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Abstract

The potential of visual servoing systems using eye-in-hand cameras has been
demonstrated by many research efforts. However, previous efforts have gen-
erally used one of only two approaches to the extraction of a error signal from
the visual input: blob analysis or pixel-level feature tracking. In this chapter,
we describe a third approach which combines some of the advantages of both
previous methods. We use deformable active models to track image contours
related to the object of interest. These contour models provide global in-
formation about the position of the object. In addition, by combining such
models with a priori knowledge of the object shape, this approach may be
extended to provide the orientation of the object in three-dimensions.

We present a model-based approach for visual tracking and eye-in-hand
robotic visual-servoing. Our approach uses active deformable models to track
a rigid or a semi-rigid object in the manipulator’s workspace. These de-
formable models (also known as “snakes”) approximate the contour of the
object boundary, defined by a set of control points. During tracking, the
control points are updated at frame rates by minimizing an energy function
involving the relative position of model points, image data, and the charac-
teristics of figure pixels. When visual servoing is combined with the use of
active deformable models, movement of the manipulator can compensate for
translations and deformations of the object’s image. To verify the potential
of our approach, we run several experiments and present here our findings.



1 Introduction

Robotic systems which operate in uncalibrated and/or uncontrolled environ-
ments must be able to react flexibly to changes in their environment. In the
simplest case, such changes may be the result of the movement of a single
object in the manipulator’s workspace. Previous work [1, 10, 13] has demon-
strated that such changes can be handled effectively by incorporating infor-
mation from eye-in-hand visual sensors into the manipulator’s feedback loop.
However, these systems sometimes have difficulty tracking targets which are
semi-rigid or partially occluded. We propose to overcome these difficulties by
incorporating active deformable models (commonly referred to as “snakes”)
into the visual system. Active deformable models attempt to conform to
contours in the image as defined by the intensity gradient which correspond
to the boundaries of the object being tracked. As the object contours trans-
late or deform, the parameters of the active deformable model are adjusted.
Simultaneously, the parameters of the active deformable model can be used
as inputs to the manipulator controller.

The system presented in this chapter combines recent work from two dif-
ferent streams of research in the computer vision and robotics communities
to improve the performance of eye-in-hand manipulators tracking moving ob-
jects. We have incorporated active deformable models into the established
visual-servoing paradigm. By combining the two methods, we strengthen
both. The use of visual servoing to produce compensating movements of
the end-effector reduces the amount of deformation required from active de-
formable models to cope with object movements. At the same time, ac-
tive deformable models allow manipulators controlled by visual servoing to
deal with semi-rigid objects and motions (such as rotations) which challenge
feature-based approaches to tracking (see Chapters 2 and 3 in this section of
the book).

Recent work in visual servoing has demonstrated the benefit of “closing
the control loop” of a robotic manipulator guided by an “eye-in-hand” vi-
sual sensor. Generally, systems designed using this technique seek to hold an
aspect of the visual input invariant through appropriate movements of the
manipulator on which the camera is mounted. For example, Papanikolopou-
los et al. [20] identify one or more features in the image and seek to maintain
the features’ locations in the image plane by producing compensating trans-
lations and rotations of the “end-effector.” Visual servoing obviates the need
to maintain a detailed, metric workspace model. Rather than constructing



a model of effector and target positions and computing a trajectory which
matches that of the target, the system reacts directly to information provided
by the sensor during the last control iteration.

In this chapter, we use active deformable models to provide the control
signal to a visual servoing system. The organization of the chapter is as
follows: First, Section 2 highlights the importance of the problem. Then,
Section 3 describes the issues and motivations for using this approach. Sec-
tion 4 presents some previous work conducted in the area. Section 5 discusses
the approach we propose. In this section, we also present an algorithm for
the automatic selection of control points. In Section 6, we describe the hard-
ware used to implement our experimental system. In Section 7, we present
experimental results and in Section 8 these results are discussed. Finally, in
Section 10, we conclude and highlight the contributions made by this work.

2 Importance of the Visual Servoing Problem

Vision-based control and active vision can have a significant impact on space
applications, intelligent highways, manufacturing, and nuclear waste clean-
up efforts. Vision-based control can enhance the performance of industrial
robots in assembly lines, aid in better alignment of an object with the camera
in automatic inspection systems, improve the automatic assembly of elec-
tronic devices (surface mount technology), assist in the realization of vehicle
following (platooning), make possible autonomous satellite docking and re-
covery, and improve the efficiency of outdoor navigation techniques.

