) = p(t )(s | xt ), when θ = s

π(t+1)(b) = p(t )(b | xt ) = 1 − π(t+1)(s), when θ = b
(29.5)

29.2.1.1 Initialization

As part of the initialization, we need to specify two things: the prior distribution, π(1)(θ) and the
likelihood f (x1 | θ). Absence of information on whether a pixel is skin or background, leads us to
adopt a noninformative prior distribution where a priori each pixel is equally likely to be s or b. Thus,
we have:

π(1)(s) = 1

2
= π(1)(b) (29.6)

Regarding the likelihood, we need to calculate the initial values of the ten parameters involved in the
likelihood Equation (29.2). For that, we select N facial frames (off-line) from a variety of subjects. This is
the so-called training set. It is important for this set to be representative, that is, to include people of both
sexes, different ages, and with different physical characteristics. We manually segment on all the N frames,
skin and, background areas (see Figure 29.3). The segmentation needs to be representative. For example,

FIGURE 29.3 (See color insert following page xxx) Manual segmentation of skin (black rectangles) and background
(white rectangles) areas for initialization purposes.
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in the case of skin areas, we need to include eyes, ears, nose and the other facial areas, not parts thereof.
Out of the N frames the segmentation will yield Ns skin and Nb background pixels.

For the skin distribution we have available at the initial state the pixels x1, x2, · · · , xNs , which are
assumed to be sampled from a mixture of two Normal distributions:

f (xj | s) =
2∑

i=1

ωsi N (µsi , σ
2
si
) (29.7)

where ωs2 = 1 − ωs1 . We estimate the mixture parameters ωsi , µsi , and σ 2
si

using the Ns skin pixels of the
training set via the EM algorithm. Initially, we provide the EM algorithm with some crude estimates of

the parameters of interest: ω(0)
si , µ(0)

si , and (σ
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(29.11)

for i = 1, 2 and j = 1, . . . , Ns. Then, we set k = k + 1 and repeat the loop. The condition for terminating
the loop is:

|ω(k+1)
si

− ω(k)
si

| < ε i = 1, 2 (29.12)

where ε is a small positive number (10−3, 10−4, . . .). We apply a similar EM process for determining the
initial parameters of the background distributions.

29.2.1.2 Inference

Once a data point xt becomes available we are faced with the decision of whether the particular pixel
represents skin or background. In a decision theory framework this can be cast as testing the statistical
hypotheses for the parameter of interest θ :

{
H0: θ = s (i.e., the pixel represents skin)

H1: θ = b (i.e., the pixel represents background)

}

By using Equations (29.2) and (29.4) we combine the data with the prior distributions to obtain the
posterior distributions. Our inference will be based on these posterior distributions. We need to decide
whether we will accept H0 or H1. The easiest way to do this within the Bayesian framework is to favor the
hypothesis that has the highest a posteriori coverage. That simply means:

{
Accept H0 if : p(t )(s | xt ) > p(t )(b | xt ) ⇔ p(t )(s | xt ) > 0.5
Accept H1 if : p(t )(s | xt ) < p(t )(b | xt ) ⇔ p(t )(s | xt ) < 0.5

}
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(a) (b)

FIGURE 29.4 (See color insert) Visualization of Bayesian segmentation on a subject: (a) original image; (b) seg-
mented image. The nose has been erroneously segmented as background and a couple of hair patches have been
erroneously marked as facial skin. This is due to occasional overlapping between portions of the skin and background
distributions. The isolated nature of these mislabeled patches makes them easily correctable through post-processing.

Figure 29.4 visualizes the results of Bayesian segmentation on a typical facial thermal image from the
University of Houston database.

29.3 Facial Feature Extraction in Thermal Infrared

Once the face is delineated from the rest of the scene, one can extract the features necessary for classification.
In contrast to the visible band, thermal infrared provides the capability to extract physiological features. In
particular, blood that flows in the major superficial vessels creates a substantial convective heat effect that
is manifested in thermal imagery. Segmentation of the vascular network can provide the basis of a unique
feature vector. The topology and extent of the recovered vascular network depend on the genetic traits
and physical characteristics of the individual (e.g., facial skin fat deposits). Therefore, facial vasculature is
an identifying entity that endures through aging and superficial changes of appearance.

