
C H A P T E R 4

A Custom Filter for Video Processing

Microsoft DirectShow is based on the Component Object Model

(COM) technology. In this chapter we will develop step-by-step our

own DirectShow object. As we mentioned in Chapter 2, COM

objects in DirectShow nomenclature are called filters. Our filter will

perform a simple video-processing operation. Specifically, it will

compare incoming frames from a live video source with a reference

frame. Whenever a discrepancy beyond a certain threshold is

ascertained, the filter will issue a warning (change detection).

In the next chapter we will learn how to call our custom-made

filter from within an application. Such an application could serve as

the backbone of a video-based security system for a home or office

environment. Therefore, this chapter and the next are very

important, because they will teach us how to expand the

functionality of DirectShow and the way to use it within an

application framework. �

48 � C H A P T E R 4 A Custom Filter for Video Processing

4.1 A Simple Change Detection Filter
The filter we are about to build belongs to the category of transform
filters. A transform filter takes a media input and alters it in some
way. The media input in our case is video. In the broader context of
DirectShow, however, the media input may be audio or something
else. Our custom transform filter may derive from one of three trans-
form base classes:

CTransformFilter This class is designed for implementing a
transform filter with one input pin and one output pin. It uses
separate allocators for the input pin and the output pin.

CTransInPlaceFilter This class is designed for filters that
transform data in place, rather than copying the data across
buffers.

CVideoTransformFilter This class is designed primarily as a
base class for AVI decompressor filters. It is based on a “copying”
transform class and assumes that the output buffer will likely be
a video buffer. The main feature of this class is that it enables
quality-control management in a transform filter. Quality control
in this case refers to dropping of frames under certain conditions.

The more specific the transform filter from which we choose to
inherit (see Figure 4.1) the less function overriding work we have to
do. In the case of the change detection (CD) filter we don’t have any
reason to keep the original data intact. We are only interested in the
result of the processing. The initial video frame pixel values are of
no importance as soon as they are transformed. Therefore, we can
transform data in place, and the natural choice for a parent class is
CTransInPlaceFilter.

F IGURE 4 .1

The inheritance tree
for the transform
filter family.

CVideoTransformFilterCTransInPlaceFilter

CTransformFilter

4.1 A Simple Change Detection Filter � 49

We will follow a disciplined approach in building the CD filter
by dividing the development work into four sequential steps. These
same steps will apply to the development of any custom-made trans-
form filter. In particular, we will describe how to

1. define and instantiate our filter’s class,

2. override the appropriate base class member functions,

3. access additional interfaces,

4. create the property page, and

5. create registry information.

Before we elaborate on each of the above major steps, we cre-
ate a new project in the Visual Studio Developer by clicking the
New->Project entry under the File menu. In the wizard window
that appears we choose the Win32 Project template under the
Visual C++ Projects type. We name our project CDServer (see
Figure 4.2). Then we click the OK button. In the next wizard window

F IGURE 4 .2 The wizard window for project definition.

50 � C H A P T E R 4 A Custom Filter for Video Processing

F IGURE 4 .3 The wizard window for application definition.

we click on the Applications Settings tab and choose DLL un-
der the Application type group and Empty project under the
Additional options group (see Figure 4.3). Finally, we click the
Finish button to create the project.

4.2 Define and Instantiate Our Filter's Class
The step of filter definition and instantiation could be further di-
vided into smaller steps. It instills a certain discipline in our filter
development effort if we follow these substeps in a specific order.

4.2.1 Class Declaration
Having decided from which base class we derive our CD filter, we
make the appropriate class declaration. As we explained in the be-
ginning of this chapter our CD filter should be derived from the

4.2 Define and Instantiate Our Filter’s Class � 51

F IGURE 4 .4 The class wizard window.

CTransInPlaceFilter base class. We right click at the CDServer
project icon in the Class View pane and choose to add a new class
by selecting Add->Add Class ... from the cascading menu. A
class dialog window appears. We choose Generic C++ Class in
the Templates pane (see Figure 4.4), and then we click on the Open
button. A second class dialog window appears. Then we enter the
class name and the name of the base class as shown in Figure 4.5. We
also check the Virtual destructor option. By clicking the Finish
button, the Developer Studio generates the class declaration and
definition. We ignore an intermediate warning message about the
base class CTransInPlaceFilter. Then we access the declaration of
the constructor by right clicking at its icon in the Class View pane
and choosing the Go to Declaration menu entry. We modify the
declaration of the class constructor as follows:

CCDFilter(TCHAR *tszName, LPUNKNOWN lpUnk, HRESULT
*phr);

52 � C H A P T E R 4 A Custom Filter for Video Processing

F IGURE 4 .5 Creation of the CCDFilter class.

We switch to the Solution Explorer pane and open the CD-
Filter.cpp file. There we modify the definition of the class constructor
as it appears in Listing 4.2.1.1. The initialization code will be added
piece by piece as we enter the various member variables. For each
variable type the Visual C++ compiler assigns an appropriate default
initial value. For example, for Boolean variables the default initial
value is FALSE. Whenever we need to modify the default initializa-
tion, we will comment accordingly.

L IST ING 4.2 .1 .1 The CCDFilter class constructor.

1: // Filter constructor.
2: CCDFilter(TCHAR *tszName, LPUNKNOWN lpUnk, HRESULT *phr):
3: CTransInPlaceFilter(tszName, lpUnk, CLSID_CDFilter, phr, TRUE)
4: {
5: }

4.2 Define and Instantiate Our Filter’s Class � 53

F IGURE 4 .6 The Property Pages dialog window.

In order to use base classes such as CTransInPlaceFilter we
must include at the beginning of the CDFilter.cpp file the header
file:

#include 〈streams.h〉

This header file contains all of the base class and interface definitions
of the DirectShow SDK. We also need to provide the necessary linking
support. In the Class View pane we right click at the CDServer icon
and choose Properties from the drop-down menu. The Property
Pages dialog window appears (see Figure 4.6). Under the Linker->
Input tab we add as Additional Dependencies the following
three libraries:

strmbasd.lib msvcrtd.lib winmm.lib

The strmbasd.lib library supports the DirectShow base classes.
The msvcrtd.lib is the import library for dynamically linking the

54 � C H A P T E R 4 A Custom Filter for Video Processing

debug version of the msvcrt40.dll library. The library supports both
single-threaded and multithreaded applications. The winmm.lib li-
brary supports the multimedia services.

4.2.2 Filter Instantiation
In COM technology we cannot create objects directly. We should
rather use a class factory to instantiate our object (filter). For that
we must declare and define the CreateInstance member func-
tion and a means of informing the class factory as to how to ac-
cess this function. In the Class View pane we right click the icon
of the CCDFilter class and choose Add->Add Function A
dialog window appears (see Figure 4.7). In its Return type field
we enter: CUnknown *. In the Function name field we enter:
CreateInstance. Next, we add the input variables. First, we en-
ter LPUNKNOWN in the Parameter type field and lpUnk in the

F IGURE 4 .7 The member function dialog box for CreateInstance.

4.2 Define and Instantiate Our Filter’s Class � 55

Parameter name field. Then we press the Add button. We repeat
the same procedure for the parameter HRESULT *phr. We also
check the Static check box. We conclude by clicking the Finish
button. The CreateInstance member function icon is added un-
der the CCDFilter class tree in the Class View pane. By right
clicking this function icon and choosing Go to Declaration,
we are placed at the function declaration. There we enter in a separate
line the DECLARE–IUNKNOWN; macro. Then, by right clicking again
the function icon and choosing Go to Definition, we are placed at
the function definition where we add the code shown in Listing
4.2.2.1.

L IST ING 4.2 .2 .1 The filter’s CreateInstance function.

1: CUnknown * CCDFilter::CreateInstance(LPUNKNOWN lpUnk,
HRESULT *phr)

2: {
3: CCDFilter *pNewObject =

new CCDFilter(NAME("CD Filter"),
lpUnk, phr);

4: if (pNewObject == NULL)
5: {
6: *phr = E_OUTOFMEMORY;
7: }
8: return pNewObject;
9: }

The CreateInstance member function calls the constructor of
the CCDFilter class. In turn, the CreateInstance is called by
the class factory. To communicate with the class factory, we de-
clare a global array g–Templates of CFactoryTemplate objects (see
Listing 4.2.2.2). The g–cTemplates variable (line 13, Listing 4.2.2.2)
defines the number of class factory templates for the filter. In our
case, we have two templates. The first template (lines 3–7, List-
ing 4.2.2.2) furnishes the link between COM and our filter. It provides
the filter’s name (line 3, Listing 4.2.2.2), its class identifier (CLSID)
(line 4, Listing 4.2.2.2), and a pointer to the static CreateInstance

56 � C H A P T E R 4 A Custom Filter for Video Processing

L IST ING 4.2 .2 .2 A global array of objects to be communicated to the class factory.