One area where robotic devices enhanced with sensing capabilities can
have a significant impact is the area of nuclear waste clean-up. In particu-
lar, autonomous or semi-autonomous robotic devices can participate in the
inspection of waste storage tanks, detect and remove buried waste, automate
the handling and analysis of contaminants, and help in decontamination and
decommissioning operations. Moreover, the manipulator is a useful tool since
it intervenes between the hazardous environment and the human operator.
Since the human operator does not have any direct view of the environment
where the task takes place, sensing devices must be used in order to provide
some information about the status of the robotic task and the environment.
Thus, in order to improve the efficiency of robotic devices in hazardous sites,
it is important to augment them with sensing devices. Among the sensing
devices, visual sensors play a critical role. The primary advantage of vision



sensors is their ability to provide information on relatively large regions of
the workspace. This same ability, however, presents problems that must be
overcome. Noise, time-consuming image processing, and large amounts of
visual information make their use challenging. Therefore, the modeling and
design of robotic devices that include visual sensing has become a difficult
and challenging task. These difficulties increase if we include many different
sensing modules in the same feedback loop.

It is important to mention that currently no framework covers all the
issues that are introduced by integrating the vision sensor or any sensor, in
the feedback loop of a robotic device. We think that there is a significant
waste due to the fact that there is a trend to build systems that only address
the use of specific sensing modules in the feedback loop. Small changes in the
hardware or the software of a specific sensing module require significant re-
design of the whole system, thereby increasing the cost and the development
time. We firmly believe that the described system addresses some of these
sensor-based control issues and provides a unified way of looking at problems
of this type.

3 Issues

Many visual servoing systems use feature-based approaches or image at-
tributes derived from image features such as optical flow. These systems
typically find correspondences between features present in two images ac-
quired at different instances in time from a camera mounted on the end-
effector. Such systems may have difficultly handling cases in which object
features become occluded or object motion or deformation alters the feature
beyond recognition. For example, systems which define a feature as a tem-
plate of pixels can fail when a feature rotates relative to the template used
to match it.

To overcome these difficulties, the system proposed in this chapter incor-
porates contour tracking techniques. When a contour corresponding to the
object boundary can be extracted from the image, it provides information
about the object location in the environment. If prior information about
the set of objects which may appear in the environment is available to the
system, the contour might be used to recognize the object or to determine its
distance from the camera. In other words, if a contour can be extracted from
the image, and this contour corresponds to an object boundary, the contour



provides information useful to a visual servoing system. If additional, prior
information about object shape and size can be combined with the contour
information, the system could be extended to respond to object rotations
and changes in depth.

For contour extraction, we have adopted the active deformable model
methodology. Active deformable model techniques attempt to identify im-
age contours by minimizing a contour energy function which includes terms
representing regularization constraints such as contour smoothness and con-
tinuity as well as terms dependent on image attributes such as local contrast.
A number of approaches have been proposed for formulating and finding a
minimum for these functions, since the introduction of active deformable
models to computer vision by Kass et al. [16]. The algorithm presented
by William and Shah [29] and elaborated by Yoshimi and Allen [28] is par-
ticularly well-suited for our application as it is both iterative and greedy.
Because it is iterative, partial solutions are available during the minimiza-
tion process; because it is greedy, the quality of these partial solutions tends
to increase. We take advantage of these properties by running the control
system and the contour extraction algorithm simultaneously. The controller
issues commands to the arm based on the most recent partial solution. If
the image were static, the system would tend to a steady-state in which the
object is centered in the image and the minimizing algorithm reaches a sta-
ble solution. However, since the object we are interested in is moving, the
movements of the arm tend to change the image in ways that increase the
energy of the current model configuration (since areas of high contrast in the
image have moved), which forces the minimization algorithm to find a new
configuration of minimum energy.

On the other hand, as long as object translations and deformations be-
tween frames are reasonably small, a minimum configuration of the active
deformable model in one frame will be close to a minimum configuration for
the model in the subsequent frame. The algorithm may find the minimum
in a few iterations. In the best case, the minimization algorithm will be fast
enough and the inter-frame displacements small enough that a minimum
configuration can be found for each frame. This theoretical ideal may be
impossible to achieve in practice—it would require a perfect model, signal
processing system and control law, but it illustrates the advantage of combin-
ing models and servoing. In short, tracking with active deformable models
makes servoing possible and, in turn, the act of servoing simplifies the task
of deforming the model to fit the contours of the image in the plane.
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Figure 1: An active deformable contour tracking a balloon.