The problem for vessel segmentation has been solved in other imaging modalities using a variety
of methods. To the best of our knowledge, it is the first time that vessel segmentation is reported in the
thermal imaging modality. In our effort, we took into account methodologies used for vessel segmentation
in modalities other than thermal imaging (e.g., ultrasound and MRI). We can broadly categorize these
methodologies as follows:

• Center line detection approaches
• Ridge-based approaches
• Region growing approaches
• Differential geometry-based approaches
• Matched filter approaches
• Mathematical morphology approaches

In the center line extraction scheme, the vasculature is developed by traversing the vessels’ center lines.
The method employs thresholding and thinning of the image, followed by connected component analysis.
Center line extraction techniques are used by References 10 and 11. They use graph search theory to
find out vessel center lines and then curvature features to reconstruct the vasculature. In Reference 12,
the authors detect center lines from images acquired from different angles. As a result, they are able to
represent the 3D shape of the vessels.

Ridge-based approaches convert a 2D gray scale image into a 3D surface by mapping the intensity
values along the z-axis. Once the surface is generated, the local ridge points are those where the directional
gradient is the steepest. The ridges are invariant to affine transforms and this property is exploited in
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medical registration [13,14]. The method of segmentation of vessels using the ridge-based approach is
discussed in Reference 15 and more extensive details are available in its references.

One of the most widely used methods of vessel segmentation is the region growing method. Tra-
ditionally, the parameters used for growing the vessel region are pixel intensity and proximity. Recent
improvements in this method include gradient and texture [16,17]. Such methods, although give good
results, depend upon initialization. In Reference 18, based on the starting seed provided by the user
the region grows upon similar spatial, temporal, and structural features. A similar method is also used
in Reference 19.

If a 2D image is mapped into a 3D surface, then the crest lines are the most salient features of that
surface. This gives rise to the differential geometry based methods for vessel segmentation. The crest lines
are obtained by linking the crest points in the image, which are the local maxima of the surface curvature.
A prominent differential geometry-based method is the directional anisotropic diffusion (DAD), which
is discussed in Reference 20. It uses Gaussian convolution to remove the image noise. This method is a
generalized form of the method reported in Reference 21 and uses the gradient as well as the minimum
and maximum curvature information to differentiate the diffusion equation. The method removes the
noise without blurring and is thus, very useful in edge enhancement procedures.

The matched filtering approach uses a series of Gaussian kernels of different sizes and orientations. In
Reference 22 the orientation of the Gaussian filters is chosen using the Hessian matrix. A similar approach
is used in Reference 23 to enhance and detect vessels in real time. These methods are similar to the Gabor
filters, which are extensively used in texture analysis.

29.3.1 Morphological Reconstruction of Superficial Blood Vessels

In our method, first, we smooth the image to remove the unwanted noise and then, we apply the morpho-
logical operators. In thermal imagery of human tissue the major blood vessels do not have strong edges.
Due to the thermal diffusion process the edges that we get have a sigmoid temperature profile. A sigmoid
function can be written as y = 1/(1 + e−x ) (see Figure 29.5).

AQ: Please
provide ‘x’ and‘y’
co-ordinate for
Figure 29.5.

The method of anisotropic diffusion has proved very effective in handling sigmoid edges [24,25].
Nonlinear anisotropic diffusion filters are iterative filters introduced by Perona et al. [21] Greig et al. used
such filters to enhance MR images [26]. Sapiro et al. used a similar technique to perform edge preserving
smoothing of MR images [27]. Others have shown that diffusion filters can be used to enhance and detect
object edges within images [21,28].
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FIGURE 29.5 Sigmoid function plot.
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The anisotropic diffusion filter is formulated as a process that enhances object boundaries by performing
intra-region as opposed to inter-region smoothing. The mathematical equation for the process is:

∂I (x̄ , t )

∂t
= ∇(c(x̄ , t )∇I (x̄ , t )) (29.13)

In our case I (x̄ , t ) is the thermal image, x̄ refers to the spatial dimensions, and t to time. The function
c(x̄ , t ) is a monotonically decreasing function of the image gradient magnitude and is called the diffusion
function

c(x̄ , t ) = f (|∇I (x̄ , t )|) (29.14)

This allows locally adaptive diffusion strengths. Edges are thus, selectively smoothed or enhanced on the
basis of the evaluated diffusion function.

Perona and Malik have suggested the following two formulations for the diffusion function:

c1(x̄ , t ) = exp

(
−

( |∇I (x̄ , t )|
k

)2
)

(29.15)

c2(x̄ , t ) = exp


 1

1 +
( |∇I (x̄ ,t )|

k

)1+α


 (29.16)

Typical responses of the thermal image of the wrist to the Perona–Malik filters with diffusion functions c1

and c2 respectively are shown in Figure 29.6. One can observe that for the same image gradient and value
of the k parameter a steeper slope is obtained for c1 as compared to c2.