1: CFactoryTemplate g_Templates[] =
2: {
3: { L"CD Filter" // name
4: , &CLSID_CDFilter // CLSID
5: , CCDFilter::CreateInstance // creation function
6: , NULL
7: , &sudCDFilter } // pointer to filter information
8: ,
9: { L"CD Property Page"
10: , &CLSID_CDPropertyPage
11: , CCDPropertyPage::CreateInstance }
12: };
13: int g_cTemplates = sizeof(g_Templates) / sizeof(g_Templates[0]);

member function that creates the filter (line 5, Listing 4.2.2.2). The
second template (lines 9–11, Listing 4.2.2.2) furnishes the link to the
property page for our filter.

In lines 4 and 10 of Listing 4.2.2.2 we make use of the class identi-
fiers for the filter and its property page, respectively. We define these
identifiers as follows: In Developer Studio we click the Project->
Add New Item ... menu item. In the dialog window that appears
(see Figure 4.8) we choose the Visual C++ category and select the
Header File icon. Then we enter CDFilterGUIDs in the Name text
field, and we press the Open button. At this time a blank file named
CDFilterGUIDs.h is opened. In this header file we will copy the unique
class identifiers for our filter and its property page. We use the util-
ity GUIDGEN.EXE to produce these identifiers. The utility can be in-
voked by selecting the Tools->Create GUID menu item. In the
utility’s dialog window we choose to produce unique identifiers in
the DEFINE–GUID format by checking the second radio button (see
Figure 4.9). Then we click at the Copy button to place the unique
identifier in the clipboard. We paste the contents of the clipboard at
the beginning of the CDFilterGUIDs.h header file. The code will look
like the following example, except that it will have its own unique
identifier.

4.2 Define and Instantiate Our Filter’s Class � 57

F IGURE 4 .8 The creation of the CDFilterGUIDs.h header file.

// F3CBD19C-5AA9-4c79-B207-8ACF0A559CFE
DEFINE–GUID(<<name>>,
0xf3cbd19c, 0x5aa9, 0x4c79, 0xb2, 0x7, 0x8a, 0xcf,
0xa, 0x55, 0x9c, 0xfe);

There is a generic tag <<name>> for the filter’s CLSID. We replace this
by the tag CLSID–CDFilter.

To generate the unique identifier for the filter’s property page, we
click at the New GUID button in the dialog window of GUIDGEN.EXE.
Then we need to follow a similar process for declaring the GUID of
the property page. However, we will talk in more detail about this
in Section 4.5. Finally, we include first the standard 〈initguid.h〉 and
then the specific CDFilterGUIDs.h header files at the beginning of the
CDFilter.cpp file.

58 � C H A P T E R 4 A Custom Filter for Video Processing

F IGURE 4 .9

The dialog
window of the
GUIDGEN.EXE
utility.

4.3 Override the Appropriate Base Class
Member Functions
Since our CD filter inherits from the CTransInPlaceFilter base
class, we need to override only two base member functions: Check-
InputType and Transform.

4.3.1 The CheckInputType Member Function
We must override the CheckInputType member function to deter-
mine if the data arriving at the input of the CD filter is valid. We
design our filter to accommodate only video media type and, in par-
ticular, the RGB 24-bit format. The allowed input media types for the
filter are designated within the AMOVIESETUP–MEDIATYPE structure
(see Section 4.6). We add the CheckInputType member function
to our filter class by right clicking the CCDFilter class icon in the
Class View pane and picking the Add->Add Function ... menu

4.3 Override the Appropriate Base Class Member Functions � 59

F IGURE 4 .10 The member function dialog box for CheckInputType.

entry. We fill out the relevant dialog window as shown in Figure 4.10.
Then we click the Finish button to create the declaration and core
definition of the CheckInputType function. We go to the definition
and declaration of the function and change the return type from
int to HRESULT to be compatible with the base class. Due to some
incompatibility bug, .NET does not accept the HRESULT type as the re-
turn type of a function defined through the relevant wizard window.
Finally, at the function’s definition we add the code in Listing 4.3.1.1.
In lines 5–7 of Listing 4.3.1.1 we make sure that the input media type
is video. In lines 9–11 of Listing 4.3.1.1 we make sure that the video
type is RGB, 24 bit. The latter is accomplished by using a helper
function: CheckInputSubType. The code for the helper function is
shown in Listing 4.3.1.2. We add this helper function to our filter
class using the usual procedure.

60 � C H A P T E R 4 A Custom Filter for Video Processing

L IST ING 4.3 .1 .1 The CheckInputType function definition.

1: // Verify support of media type.
2: HRESULT CCDFilter::CheckInputType(const CMediaType *mtIn)
3: {
4: // make sure this is a video media type
5: if (*mtIn->FormatType() != FORMAT_VideoInfo) {
6: return E_INVALIDARG;
7: }
8: // can we transform this type?
9: if (CheckInputSubType(mtIn)) {
10: return NOERROR;
11: }
12: return E_FAIL;
13: }

L IST ING 4.3 .1 .2 The CheckInputSubType helper function definition.

1: // Verify support of media subtype.
2: BOOL CCDFilter::CheckInputSubType(const CMediaType *pMediaType) const
3: {
4: if (IsEqualGUID(*pMediaType->Type(), MEDIATYPE_Video)) {
5: if (IsEqualGUID(*pMediaType->Subtype(),

MEDIASUBTYPE_RGB24)) {
6: VIDEOINFOHEADER *pvi =

(VIDEOINFOHEADER *) pMediaType->Format();
7: return (pvi->bmiHeader.biBitCount == 24);
8: }
9: }
10: return FALSE;
11: }

4.3.2 The Transform Member Function
Since we are building our own transform filter, we must override by
definition the Transform member function. In our case, the over-
ridden Transform function will provide the core change detection

4.3 Override the Appropriate Base Class Member Functions � 61

F IGURE 4 .11 The member function dialog box for Transform.

capability. We add the Transform member function to the CCDFil-
ter filter class by right clicking at the class icon and picking the
Add->Add Function ... menu entry. We fill out the relevant dia-
log window as shown in Figure 4.11. Then we click the OK button to
create the declaration and core initial definition of the Transform
function. We go to the definition and declaration of the function and
change the return type from int to HRESULT to be compatible with
the base class. Finally, we go to the function’s definition and add the
code in Listing 4.3.2.1.

To construct the transform function we need several member vari-
ables. We define these variables by right clicking the CCDFilter class
icon and choosing the Add->Add Variable ... menu entry. First,
we need a variable to hold the data of the designated reference frame.
This is the frame from which every incoming frame is subtracted.
We define the variable m–pReferenceImage of type BYTE * to play

62 � C H A P T E R 4 A Custom Filter for Video Processing

L IST ING 4.3 .2 .1 The Transform function definition.

1: HRESULT CCDFilter::Transform(IMediaSample *pMediaSample)
2: {
3: AM_MEDIA_TYPE* pType = &m_pInput->CurrentMediaType();
4: VIDEOINFOHEADER *pvi = (VIDEOINFOHEADER *) pType->pbFormat;
5: BYTE *pData; // pointer to the data from the input pin
6: // get the input frame data and assign it to the data pointer
7: pMediaSample->GetPointer(&pData);
8:
9: // first time?
10: if(m_bInitializeFlag)
11: {
12: // get the image properties from the BITMAPINFOHEADER
13: m_width = pvi->bmiHeader.biWidth;
14: m_height = pvi->bmiHeader.biHeight;
15: m_colors = 3;
16: AllocateFilterMembers();
17: m_bInitializeFlag = FALSE;
18: }
19:
20: // copy the current frame into the reference frame
21: if(m_bReferenceFlg)
22: {
23: for(int i=0; i<m_height; i++)
24: for(int j=0; j<m_width; j++)
25: {
26: // Red
27: *(m_pReferenceImage + 0 + 3*(j*m_height + i)) =

(pData + 0 + 3(j*m_height + i));
28: // Green
29: *(m_pReferenceImage + 1 + 3*(j*m_height + i)) =

(pData + 1 + 3(j*m_height + i));
30: // Blue
31: *(m_pReferenceImage + 2 + 3*(j*m_height + i)) =

(pData + 2 + 3(j*m_height + i));
32: }
33: m_bReferenceFlg = FALSE;
34: m_bReferenceFrameSelected = TRUE;
35: }
36:
37: // perform change detection if a reference frame has been selected

4.3 Override the Appropriate Base Class Member Functions � 63

38: if(m_bReferenceFrameSelected && m_bRunCDFlg)
39: {
40: if(DifferencingThresholding(pData))
41: m_bIntruderDetected = TRUE;
42: ...
43: }
44: return NOERROR;
45: }

this role. We also need similar variables to hold the results of the
frame differencing and thresholding operations. These variables are
respectively m–pDifferenceImage and m–pThresholdImage. The
frame-differencing operation captures the disparity of the current
scene from the original (reference) scene. Due to the noisy video
acquisition process and small light variations there is disparity even
if the current scene is exactly the same as the reference scene. To
avoid frequent false alarms, we apply upon the difference image a
thresholding operation to eliminate small variations.