The center of the model—defined as the average location of the control
points or as the two-dimensional center of mass—is used as the input to
the manipulator’s controller. Optimal estimation and control techniques (an
LQG regulator) are used to deal with noise in this signal. We have conducted
experiments which indicate the feasibility of this approach in dynamic, but
controlled environments, such as an automated factory floor.

When the speed of the minimization algorithm relative to the speed of the
contour displacements and deformations in the image plane is sufficient the
system presented in this chapter tracks reliably. We have begun experimental
work (see Section 7) in an effort to define and quantify the relevant factors,
(e.g. image displacement, image deformation, speed of the minimization
algorithm, gains for energy function, number of control points, etc.). When
the key factors have been identified, future work will focus on improving the
critical elements of the system.



4 Previous Work

This work draws on two streams of research in the computer vision and
robotics communities. We have combined techniques developed by the vi-
sual servoing community with contour extraction techniques developed in the
graphics and computer vision communities.

Several research efforts have focused on using vision information in the
dynamic feedback loop [7, 10, 13, 14, 19, 24, 27]. Weiss et al. [24] have pro-
posed a model reference adaptive control scheme for robotic visual servoing.
In this work, servoing is performed with the goal of reducing the error be-
tween the desired image attributes (center-of-mass, first or second moment
of the image) and the current image attributes. The verification of the pro-
posed algorithms has been limited to simulation. Allen [1] has proposed an
approach that uses image-differencing techniques in order to track and grab
a moving object. Dickmanns [11, 12] has presented methods (Kalman filters)
for the integration of vision information in the feedback loop of various me-
chanical systems such as satellites and automobiles. Koivo and Houshangi
[17] have proposed an adaptive scheme for visually servoing a manipulator
based on the information obtained by a static sensor. Feddema and Lee
[13] have proposed a MIMO adaptive controller for hand-eye visual track-
ing. Their work has been used as the basis for our approach. Several other
researchers [3, 18] have proposed strategies for vision-based exploration. Fi-
nally, Ghosh [14] has addressed several vision-based robotic issues with the
aid of a new “Realization Theory” for perspective systems.

The concept of active deformable models, also called “snakes,” was first
introduced to the field of computer vision by Kass et al. [16]. Snakes have
been used in a number of applications including image-based tracking of rigid
and non-rigid objects. Using snakes requires a minimization process of an
energy function. Several techniques have been used to solve this problem
including variational calculus [16], dynamic programming [2], and greedy
methods using heuristics [28, 29]. The latter method has the advantage of
being fast as well as numerically stable. Our method uses a greedy method
similar to that used by Williams and Shah [29] and Yoshimi and Allen [28].

Other researchers have also combined elements of visual servoing and
active deformable models techniques to approach different problems than
the one presented in this chapter. Blake, Curwen, and Zisserman [4] have
presented a different algorithm for contour estimation and used it in a system
which tracks a contour in an image (it does not include a robotic component).



Yoshimi and Allen [28] have used a greedy, iterative minimization algorithm
to track a robotic finger with a static camera and detect contact between
the finger and a stationary object. Finally, Colombo et al. [9] published
a description of a system which uses a spline contour model to plan and
execute a movement that positions an eye-in-hand robot so as to bring a
known object into a canonical orientation relative to the camera. They report
initial simulation results.

5 Proposed Approach

We describe a system that tracks a moving, deformable object in the workspace
of robotic arm with an eye-in-hand camera. For these experiments, we have

used a figure-ground approach to object detection and identification. The

figure-ground methodology allows pixels to be identified as object or back-

ground pixels, a distinction which is useful during the initial placement of
the active deformable model. However, this limits the applicability of our

system to environments in which the background is uniform.

Once the active deformable model has been placed, two simultaneous
processes commence. One process uses an iterative, greedy algorithm to
find a minimum energy configuration of the active deformable model. The
second process issues control commands to the manipulator based on the
current configuration of the active deformable model. Movements of the
manipulator alter the position of the camera and, consequently, the image
forces used by the minimization algorithm, closing the control loop.

5.1 Placing the Model

Movement in a scene can be detected by comparing two images acquired
by a camera: a ground image taken before the movement occurred and the
current image. This difference image is defined as (where x and y are image
coordinates):

Idiﬁ(xa y) - |Iground(x7 y) - [curr(xa y)| (1)
To enhance the boundary contours of the object’s image in the difference

image, we increase the contrast of the difference image with a simple thresh-
olding operation, where:

, (0 ifIgg(xy)<T
Idiﬁ‘(x’y) - { 255 otherwise (2)



for a threshold 7. In this work, when we use the term difference image to
refer to a specific image, we mean the binary image /3, that is obtained from
these operations.