The discrete version of the anisotropic diffusion filter of Equation (29.13) is as follows:

It+1(x , y) = It + 1

4
× [cN ,t (x , y)∇IN ,t (x , y) + cS,t (x , y)∇IS,t (x , y)

+ cE ,t (x , y)∇IE ,t (x , y) + cW ,t ∇IW ,t (x , y)] (29.17)

The four diffusion coefficients and gradients in Equation (29.17) correspond to four directions (i.e., North,
South, East, and West) with respect to location (x , y). Each diffusion coefficient and the corresponding
gradient are calculated in a similar manner. For example, the coefficient along the north direction is
calculated as:

cN ,t (x , y) = exp

(−∇I 2
N ,t (x , y)

k2

)
(29.18)

where ∇IN ,t = It (x , y + 1) − It (x , y).
Figure 29.7(a) and Figure 29.7(b) show the original thermal image of skin tissue (wrist in this case)

and its temperature surface plot respectively. One can observe in the surface plot the noisy ridges
formed due to the hair. Figure 29.7(c) shows the filtered skin image. The hair has been removed
from the surface, resulting into smoother ridges and heightened peaks in the temperature surface plot
(Figure 29.7[d]).

As these figures testify anisotropic diffusion is highly beneficial in improving the contrast in the
image and removing the noise. This is in preparation of vessel segmentation through morphological
methods.

29.3.1.1 Image Morphology

Image morphology is a way of analyzing imagery based on shapes. It is rooted on set theory, the Minkowski
operators, and DeMorgan’s Laws. The Minkowski operators are usually applied to binary images where it
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FIGURE 29.6 (a) Plot of diffusion function c1 against the image gradient. (b) Plot of diffusion function c2 against
the image gradient.

is easy to perform OR and AND operations. The same operators can be applied to gray scale images with
small modifications.

Image morphology is a simple but effective tool for shape analysis and segmentation. In retinotherapy
it has shown great results in localization of blood vessels in the retina. Leandro et al. [29] have used
morphological operators for vessel delineation in the retina where the background intensity was very
close to that of the blood vessels. In our case, we have the blood vessels, which have a relatively low
contrast compared to that of the surrounding tissue. As per our hypothesis the blood vessel is a tubule
like structure running either along the length of the forearm or the face. Thus, our problem is to segment
tubule structures from the image. We employ for this purpose a top-hat segmentation method, which is a
combination of erosion and dilation operations.
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FIGURE 29.7 (See color insert) (a) Original thermal image of a wrist. (b) Temperature surface plot of the original
image. (c) Diffused thermal image of the wrist. (d) Temperature surface plot of the diffused image.
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FIGURE 29.8 Structuring elements.

Erosion and dilation are the two most basic operations in mathematical morphology. Both of these
operations take two pieces of data as input: an image to be eroded or dilated and a structuring element.
The structuring element is similar to what we know as a kernel in the convolution operation. There are a
variety of structuring elements available but a simple 3 × 3 square matrix is used more often. Figure 29.8
shows some commonly used structuring elements.

The combination of erosion and dilation results into more advanced morphological operations
such as:

• Opening
• Closing
• Skeletonization
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FIGURE 29.9 Binary erosion by a 3 × 3 flat structuring element.

• White top hat segmentation
• Black top hat segmentation

In our application, we are interested only in image opening and top hat segmentation.

1. Erosion: The name suggests that this operation erodes the boundary pixels of an image and thus, the
resultant image has a shrunk boundary. Mathematically, it is defined as follows:

A ⊕ B = {z | (A ∩ B)z ⊆ B} (29.19)

Therefore, erosion removes elements smaller than the structuring element. Figure 29.9 shows a simple
erosion operation performed on a binary image. Gray scale erosion with a flat structuring element generally
darkens the image. Bright regions surrounded by dark regions shrink in size and dark regions surrounded
by bright regions grow in size. Small bright spots in images disappear, as they are eroded away down to the
surrounding intensity value. In contrast, small dark spots grow. The effect is most pronounced at places
in the image where the intensity changes rapidly. Regions of fairly uniform intensity are left more or less
unchanged except at their edges.