Other variables that are useful to the Transform function are
Boolean variables to communicate the user’s inputs through the
Graphical User Interface (GUI). First, we define the Boolean vari-
able m–bInitializeFlg that signals the very first time the Trans-
form function is invoked. Then, we define the Boolean variable
m–bReferenceFlg to signal the acquisition of a new reference
frame per the user’s request. We also define the Boolean variable
m–bReferenceFrameSelected to ascertain the existence of a valid
reference frame in the filter’s memory. Finally, the Boolean variable
m–bRunCDFlg denotes if the property page is open or not. We will
see how all these variables play out as we describe the specifics of the
Transform function.

In order to process information in a transform filter we first have
to have a handle on this information. In the case of the CD filter the
incoming media information is standard video. We get a handle on
the incoming media data by invoking the GetPointermethod from
the IMediaSample interface (line 7, Listing 4.3.2.1). Then, we can
access the byte data (pData) that corresponds to tricolor pixel values
for each incoming frame. One problem that still hampers us, though,

64 � C H A P T E R 4 A Custom Filter for Video Processing

is that we don’t know when to stop accessing pData. In other words,
we don’t know the dimensions of the incoming video frames.

We can get access to the dimensions of the video frames by fol-
lowing a top-down approach. Our custom CD filter inherits from
the CTransformFilter class. One of the protected member vari-
ables of the CTransformFilter is the m–pInput pointer to the
input pin. The input pin is a class itself, and among its methods
features the CurrentMediaType. Through the invocation of the
CurrentMediaTypemethod we can access the media type of the CD
filter’s input connection (line 3, Listing 4.3.2.1). The media type that
is passed from the source to the transform filter is expressed as a struc-
ture. One of the members of the AM–MEDIA–TYPE structure is pbFor-
mat, which is a pointer to the format structure of the media type. In
our case, since we are receiving standard video frames from the source
filter, the format structure of the media type is VIDEOINFOHEADER
(line 4, Listing 4.3.2.1). The VIDEOINFOHEADER structure contains
information for standard video. In particular, the bmiHeader mem-
ber of the VIDEOINFOHEADER structure contains color and dimen-
sion information for the individual video frames. In standard video,
the frames are bitmap images. In fact, bmiHeader is a BITMAP-
INFOHEADER structure, and among its members are biWidth and
biHeight, which specify the width and height of the bitmap frames
(lines 13–14, Listing 4.3.2.1). We also set the m–colors variable to
3 (line 15, Listing 4.3.2.1). This represents the number of planes for
the red, green, and blue components in a standard bitmap image.
In other words, each frame consists of three planes with exactly the
same dimensions (biWidth x biHeight).

We use our newly acquired knowledge of the video frame’s di-
mensions and the number of color channels to allocate space for all
the variables that will hold image data (i.e., m–pReferenceImage,
m–pDifferenceImage, and m–pThresholdImage). The allocation
is performed by the helper function AllocateFilterMembers in
line 16 of Listing 4.3.2.1.

The Transform function is invoked every time an incoming
frame is fetched from the capture device. Both the determination
of the frame’s dimensions/color channels and the dynamic space al-
location need to take place only once, when the very first frame is
fetched from the video source. To assure this we flag the lines 12–16 of
Listing 4.3.2.1 with the Boolean variable m–bInitializeFlag. We

4.3 Override the Appropriate Base Class Member Functions � 65

also change the default initialization of m–bInitializeFlag from
FALSE to TRUE in the class constructor.

We copy the pixel values from pData to m–ReferenceImage
(lines 23–32, Listing 4.3.2.1), where m–ReferenceImage is a vari-
able we defined to hold the reference image data. The reference im-
age is the image from which every subsequent incoming image is
subtracted. For a stationary camera, it represents a safe scene with
no humans in the picture. The user orders the acquisition of a new
reference image at a time of his choosing by clicking the Select
Reference Frame button on the filter’s property page (see Fig-
ure 4.12). The press of this button sets the m–bReferenceFlg flag.
This means that the if statement in line 21 of Listing 4.3.2.1 checks
true. Therefore, we can see how the orders of the user translate
into a pixel-copying operation through appropriate flagging. Before
we exit the reference-copying block of statements we set the flag
m–bReferenceFrameSelected to true. This allows the subtraction
and thresholding operation to occur (lines 38–43, Listing 4.3.2.1) for
every subsequent frame until the user indicates to the system that
he no longer wishes to perform change detection. This latter wish is
communicated by closing the filter’s property page.

The actual frame differencing and thresholding algorithm per-
formed upon the image data is invoked in line 40 of Listing 4.3.2.1.

F IGURE 4 .12

The property page of
the CD filter.

66 � C H A P T E R 4 A Custom Filter for Video Processing

If the threshold operation yields a sufficiently high value, then the
DifferencingThresholding function returns as true and the fol-
lowing events happen simultaneously:

� The message Intruder Detected is displayed.

� The icon of a red light is displayed.

� An alarm sound is played.

4.3.3 The Differencing and Thresholding Operations
The DifferencingThresholding function performs the differenc-
ing and thresholding operation upon the incoming image. The
most important pieces of code for the function are shown in List-
ing 4.3.3.1. The function carries as an input parameter the pointer
pData to the incoming frame’s pixel values. The pixel values of the
reference frame have already been stored in the member variable
m–pReferenceImage. Therefore, we are ready to perform the sub-
traction operation of the incoming frame from the reference frame
(lines 5–13, Listing 4.3.3.1). We subtract pixel by pixel per color
plane; this is the reason for the triple for loop in lines 5–7 of List-
ing 4.3.3.1. Figure 4.13 shows the way the pixel data are organized
in the bitmap frame.

L IST ING 4.3 .3 .1 The DifferencingThresholding function definition.

1: bool CChangeFilter::DifferencingThresholding(BYTE * pData)
2: {
3: ...
4: // compute the difference between incoming and reference images
5: for (i=0; i<m_height; i++)
6: for (j=0; j<m_width; j++)
7: for (k=0; k<m_colors; k++)
8: {
9: if ((*(pData + k + m_colors*(j*m_height + i))) >=

(m_pReferenceImage + k + m_colors(j*m_height + i)))
10: {
11: *(m_pDifferenceImage + k + m_colors*(j*m_height + i)) =

(BYTE)((*(pData + k + m_colors*(j*m_height + i))) -
(*(m–pReferenceImage + k + m–colors*(j*m–height + i))));

12: }

4.3 Override the Appropriate Base Class Member Functions � 67

13: ...
14: // apply the adaptive thresholding algorithm
15: float redThr = GetImageThreshold(RED);
16: float greenThr = GetImageThreshold(GREEN);
17: float blueThr = GetImageThreshold(BLUE);
18:
19: // based on the computed thresholds binarize the pixel values
20: int tally = 0;
21: for (i=0; i<m_height; i++)
22: {
23: for (j=0; j<m_width; j++)
24: {
25: if((*(m_pDifferenceImage + 0 + m_colors*(j*m_height + i)) >

((int) redThr) + 25) ||
(*(m_pDifferenceImage + 1 + m_colors*(j*m_height + i)) >

((int) greenThr) + 25) ||
(*(m_pDifferenceImage + 2 + m_colors*(j*m_height + i)) >

((int) blueThr) + 25))
26: {
27: // index back to the original image pixels
28: *(m_pThresholdImage + 0 + m_colors*(j*m_height + i)) =
29: (*(pData + 0 + m_colors*(j*m_height + i)));
30: *(m_pThresholdImage + 1 + m_colors*(j*m_height + i)) =
31: (*(pData + 1 + m_colors*(j*m_height + i)));
32: *(m_pThresholdImage + 2 + m_colors*(j*m_height + i)) =
33: (*(pData + 2 + m_colors*(j*m_height + i)));
34: tally = tally + 1;
35: }
36: else
37: {
38: *(m_pThresholdImage + 0 + m_colors*(j*m_height + i)) =
39: *(m_pThresholdImage + 1 + m_colors*(j*m_height + i)) =
40: *(m_pThresholdImage + 2 + m_colors*(j*m_height + i)) =

(BYTE) 0;
41: }
42: }
43: }
44: ...
45: // is intrusion detected (a "large enough" difference was found)?
46: if ((100.0 * ((float)tally) / ((float)(m_width*m_height*m_colors)))

> m_ThresholdValue)
47: ...