When the system begins operation, a background image of the scene
is captured to be used as the ground image, Iy.ounqg, for the calculation of
image differences. The object to be tracked is introduced to the scene and
the tracking system is alerted by a signal from the operator. Either manually
or automatically, a bounding-box is placed around the region of differences
created by the object.

After a bounding box has been selected, an initial configuration for the
active deformable model is chosen by one of several algorithms. In the course
of this research effort, we experimented initially with three significantly dif-
ferent techniques.

The initial placement algorithm simply placed control points along the
bounding box by splitting each edge of the bounding box into a number of
model edges. In other words, the four corners of the bounding box became
control points in the initial configuration. If desired, one or more equidis-
tant points were also chosen on each edge. When sufficiently large values
were chosen for the balloon constraint (described in Section 5.3), this crude
placement method was fairly successful. The model quickly collapsed upon
the image contour. However, this method is ill-suited for experiments using
variations of active deformable models which incorporate task-specific con-
straints (as opposed to the generic “snake” constraints of equidistance and
equal angles). It does not provide useful default values for the constraints.
Indeed the initial configuration of the active deformable model has little re-
lation to the desired model configuration.

Current work has focussed on the use of a more specific, but still fairly
generic, determination of initial model configuration. First, a blob is chosen
as the primary object of interest. Then, the boundary of the connected blob is
extracted by an edge-following algorithm (similar to the Boundary-Following
Algorithm described in [15]). Then the boundary a predetermined number
of control points are placed along the boundary. A configuration determined
by this method is generally well-suited for tracking using generic constraints,
and is a reasonable configuration more specific constraints—at least for one
orientation of the model.

There are at least three serious disadvantages to this approach:

e The connected blob chosen for boundary following may not correspond



to the image contour that should be tracked. There may be blobs
in the difference image which are unrelated to the object of interest.
These blobs may be caused by noise or the presence of other objects.
Alternatively, the object of interest may create more than one blob
in the difference image because it does not create a uniform difference
with the background. Both of these types of errors should be alleviated
by the application of simple image processing techniques, such as blob
size thresholding combined with morphological operators.

e Points which are equally spaced on the perimeter are not necessar-
ily equidistant. For example, points on a serrated boundary will be
much closer in image coordinates than in perimeter coordinates. An
optimization algorithm could overcome this limitation in the general
case, but at high computational cost. There are probably heuristic ap-
proaches which would find good configurations in the majority of cases,
but we have not identified any.

e Points chosen by a perimeter walk may not be points of deformation
on the object contour or points of high curvature on the contour. Ide-
ally, the control points would be placed at points where deformation
will occur, or at an object corner, where changing relative viewpoint
changes the angle projected on the image plane. Since the perimeter
walking scheme does not consider object characteristics or the curva-
ture of the extracted boundary, it does not reflect these characteristics
of the contour.

In order to address the last two of these weaknesses, we have undertaken
preliminary investigation of an automatic placement technique discussed in
the next section.

All three of the methods considered are only suited for use in conditions
when the contour model must be determined from a single example provided
at run-time. For situations in which the contour model is known a priori it
would be straightforward to apply a Generalized Hough Transform to edge-
detected image to determine the position, orientation and any uncontrolled
parameters of the model.

Once the active deformable model has been placed by any of the methods
described here, its movements are controlled by the minimization of an energy
function as described in Section 5.3.



5.2 Automatic Selection of Control Points Using the
P & P Algorithm

We have developed an algorithm (P & P algorithm in [22]) which locates
points of high curvature (corners) using a method similar to that in [6]. It also
locates key in-between low curvature points (key flat points) by employing a
procedure conjugate to that for locating corners. We have tried the particular
algorithm for the selection of control points.