2. Dilation: The name suggests that this operation gradually expands the boundary pixels of an image
and thus, the resultant image will have an enlarged boundary. Dilation results in fusing small holes in
the boundary area, by enlarging the boundary pixels. This is the equivalent of a smoothing function.
Mathematically, it is defined as follows:

A ⊕ B = {z | (∩B)z ∩ A �= ∅} (29.20)

Therefore, dilation fills in gaps smaller than the structuring element. Figure 29.10 shows a simple dilation
operation performed on a binary image. Gray scale dilation with a flat structuring element generally
brightens the image. Bright regions surrounded by dark regions grow in size and dark regions surrounded
by bright regions shrink in size. Small dark spots in images disappear as they are “filled in” to the sur-
rounding intensity values. In contrast, small bright spots will grow in size. The effect is most pronounced
at places in the image where the intensity changes rapidly. Regions of fairly uniform intensity will be
largely unchanged except at their edges.

3. Opening: The basic effect of an opening operation is reminiscent of erosion, since it tends to remove
some of the foreground (bright) pixels at the edges. However, it is less destructive than erosion. The
size and shape of the structuring element plays an important role in performing opening. The operation
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FIGURE 29.10 Binary dilation by a 3 × 3 flat structuring element.

preserves foreground regions that have a shape similar to its structuring element while erodes all other
regions of foreground pixels. In mathematical terms opening can be written as:

A◦B = (A 
 B) ⊕ B or

A◦B = ∪[(B)z | (B)z ⊆ A]
(29.21)

While erosion can be used to eliminate small clumps of undesirable foreground pixels (e.g., “salt noise”)
quite effectively, it has the disadvantage that it affects all foreground regions indiscriminately. Opening
gets around this by performing both erosion and dilation on the image. The effect of opening can be
visualized quite easily. Imagine taking the structuring element and sliding it inside each foreground
region without changing its orientation. All foreground pixels that can be covered by the structuring
element with the structuring element being entirely within the foreground region will be preserved.
However, all foreground pixels which cannot be reached by the structuring element without parts of it
moving out of the foreground region will be eroded away. After the opening has been carried out, the new
boundaries of foreground regions will all be such that the structuring element fits inside them. Therefore,
further openings with the same element have no effect, a property known as idempotence. The effect of
an opening on a binary image using a 3 × 3 flat structuring element is illustrated in Figure 29.11.

4. White Top Hat Segmentation: Many times gray scale images feature poor contrast. For example, in our
case thermal imagery of human tissue has poor contrast around the vessels due to the thermal diffusion
process. As a result, image thresholding yields very poor results. Top-hat segmentation is a morphological
operation that corrects this problem. Top hat segmentation has two forms:

• White top hat segmentation
• Black top hat segmentation

The white top-hat segmentation process enhances the bright objects in the image, while the black top-hat
segmentation enhances the dark objects. In our case, we are interested in enhancing the bright (hot) ridge
like structures corresponding to the blood vessels. Therefore, we are interested only in the white top-hat
segmentation process. Two methods have been introduced for performing the white top hat segmentation.
The first one proposed in Reference 30 is based on image opening using a flat structuring element, while
the second one proposed in Reference 31 uses H-dome transformation. We have adopted the first method
where the image is first opened and then this opened image is subtracted from the original image. This
gives only the peaks in the image and thus enhances the maxima. The step by step evolution of the original
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FIGURE 29.11 Binary opening by a 3 × 3 flat structuring element.

(a) (b)

(c)

FIGURE 29.12 (See color insert) Thermal image of a wrist: (a) original, (b) opened, and (c) top hat segmented.

image toward the top-hat segmented image is shown in Figure 29.12. The simple functioning of top-hat
transformation can be understood from the line profile plots in Figure 29.13.

29.4 Conclusion

We have outlined a novel approach to the problem of face recognition in thermal infrared. The cornerstones
of the approach are a Bayesian face detection method followed by a physiological feature extractor. The
face detector capitalizes upon the bimodal temperature distribution of human skin and typical indoor
backgrounds. The physiological feature extractor delineates the facial vascular network based on a white
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FIGURE 29.13 Image line profiles for (a) original, (b) opened, and (c) top-hat segmented image. The profiles were
taken along the line shown in Figure 29.8.

FIGURE 29.14 (See color insert) Segmented facial images annotated with the facial vascular network (yellow lines)
per the approach detailed in this chapter.

top hat segmentation preceded by anisotropic diffusion (see Figure 29.14). These novel tools can be used
in combination with traditional classification methods to exploit the full potential of thermal infrared for
face recognition — one of the fastest growing biometrics.
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