68 � C H A P T E R 4 A Custom Filter for Video Processing

F IGURE 4 .13

Organization of the
bitmap frame. Each
pixel (i, j) packs
three byte numbers
that represent the
constituent primary
colors for the pixel
(red, green, and
blue).

j

i

m
_height

m_width

After having obtained the difference image we apply the thresh-
olding algorithm upon it (lines 15–17, Listing 4.3.3.1). Actually, we
apply the thresholding operation per each color plane (red, green,
and blue). Three different threshold values are produced, one for the
red, one for the green, and one for the blue components of the pixel
values. Then, in line 25 of Listing 4.3.3.1, we weigh each color to
see if any of the color values of a pixel is above or below the corre-
sponding threshold value. If it is above the threshold value, then we
maintain the original pixel value in the threshold image (lines 28–33,
Listing 4.3.3.1). If it is below the threshold value, then we zero the
pixel value in the threshold image—black pixel (lines 38–40, Listing
4.3.3.1). This weighing process repeats for every pixel in the image
(lines 21–24, Listing 4.3.3.1).

In line 34 of Listing 4.3.3.1 we keep count of the number of pixels
that have a color component above the corresponding threshold.
Then, in line 46 we check if the percentage of the pixels found to be
sufficiently different exceeds a certain overall percentage threshold.
The overall percentage threshold (m–Threshold) is set by us. In the
default version of the code it has been set to 0.5, which means that
if more than 50% of the image’s pixels have changed sufficiently
from the reference image, an alarm is set off. The reader may set this
variable higher or lower depending on how sensitive he/she prefers
the change detection system to be.

4.3 Override the Appropriate Base Class Member Functions � 69

One point of great interest that we have left unanswered so far is
how, exactly, the threshold values redThr, greenThr, and blueThr
are computed for the three color planes of the image. We are about
to give an answer to this question by dissecting the function Get-
ImageThreshold in the following section.

4.3.4 The Thresholding Algorithm
Thresholding offers a method of segmentation in image processing.
We are trying to delineate foreground from background pixels in
tricolor-difference images. We are less interested in background pix-
els, and for this reason we depict them as black. For the foreground
pixels, however, we maintain the exact color values included in the
incoming image. Thus, if, for example, a human or other object has
moved in the original scene, then all the scene appears black in the
thresholded image except the region where the human or object ex-
ists. This human or other silhouette represents the change that was
introduced to the original reference scene.

But how does thresholding determine if a pixel belongs to the
foreground or background? Or, equivalently, if it should be painted
black or maintain its original color? In color images such as the ones
we are dealing with in our case, three separate thresholds can be es-
tablished for the corresponding color channels. Each color channel
has a range of values between [0 − 255], where 0 represents the ab-
sence of color and 255 represents full color. In an ideal world, with no
light changes and without sensor noise, the difference image would
not need thresholding at all. The difference pixels in the regions
of the scene that haven’t changed would cancel out completely. In
the real world, however, the difference pixels corresponding to un-
changed scene points may not cancel out completely and present
nonzero values. Still, the difference pixels that correspond to scene
points that have drastically changed due to the presence of a foreign
object usually present higher residual values.

Therefore, we have two distributions of color pixels on each color
plane of the difference image two distributions of color pixel val-
ues. One distribution is clustered toward the lower portion of the
intensity range [0 − 255] and represents color pixel values that cor-
respond to background points. The other distribution is clustered
toward the higher portion of the intensity range [0 − 255] and repre-
sents color pixel values that correspond to foreground points. There

70 � C H A P T E R 4 A Custom Filter for Video Processing

is often some overlapping between the background and foreground
distributions. A good thresholding algorithm locates the demarca-
tion (thresholding) point in a way that minimizes the area of one
distribution that lies on the other side’s region of the threshold [7].

It is very important to realize that we know only the parameters
of the total pixel distribution per color channel. We assume that the
background and foreground distributions exist within it. We don’t
know exactly what they are. We are trying to guess by computing a
value that separates them (threshold). As we adjust the threshold, we
increase the spread of one distribution and decrease the other. Our
goal is to select the threshold that minimizes the combined spread.

We can define the within-class variance σ 2
w(t) as the weighted sum

of variances of each distribution.

σ 2
w(t) = w1(t)σ 2

1 (t) + w2(t)σ 2
2 (t) (4.3.1)

where

w1(t) =
t∑

i=1

P (i) (4.3.2)

w2(t) =
N∑

i=t+1

P (i) (4.3.3)

σ 2
1 (t) = the variance of the pixels in the background

distribution (below threshold) (4.3.4)

σ 2
2 (t) = the variance of the pixels in the foreground

distribution (above threshold) (4.3.5)

The weights w1(t) and w2(t) represent the probabilities of the back-
ground and foreground distributions, respectively. These probabili-
ties are computed as the sum of the probabilities of the respective
intensity levels. In turn, the individual intensity probabilities P (i)
are computed as the ratio of the number of pixels bearing the specific
intensity to the total number of pixels in the scene. We symbolize the
number of intensity levels by N. Since the range of intensity values
per color channel is [0 − 255], the total number of intensity values is
N = 256.

4.3 Override the Appropriate Base Class Member Functions � 71

In Listing 4.3.4.1 we compute the number of pixels for each spe-
cific intensity in the range [0 − 255]. This is the histogram of the
color channel. Based on the histogram, we compute the individual
intensity probabilities in lines 17–18 of Listing 4.3.4.1.

L IST ING 4.3 .4 .1 The GetImageThreshold function definition.

1: // Adaptive thresholding algorithm.
2: int CChangeFilter::GetImageThreshold(short int color) {
3: ...
4: switch (color)
5: {
6: case RED:
7: for (i=0; i<m_height; i++)
8: for (j=0; j<m_width; j++)
9: {
10: colorj = *(m_DifferenceImage + 0 + m_colors*(j*m_height + i));
11: hgram[colorj] += 1;
12: }
13: ...
14: }
15:
16: // compute the probability P for each pixel intensity value
17: for (i=0; i<256; i++)
18: P[i] = (hgram[i]) / ((float) (m_width*m_height));
19:
20: // total mean value
21: float mu = 0.0;
22: for (i=0; i<256; i++)
23: mu += ((float) (i+1)) * P[i];
24: ...
25: for (k=i+1; k<256; k++)
26: {
27: w1 += P[k];
28: MU1 += (k+1) * P[k];
29: if ((w1 <= 0) || (w1 >= 1))
30: {
31: }
32: else
33: {

72 � C H A P T E R 4 A Custom Filter for Video Processing

34: ftemp = mu * w1 - MU1;
35: sigma_B_sq = (ftemp * ftemp) / (float) (w1 * (1.0 - w1));
36: if (sigma_B_sq > sigma_B_sqr_max)
37: {
38: sigma_B_sqr_max = sigma_B_sq;
39: k_thresh = k;
40: }
41: }
42: }
43:
44: return k_thresh;
45: }

If we subtract the within-class variance σ 2
w(t) from the total vari-

ance σ 2 of the pixel population, we get the between-class variance
σ 2

b (t):

σ 2
b (t) = σ 2(t) − σ 2

w(t)

= w1(µ1 − µ)2 + w2(µ2 − µ)2 (4.3.6)

where µ1 is the mean of the background pixel distribution, µ2 is the
mean of the foreground pixel distribution, and µ is the total mean.
The means can be computed by the following equations:

µ1(t) = M1(t)/w1(t) (4.3.7)

M1(t) =
t∑

i=1

i P (i) (4.3.8)

µ2(t) = M2(t)/w2(t) (4.3.9)

M2(t) =
N∑

i=t+1

i P (i) (4.3.10)

µ(t) =
N∑

i=1

i P (i) (4.3.11)

We use Equation (4.3.11) to compute the total mean in lines
22–23 of Listing 4.3.4.1. By observing carefully Equation (4.3.6), we

4.3 Override the Appropriate Base Class Member Functions � 73

notice that the between-class variance is simply the weighted vari-
ance of the distribution means themselves around the overall mean.
Our initial optimization problem of minimizing the within-class vari-
ance σw(t) can now be cast as maximizing the between-class variance
σb(t). We substitute Equations (4.3.7)–(4.3.11) in Equation (4.3.6) to
obtain

σ 2
b (t) = (w1(t)µ(t) − M1(t))2

w1(t)(1 − w1(t))
. (4.3.12)

For each potential threshold value t (t ∈ [0 − 255]) we compute
the weight (probability) of the background distribution w1 and the
mean enumerator M1. We use these values to compute the between-
class variance for every pixel intensity t. Then, we pick as the opti-
mal threshold value topt the value that yields the maximum σ 2

b . This
sounds like a lot of work, but fortunately it can be formulated as a re-
cursive process. We can start from t = 0 and compute incrementally
w1 and M1 up to t = 255 by using the following recursive equations:

w1(+1) = w1(t) + P (t + 1), (4.3.13)

M(t + 1) = M(t) + (t + 1)P (t). (4.3.14)

We employ Equations (4.3.13) and (4.3.14) in lines 27–28 of List-
ing 4.3.4.1 to compute w1 and M1 incrementally at each step. Based
on these values and the value of the total mean µ computed once
in lines 21–23 of Listing 4.3.4.1, we calculate the between-class vari-
ance in lines 34–35 by straight application of Equation (4.3.6). We
compare the current step value of the between-class variance with
the maximum value found up to the previous step in line 36 of
Listing 4.3.4.1. As a result of this comparison, we always store away
the maximum between-class variance value along with the intensity
value (potential threshold value) at which it occurred (lines 38–39,
Listing 4.3.4.1). When we exhaust the full range of the intensity val-
ues (for loop—line 25 in Listing 4.3.4.1) the GetImageThreshold
function returns the intensity value that produced the maximum
between-class variance (line 44 in Listing 4.3.4.1). This is the thresh-
old value that separates foreground from background pixels for the
particular color channel (RED, GREEN, or BLUE).

74 � C H A P T E R 4 A Custom Filter for Video Processing

4.4 Access Additional Interfaces
We create a new header file named iCDFilter.h through the
Project-> Add New Item ... menu selection. This is the file
where we will declare our own interface, the ICDFilter. This in-
terface will be of value to the CCDFilter class and possibly other
similar classes that we may design in the future. Its role is to cover
more specific functionality that is not covered by the base Direct-
Show classes.

First, we generate the GUID for the ICDFilter interface by using
the Tools->CreateGUIDmenu option. Then, we go ahead and write
the interface declaration as in Listing 4.4.0.1.

L IST ING 4.4 .0 .1 The declaration of the ICDFilter custom interface.

1: DECLARE_INTERFACE_(ICDFilterInterface, IUnknown)
2: {
3: STDMETHOD(IDisplayCDStatus) (THIS_
4: HWND *Whdlg
5:) PURE;
6:
7: STDMETHOD(IManageCD) (THIS_
8: BOOL flgValue
9:) PURE;
10:
11: STDMETHOD(IGetReferenceFrame) () PURE;
12:
13: STDMETHOD(IManageAudioAlarm) () PURE;
14: };

The IDisplayCDStatus method displays the status of the CD
algorithm. The interface description is given in Table 4.1. The de-
scription is quite general and leaves significant latitude to the COM
object that will be implementing the interface method. The man-
date is for the method to display if the CD algorithm has detected
a foreign object in the scene or not. The display can take a number
of forms (textual, graphical, and audible) but the interface contract

4.4 Access Additional Interfaces � 75

TABLE 4 .1 Interface contract for the IDisplayCDStatus member
function.

ICDFilter::IDisplayCDStatus

Parameters
Whdlg Handle on the property dialog window.

Return Value

Remarks
This method displays the status of the CD filter at every point in time.
The status could indicate either an alert or a safe situation.
The alert corresponds to the detection of a foreign object in the original scene.
The display of the status may include a textual, graphical, and audible sign.

does not specify if some or all should be used. It also does not specify
on which window the display should take place.

Listing 4.4.0.2 shows the implementation of the IDisplayCD-
Status pure virtual method in the CCDFilter class. In this par-
ticular implementation we have opted to convey the status of the
CD algorithm by employing all three modes: textual, graphical, and
audible. The method determines the status of the detection algo-
rithm by checking the Boolean variable m–bIntruderDetected.
This variable is set in the Transform method. When it is TRUE, the
algorithm has detected a foreign object in the scene and the state-
ments 15–26 of Listing 4.4.0.2 are executed. In line 16 we print the
textual message “Intruder Detected” in the designated window. In
line 22 we draw a red circular region that indicates potential dan-
ger. We complement the previous two alerts with an audible alert
in line 26. This is an annoying ringing sound that is stored in the
Warning.wav file. For this reason we have another Boolean variable,
the m–bAlarmsOnFlg that controls if the sound file will be played or
not (line 25). In case no foreign object is detected the Boolean vari-
able m–bIntruderDetected is FALSE, and the statements 30–37 of
Listing 4.4.0.2 are executed. This time we print the textual message
All Clear in line 31. We also draw a green circular region in line
37 to indicate a safe scene.

76 � C H A P T E R 4 A Custom Filter for Video Processing

L IST ING 4.4 .0 .2 The definition of the IDisplayCDStatus function of the ICDFilter
interface.

1: // Display the status of the CD filter.
2: STDMETHODIMP CCDFilter::IDisplayCDStatus(HWND* hdlg)
3: {
4: CAutoLock cAutolock(&m_ICDFilterInterfaceLock);
5:
6: // set filter pointers
7: if(m_bFirstWarningCall)
8: {
9: m_Whdlg = hdlg;
10: m_bFirstWarningCall = FALSE;
11: }
12:
13: if(m_bIntruderDetected)
14: {
15: // display a text message
16: Edit_SetText(GetDlgItem(*hdlg, ID_CD_STATUS_EDIT),

"Intruder Detected");
17:
18: // set the status light to red
19: HDC hdc = GetDC(*hdlg);
20: HBRUSH brush = CreateSolidBrush(0X000000FF);
21: SelectObject(hdc, brush);
22: Ellipse(hdc,212,100,232,120);
23:
24: // play an audible alert
25: if(m_bAlarmsOnFlg == TRUE)
26: PlaySound("..\\Warning.wav", NULL, SND_FILENAME);
27: }
28: else
29: {
30: // display a text message of the status
31: Edit_SetText(GetDlgItem(*hdlg, ID_CD_STATUS_EDIT),

"All Clear");
32:
33: // set the status light to green
34: HDC hdc = GetDC(*hdlg);
35: HBRUSH brush = CreateSolidBrush(0X0000FF00);
36: SelectObject(hdc, brush);
37: Ellipse(hdc,212,100,232,120);

4.4 Access Additional Interfaces � 77

38: }
39:
40: return NOERROR;
41: }

L IST ING 4.4 .0 .3 The definition of the IManageCD function of the
ICDFilter interface.

1: // Manage the operation of the CD algorithm.
2: STDMETHODIMP CCDFilter::IManageCD(BOOL flgValue)
3: {
4: CAutoLock cAutolock(&m_ICDFilterInterfaceLock);
5:
6: m_bRunCDFlg = flgValue;
7:
8: return NOERROR;
9: }

The IManageCD method manages the operation of the CD al-
gorithm. In other words, the filter may be active (CD algorithm
running) or inactive (CD algorithm stopped). The interface con-
tract does not specify the management scheme (see Table 4.2). In
the implementation of the CCDFilter class, the method sets the

TABLE 4 .2 Interface contract for the IManageCD
member function.

ICDFilter::IManageCD

Parameters
flgValue Boolean flag indicating the CD availability.

Return Value

Remarks
This method manages the operation of the CD algorithm.

78 � C H A P T E R 4 A Custom Filter for Video Processing

L IST ING 4.4 .0 .4 The definition of the IGetReferenceFrame func-
tion of the ICDFilter interface.

1: // Manage the acquisition of the reference frame.
2: STDMETHODIMP CCDFilter::IGetReferenceFrame(void)
3: {
4: CAutoLock cAutolock(&m_ICDFilterInterfaceLock);
5:
6: m_bReferenceFlg = TRUE;
7:
8: return NOERROR;
9: }

Boolean member variable m–bRunCDFlg to the value of the incoming
flgValue. If the member variable is set to TRUE, then the condition
in line 38 of Listing 4.3.2.1 holds and the statements associated with
the CD algorithm are executed (lines 40–42). If the member variable
is set to FALSE, then the condition in line 38 of Listing 4.3.2.1 does
not hold and we have only a trivial execution of the Transform
function (without the CD part).

The IGetReferenceFrame method manages the acquisition of
the reference frame. The interface contract does not specify the
management scheme (see Table 4.3). In the implementation of the
CCDFilter class, the method sets to TRUE the member Boolean vari-
able m–bReferenceFlg. This flag is checked within the Transform
function (lines 21–35, Listing 4.3.2.1) and controls the storage of the
current frame bytes into the m–pReferenceImage variable.

TABLE 4 .3 Interface contract for the
IGetReferenceFrame member function.

ICDFilter::IGetReferenceFrame

Parameters

Return Value

Remarks
This method manages the acquisition of the reference frame.

4.4 Access Additional Interfaces � 79

TABLE 4 .4 Interface contract for the IManageAudioAlarm
member function.

ICDFilter::IManageAudioAlarm

Parameters
flgValue Boolean flag indicating the audio alarm availability.

Return Value

Remarks
This method manages the operation of the audio alarm.

The IManageAudioAlarm method manages the operation of the
audio alarm. There are varying degrees to which people are annoyed
by audible alarms. Therefore, the interface provides control of the
on/off function of the audio alarm to fit individual taste. In the case
no audible alarm mode is used in the filter, there is no reason to im-
plement this pure virtual function. But, we have chosen to employ
an audible alarm mode when we implemented the interface func-
tion IDisplayCDStatus. Consequently, we follow up with an im-
plementation of the IManageAudioAlarmmethod to give the choice
of either turning on or shutting off the audio alarm operation at will.
Again, the interface contract (see Table 4.4) for the function does not
specify the management mechanism. But, as we did in the implemen-
tation of the IManageCD function, we choose to control the audio
alarm through the setting and unsetting of a member Boolean vari-
able. In the implementation of the IManageAudioAlarm function
we treat the m–bAudioAlarmFlg as a toggle. If it is TRUE, we switch
it to FALSE (lines 6–7, Listing 4.4.0.5) and vice versa.

L IST ING 4.4 .0 .5 The definition of the IManageAudioAlarm func-
tion of the ICDFilter interface.

1: // Manage the operation of the audio alarm.
2: STDMETHODIMP CCDFilter::IManageAudioAlarm(void)
3: {
4: CAutoLock cAutolock(&m_ICDFilterInterfaceLock);
5:

80 � C H A P T E R 4 A Custom Filter for Video Processing

6: if(m_bAudioAlarmFlg == TRUE)
7: m_bAudioAlarmFlg = FALSE;
8: else
9: m_bAudioAlarmFlg = TRUE;
10:
11: return NOERROR;
12: }

4.5 Create the Property Page
So far in this chapter we have described the CCDFilter class, which is
the class corresponding to the CD filter we are building. We have also
described the ICDFilter interface, which is the custom interface
implemented by the CDFilter COM object. What we are missing is
a way for the filter to communicate with the user. This is exactly what
a property page can provide. The property page of a filter is a dialog
window that allows access to the custom properties of the filter. In
our case, the property page contains GUI objects (e.g., buttons) that
serve as invocation devices for the filter’s custom interface methods.
We take the property page functionality a step further and use part
of the dialog window to display the status of the CD algorithm.

We declare the property page class CDPropertyPage for the CD
filter as in Figure 4.14. We derive this class from the CBaseProperty-
Page class. We access the declaration of the class constructor and
modify it as follows:

CCDPropertyPage(LPUNKNOWN lpUnk, HRESULT *phr);

Then, we access and modify the definition of the class constructor as
it appears in Listing 4.5.0.1.

L IST ING 4.5 .0 .1 The CCDPropertyPage class constructor.

1: // Property page constructor.
2: CCDPropertyPage::CCDPropertyPage(LPUNKNOWN lpUnk, HRESULT *phr) :
3: CBasePropertyPage(NAME("CD Filter Property Page"),

lpUnk,IDD_CDPROPERTYPAGE,IDS_TITLE)
4: {
5: }

4.5 Create the Property Page � 81

F IGURE 4 .14 Creation of the CCDPropertyPage class.

The IDD–CDPROPERTYPAGE is the ID of the dialog window we add
to our project to serve as its property page. The dialog window can
be added by right clicking the CDServer project icon in the Class
view pane and selecting Add->Add Resource.... The IDS–TITLE
is the ID of the string table resource we add to our project. We add
this resource by following a course of action similar to the case of
dialog window.

The property page, like the CDFilter itself, are COM objects.
Therefore, we must declare its GUID. In the CDFilterGUIDs.h file we
add a declaration similar to the one below by using the Tools->
CreateGUID utility.

// A744CF3A-C3BC-46fe-8BC9-3735F1B67A6F
DEFINE–GUID(CLSID–CDPropertyPage,
0xa744cf3a, 0xc3bc, 0x46fe, 0x8b, 0xc9, 0x37, 0x35,
0xf1, 0xb6, 0x7a, 0x6f);

82 � C H A P T E R 4 A Custom Filter for Video Processing

Since our filter’s property page is a COM object we cannot cre-
ate it directly. Therefore, we should use a class factory to instanti-
ate our property page much the same way we did for the CD filter
in Section 4.2. We create a CreateInstance member function in
class CDPropertyPage. We have already created the means of in-
forming the class factory as to how to access this function through
the g–Templates global array (see Listing 4.2.2.2). The code for the
CCDPropertyPage::CreateInstance member function is shown
in Listing 4.5.0.2. It is very similar to the code of the CCDFilter::
CreateInstance in Listing 4.2.2.1.

L IST ING 4.5 .0 .2 The filter’s CreateInstance function.

1: CUnknown * WINAPI CCDPropertyPage::CreateInstance(LPUNKNOWN lpUnk,
HRESULT * phr)

2: {
3: CUnknown *pNewObject =
4: new CCDPropertyPage(lpUnk, phr);
5: if (pNewObject == NULL)
6: {
7: *phr = E_OUTOFMEMORY;
8: }
9: return pNewObject;
10: }

The CreateInstance member function calls the constructor of
the CCDPropertyPage class. In turn, the CreateInstance is called
by the class factory. The second template of the g–Templates global
array in lines 9–11 of Listing 4.2.2.2 links the class factory to the
property page of our filter.

One of the first things that we need to create on the property
page is a way for the user to select a reference frame. As we have
already explained in Section 4.3.2, the reference frame depicts a
static scene without human presence (safe environment). Every sub-
sequent frame is subtracted from the incoming frame, and if a sub-
stantial change is ascertained, an alarm is issued. Listing 4.5.0.3 cites
the code for the CreateReferenceButton member function that

4.5 Create the Property Page � 83

L IST ING 4.5 .0 .3 The CreateReferenceButton member function.

1: // Create the button for selecting a new reference frame.
2: HWND CCDPropertyPage::CreateReferenceButton(HWND hwndParent)
3: {
4: HWND ReferenceButton;
5:
6: // styles for the button
7: ULONG Styles = WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON;
8:
9: // create the button
10: ReferenceButton = CreateWindow("BUTTON",
11: "Select Reference Frame",
12: Styles,
13: 10, 10,
14: 200, 20,
15: hwndParent,
16: (HMENU)ID_REFERENCE_BUTTON,
17: g_hInst,
18: NULL);
19:
20: // return the button that we have created
21: return ReferenceButton;
22: }

relates to the reference button in the property page. The button is a
window itself. Therefore, we create it with the CreateWindow func-
tion in line 10. The CreateWindow function specifies the window
class (line 10), window label (line 11), window style (line 12), and
the initial position and size of the window (lines 13–14). The func-
tion also specifies the window’s parent or owner (line 15). Another
important parameter that is specified is the child window identifier
in line 16. In our case, this is represented by the symbolic constant
ID–REFERENCE–BUTTON. The reference button, along with all the
other GUI items that we are adding, are child windows to the property
page window, which acts as the parent. Each child window identifier
should be unique in the context of its family. We define the symbolic
constants that represent the child windows of the property page at

84 � C H A P T E R 4 A Custom Filter for Video Processing

the CPropertyPage.h header file. A sample definition is as follows:

#define ID–REFERENCE–BUTTON 10000
#define ID–ALARM–BUTTON 10001
#define ID–CD–STATUS–EDIT 10002
#define ID–CD–ON–OFF–BUTTON 10003

As we will see, the child window identifiers are useful in pinpointing
the GUI devices that were chosen by the user. The label we choose for
the reference button (line 11, Listing 4.5.0.3) is Select Reference
Frame.

A very important GUI item that we need to create on the property
page is a button to activate/deactivate the CD algorithm. By default,
the CD algorithm is off and the filter simply passes along the video
stream. Once we turn the CD algorithm on, if a reference frame has
been selected, the algorithm performs the change detection opera-
tion and alters the original incoming frames. The code for creating
the activation button for the CD algorithm is shown in Listing 4.5.0.4
and is very similar to the code in Listing 4.5.0.3. We label this button
Turn CD On in line 11. We also assign as its identifier the symbolic
constant ID–CD–ON–OFF–BUTTON in line 16.

L IST ING 4.5 .0 .4 The CreateCDOnOffButton member function.

1: // Create the CD On/Off button.
2: HWND CCDPropertyPage::CreateCDOnOffButton(HWND hwndParent)
3: {
4: HWND CDButton;
5:
6: // styles for the button
7: ULONG Styles = WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON;
8:
9: // create the button
10: CDButton = CreateWindow("BUTTON",
11: "Turn CD On",
12: Styles,
13: 10, 40,
14: 200, 20,
15: hwndParent,
16: (HMENU)ID_CD_ON_OFF_BUTTON,

4.5 Create the Property Page � 85

17: g_hInst,
18: NULL);
19:
20: // return the button that we have created
21: return CDButton;
22: }

We create one more push button that allows us to control the
operation of an audio alarm. When the CD algorithm is on and there
is human presence, the audio alarm will sound. The audio is off by
default. However, we may elect to turn it on by pressing the audio
alarm button. The code for creating the audio alarm button is similar
to the code of the reference and CD buttons and is given in Listing
4.5.0.5. In line 11 we assign to the button the label Turn Alarms
On. In line 16 we assign as the identifier for the button the symbolic
constant ID–ALARM–BUTTON.

L IST ING 4.5 .0 .5 The CreateAudioAlarmButton member function.

1: // Create the button for turning on/off the audio alarm.
2: HWND CCDPropertyPage::CreateAudioAlarmButton(HWND hwndParent)
3: {
4: HWND AudioAlarmButton;
5:
6: // styles for the button
7: ULONG Styles = WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON;
8:
9: // create the button
10: AudioAlarmButton = CreateWindow("BUTTON",
11: "Turn Alarms On",
12: Styles,
13: 10, 70,
14: 200, 20,
15: hwndParent,
16: (HMENU)ID_ALARM_BUTTON,
17: g_hInst,
18: NULL);
19:
20: // return the button that we have created
21: return AudioAlarmButton;
22: }

86 � C H A P T E R 4 A Custom Filter for Video Processing

L IST ING 4.5 .0 .6 The CreateCDStatusEdit member function.

1: // Create the CD status edit box.
2: HWND CCDPropertyPage::CreateCDStatusEdit(HWND hwndParent)
3: {
4: HWND StatusEdit;
5:
6: // styles for the edit box
7: ULONG Styles = WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON;
8:
9: // create the edit box
10: StatusEdit = CreateWindow("EDIT",
11: "",
12: Styles,
13: 10, 130,
14: 200, 20,
15: hwndParent,
16: (HMENU)ID_CD_STATUS_EDIT,
17: g_hInst,
18: NULL);
19:
20: // return the edit box that we have created
21: return StatusEdit;
22: }

We also need to create an edit box to communicate the status
of change detection as it is reported by the CD algorithm (List-
ing 4.5.0.6). We set the class atom parameter of the CreateWindow
function to EDIT instead of BUTTON (line 10 of Listing 4.5.0.6). This
is the most noticeable change from the code pattern that we used for
the reference, CD, and alarm buttons. The symbolic constant that
identifies the edit box is ID–CD–STATUS–EDIT (line 16). We use the
empty string to label the edit box in line 11. This is consistent with
the fact that the CD algorithm is off by default, and, therefore, there
is no state to report initially. If we select a reference frame and turn
the CD algorithm on by pressing the corresponding buttons, then
we flash on the edit box either Intruder Detected or All Clear,
depending on the scene status. We will explain the mechanism by
which these messages are flashed on the edit box later in this section.

4.5 Create the Property Page � 87

L IST ING 4.5 .0 .7 The CreateLabel member function.

1: // Create label for the CD edit box.
2: HWND CCDPropertyPage::CreateLabel(HWND hwndParent)
3: {
4: HWND Label;
5:
6: // styles for the label
7: ULONG Styles = WS_CHILD | WS_VISIBLE;
8:
9: // create the label
10: Label = CreateWindow("STATIC",
11: "Change Detection Status:",
12: Styles,
13: 10, 100,
14: 200, 20,
15: hwndParent,
16: NULL,
17: g_hInst,
18: NULL);
19:
20: // return the button that we have created
21: return Label;
22: }

To improve user friendliness, we create an accompanying label for
the edit box to highlight its role (Listing 4.5.0.7). The class atom pa-
rameter we use for the CreateWindow function this time is STATIC
to indicate that this is a static text box and not an edit box. The
static text message we choose to assign to the box is Change Detec-
tion Status: (line 11, Listing 4.5.0.7). We place the static text box
strategically above the edit box to serve as its label (lines 13–14 in
Listing 4.5.0.7 versus lines 13–14 in Listing 4.5.0.6). It is worth not-
ing that the symbolic constant identifier in line 16 of Listing 4.5.0.7
is this time NULL. Since this is a static text box we cannot alter it in
any way, and after creating it we do not expect to call upon it.

Regarding the property page, the sequence of events starts when
it is connected to the filter. Upon connection, the member function
OnConnect is called. Actually, OnConnect is a pure virtual function

88 � C H A P T E R 4 A Custom Filter for Video Processing

L IST ING 4.5 .0 .8 The OnConnect member function.

1: // It is called when the property page is connected to the filter.
2: HRESULT CCDPropertyPage::OnConnect(IUnknown * pUnknown)
3: {
4: ASSERT(m_pICDFilter == NULL);
5:
6: HRESULT hr = pUnknown->QueryInterface(IID_ICDFilter,

(void **) &m_pICDFilter);
7: if (FAILED(hr))
8: {
9: return E_NOINTERFACE;
10: }
11:
12: ASSERT(m_pICDFilter);
13:
14: // get the initial properties
15: m_pICDFilter->IDisplayCDStatus(&m_Dlg);
16:
17: return NOERROR;
18: }

that is a member of the CBasePropertyPage class. We override this
function as shown in Listing 4.5.0.8. The first action we take is to re-
quest a pointer to the interface of the filter with which the property
page is associated. In our case, this is the ICDFilter interface, and
we are obtaining its pointer through the QueryInterface method
in line 6 of Listing 4.5.0.8. The interface pointer opens our way to
accessing the IDisplayCDStatus method (line 15, Listing 4.5.0.8).
We pass as an input parameter to the IDisplayCDStatus method
a pointer to the member variable m–Dlg, which is the handle to
the property page window (line 15, Listing 4.5.0.8). Please note that
m–Dlg is an inherited member variable from the base class CBase-
PropertyPage. This initial call of the IDisplayCDStatus interface
function initializes certain objects associated with the property page
window (e.g., alarm audio and icon) but activates nothing. Activa-
tion is made possible only after we open the property page and the
member function OnActivate is called.

4.5 Create the Property Page � 89

Initially, the property page is connected to the filter, but is still
inactive. This is the case when the graph to which the filter belongs
is operational, but we have not opened the filter’s property page yet.
The moment we open up the property page window, the member
function OnActivate is called. This is another pure virtual function
associated with the CBasePropertyPage class, which we override
as shown in Listing 4.5.0.9. Our main coding action here is to set the
member variable m–bIsInitialized to TRUE, thus signaling that
the property page has been activated.

L IST ING 4.5 .0 .9 The OnActivate member function.

1: // It is called when the property page is activated.
2: HRESULT CCDPropertyPage::OnActivate(void)
3: {
4: m_bIsInitialized = TRUE;
5:
6: return NOERROR;
7: }

Once the property page is connected to the filter and activated,
it starts receiving messages that are intercepted by the OnReceive-
Message member function. At the very moment of creation of the
property page, the system emits the message WM–INITDIALOG. This
matches the first case in the code of the OnReceiveMessage func-
tion (Listing 4.5.0.10). The respective action is the creation of all the
buttons, edit boxes, and labels invoked by the functions we have
described in Listings 4.5.0.3–4.5.0.7.

L IST ING 4.5 .0 .10 The first part of the OnReceiveMessage member function.

1: // It is called when a message is sent to the property page dialog box.
2: BOOL CCDPropertyPage::OnReceiveMessage(HWND hwnd, UINT uMsg,

WPARAM wParam, LPARAM lParam)
3: {
4: switch (uMsg)

90 � C H A P T E R 4 A Custom Filter for Video Processing

5: {
6: // creation of the property page
7: case WM_INITDIALOG:
8: {
9: // create the label
10: CreateLabel(hwnd);
11:
12: // create a button for selecting the reference frame
13: m_ReferenceButton = CreateReferenceButton(hwnd);
14: ASSERT(m_ReferenceButton);
15:
16: // create a button for turning the CD algorithm on/off
17: m_CDOnOffButton = CreateCDOnOffButton(hwnd);
18: ASSERT(m_CDOnOffButton);
19:
20: // create a button for turning the audio alarm on/off
21: m_AudioAlarmButton = CreateAudioAlarmButton(hwnd);
22: ASSERT(m_AudioAlarmButton);
23:
24: // create an edit box for displaying the CD status
25: m_CDStatusEdit = CreateCDStatusEdit(hwnd);
26: ASSERT(m_CDStatusEdit);
27:
28: return (LRESULT) 1;
29: }
30: ...

After initialization, every time we select a command item from
the property page window, a WM–COMMAND item is emitted that is in-
tercepted by the OnReceiveMessage function. As we have described
earlier in this section, there are three buttons on the property page
window that we can press to communicate our wishes to the CD filter.
These are the reference, the CD, and the audio alarm buttons. We will
describe here the code that handls the CD button (Listing 4.5.0.11).
Similar logic applies to the other two. When a WM–COMMAND is issued,
the wParam input parameter of the OnReceiveMessage holds the
identifier for the GUI control (button) that was depressed. If this iden-
tifier happens to belong to the CD button (line 8, Listing 4.5.0.11),
then we examine if the CD algorithm is active or inactive (line 11,
Listing 4.5.0.11) and take appropriate action. If we find that the CD

4.5 Create the Property Page � 91

L IST ING 4.5 .0 .11 The continuation of the OnReceiveMessage member function.

1: ...
2: // messages sent from the property page dialog items
3: case WM_COMMAND:
4: {
5: ...
6:
7: // if the CD on/off button is pressed
8: if(LOWORD(wParam) == ID_CD_ON_OFF_BUTTON)
9: {
10: // if the CD is currently on
11: if(m_bPPRunCDFlg == TRUE)
12: {
13: // turn it off
14: SetWindowText(m_CDOnOffButton,"Turn CD On");
15: m_bPPRunCDFlg = FALSE;
16:
17: }
18: // else if the CD is currently off
19: else
20: {
21: // turn it on
22: SetWindowText(m_CDOnOffButton,"Turn CD Off");
23: m_bPPRunCDFlg = TRUE;
24: }
25:
26: // set the flag for the CD status in the filter
27: m_pICDFilter->IManageCD(m_bPPRunCDFlg);
28: }
29:
30: ...
31: }

algorithm is currently on, then we implement a toggle action by
turning it off (line 15, Listing 4.5.0.11) and posting on the button
the message Turn CD On. The latter message invites the user to again
click on the CD button if he/she wants to turn the CD algorithm back
on. We take a symmetrically reverse action if the CD algorithm is off.
Finally, we communicate the newly set status of the CD algorithm to

92 � C H A P T E R 4 A Custom Filter for Video Processing

the filter’s interface in line 27 to take effect during the next frame-
processing cycle. This is a representative example of the mechanism
we use to have the commands issued by the user at the GUI level
affect the filter processing. The secret is making the connection of
these commands with the respective interface functions.

4.6 Create Registry Information
Our filter, like any other filter, needs to communicate with the fil-
ter graph manager. This communication is realized through the
filter’s registry entries. The registry entries encompass three data
structures:

1. AMOVIESETUP–MEDIATYPE

2. AMOVIESETUP–PIN

3. AMOVIESETUP–FILTER

We insert all the definitions of the AMOVIESETUP structures in
the beginning of the ChangeDetFilter.cpp file. The AMOVIESETUP–
MEDIATYPE structure (see Listing 4.6.0.1) holds registry informa-
tion about the media types our filter supports. The major type is
a GUID value that describes the overall class of media data for a
data stream. Since the CD filter processes video data, we set the
major type to MEDIATYPE–Video. Some other possible major types
include MEDIATYPE–Audio for filters that process audio informa-
tion and MEDIATYPE–Text for filters that process text information.
The minor type is also a GUID value that describes the media sub-
type. In our case, we choose MEDIASUBTYPE–RGB24, which applies to

L IST ING 4.6 .0 .1 The AMOVIESETUP–MEDIATYPE structure of the
CD filter.

1: // Describe the pin media type.
2: const AMOVIESETUP_MEDIATYPE sudPinTypes =
3: {
4: &MEDIATYPE_Video, // major type
5: &MEDIASUBTYPE_RGB24 // minor type
6: };

4.6 Create Registry Information � 93

uncompressed RGB samples encoded at 24 bits per pixel. This is the
typical bitmap frame format provided by most live video sources.
Other popular video subtypes include MEDIASUBTYPE–MJPG for mo-
tion JPEG compressed video and MEDIASUBTYPE–dvsd for standard
DV video format.

The AMOVIESETUP–PIN structure holds registry information
about the input and output pins our filter supports. In lines 4–12
of Listing 4.6.0.2 we define the input pin data. In lines 14–23 we de-
fine the output pin data. Part of our description includes pointers to
the filter’s media types that we defined earlier. Therefore, we build a
progressive set of structures from the most detailed (media types) to
the most abstract level (filter).

L IST ING 4.6 .0 .2 The AMOVIESETUP–PIN structure of the CD filter.

1: // Desrcibe the pins.
2: const AMOVIESETUP_PIN sudPins[] =
3: {
4: { L"Input", // pin's string name
5: FALSE, // is this pin rendered?
6: FALSE, // is it an output?
7: FALSE, // can the filter create zero instances?
8: FALSE, // can the filter create mutliple instances?
9: &CLSID_NULL, // obsolete
10: NULL, // obsolete
11: 1, // number of pin media types
12: &sudPinTypes // pointer to pin media types
13: },
14: { L"Output", // pin's string name
15: FALSE, // is this pin rendered?
16: TRUE, // is it an output?
17: FALSE, // can the filter create zero instances?
18: FALSE, // can the filter create mutliple instances?
19: &CLSID_NULL, // obsolete
20: NULL, // obsolete
21: 1, // number of pin media types
22: &sudPinTypes // pointer to pin media types
23: }
24: };

94 � C H A P T E R 4 A Custom Filter for Video Processing

The AMOVIESETUP–FILTER structure holds registry information
about the filter object. In line 3 of Listing 4.6.0.3 we provide the class
ID of the CD filter. In line 4 we provide the filter’s name. In line 5 we
provide the filter’s merit. The merit controls the order in which the fil-
ter graph manager tries filters when it is building automatically a filter
graph. For the CD filter we use the value MERIT–DO–NOT–USE. Filters
registered with this value will never be tried by the filter graph man-
ager when in automatic graph-building mode. This means that to
register the CD filter we must add it explicitly by using the IFilter-
Graph::AddFilter method. The MERIT–DO–NOT–USE value is typ-
ical for custom-made transform filters such as CD, where absolute
user control is the safest mode of operation. In contrast, standard
rendering filters use the merit value MERIT–PREFERRED. Such filters
are always tried first by the filter graph manager in a proactive effort
to establish suitable connections with other filters in the graph. In
line 6 of Listing 4.6.0.3 we provide the number of pins. Finally, in
line 7 we provide a pointer to the filter’s pins, thus linking the infor-
mation from the filter level all the way to the media type level.

L IST ING 4.6 .0 .3 The AMOVIESETUP–FILTER structure of the CD filter.

// Describe the filter.
1: const AMOVIESETUP_FILTER sudChangeDetFilter =
2: {
3: &CLSID_ChangeFilter, // filter CLSID
4: L"Change Detection Filter", // filter name
5: MERIT_DO_NOT_USE, // filter merit
6: 2, // number of pin media types
7: sudPins // pointer to pin information
8: };

4.7 Summary
In this chapter we have developed our first DirectShow filter from
scratch. The filter performs a simple differencing and thresholding
operation on each incoming frame. If the residual blobs in the result-
ing binary image are of significant size an alarm is issued. The filter
can serve as a basic component of a video-based security application

4.7 Summary � 95

and exemplifies the power of DirectShow programming for devel-
oping professional grade Computer Vision software. Specifically, in
creating the filter we have mastered how to define and instantiate our
filter’s class, override the appropriate base class member functions,
access additional interfaces, create the property page, and create reg-
istry information. The same general methodology can be applied for
the creation of any filter. The only part that changes significantly
from case to case is the code of the processing algorithm. In this
chapter, along with the general methodology, we have also described
the specific processing algorithm (Change Detection algorithm). In
subsequent chapters that describe new filters, we will concentrate
only on the algorithmic code, since the general methodology remains
the same.