5.2.1 Selection of Corner Points

The determination of corners is done in a way very similar to the method
followed in Brault’s algorithm [6]. The notable difference is that there is
no need for parameter tuning. The basic mechanism is the same with that
of Brault’s algorithm [6]. Each point ¢ of the curve is seen as a potential
corner. The neighboring points from either side of point ¢ contribute to the
cornerness of ¢ in a degree determined by certain conditions.

center of pair ( cHi) o(c)

Figure 2: Geometric model for corner determination as proposed by Brault

[6]-

In more detail, the angles w(c+14) and w(c—1) (see Figure 2) are computed
for each pair of neighbors ¢+ (i = 1,2...). In order for a pair ¢+ to belong
to the corner domain of point ¢ the following inequalities must be satisfied:

(3)

w(c+1) <

o

and w(c—1i) <

o

The contribution C'F' (Cornerness Factor) of each pair ¢ &4 to the making
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of the candidate corner ¢ is computed by the formula
CF(c,i) = cos(w(c+ i) * cos(w(c —17)). (4)

Using 7 as a fixed upper limit in the inequalities, Formula (3) is a departure
from the method followed in Brault [6] and is what renders the corner deter-
mination parameterless. The first M(c) points that satisfy the inequalities
(3) constitute the corner domain of point ¢ and their total contribution to
the cornerness of point ¢ is computed by

M(c)
TCF(c) = Z CF(c,i). (5)

The corner segmentation points are identified by searching the values of
the function TC'F(c). The TCF values of the curve points present a very
consistent pattern: strings of nonzero values spaced by strings of zero values.
Each of the nonzero strings corresponds to a high curvature segment, and
the maximum value contained in each such string corresponds to a corner
segmentation point.

5.2.2 Selection of Key Low Curvature Points

While corners are the perceptually most important parts in a curve, corners
alone provide insufficient data for an accurate reconstruction of a curve. The
situation improves substantially if we provide some key points with rather
low curvature surroundings, that lie between corners, as extra segmentation
points. The way we find these key low curvature points is conjugate to the
way we find the corner points.

More precisely, a separate processing step is taking place for the location
of the key low curvature points. The geometric parameters shown in Figure
3 are the same with these in Figure 2 and are computed for each pair of
neighbors f+i (i = 1,2...) of every point f of the curve. This time, however,
the larger the angles w(f + ), and w(f — i) are than 7, the more the
corresponding pair of neighboring points contributes to the low curvatureness
of point f. As a result, by a suitable analysis of the angles w(f + i) and
w(f — i), one can determine whether or not the pair of points f +i is a
part of the low curvature domain of f and, in addition, can estimate the

importance of the contribution of these points to the low curvatureness of
point f.
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Figure 3: Geometric model for key low curvature point determination.

The angles w(f + i) and w(f — ) must satisfy the following inequalities:

w(f+i)>g or w(f—i)>g. (6)

The contribution F'F' (Low Curvatureness Factor) of each pair f £ i to
the making of the candidate key low curvature point ¢ is computed by the
formula

FFE(f,i) =| cos(w(f,2)) | | cos(w(f, 7)) | . (7)

In contrast to Eq. (5), Eq. (7) uses the absolute value of the trigonometric
function cos since the range of the angles w(f + i) and/or w(f — i) features
now 7 as a lower and not as an upper limit. The total contribution of the
first M(f) points belonging to the low curvature domain of f (the ones that

satisfy the inequalities (6)) is computed by

M(f)
TFF(f) = z_: FF(f,q). (8)

The identification of the key low curvature segmentation points from the

function TFF(f) is done in a way analogous to the determination of corner
points from the function TCF'(c).
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Figure 4: A square contour.

5.2.3 Evaluation of the Proposed Algorithm

In order to get an indication of the goodness of the algorithmic selection of
control points in terms of the accuracy of shape description, the following
experiment was devised. Let a contour C of an arbitrary shape consist of
N points (C = (P, Pa,...,Py)). Let the P & P algorithm select for the
contour C a set S of m control points (S = (P, Psa, ..., Pgy)). Let also a
set T of m control points (7 = (P, P, ..., Pun)) to be chosen in a way
so that an error norm is driven to minimum (optimal polygonal fit). The
norm chosen for the purposes of the particular experiment was the Euclidean
distance error of the polygonal fit represented by the point set. The set T
was determined after an exhaustive search of all the (Z ) combinations for
the contour C. It is interesting to compare the set of control points given by
the P & P algorithm with the optimal polygonal fit point set for a variety of
shapes (see Figures 4 through 7).

The small circles in the above figures represent the points of the optimal
polygonal fit set while the points given by the P & P algorithm are repre-
sented by small squares. In all the shapes, the prominent corners are included
in both the optimal polygonal fit set and the set of the P & P algorithm.
Discrepancies arise only for the key flat points of the algorithm. The equiv-
alent points of the optimal polygonal fit are mostly clustered in noisy areas
of the shape. In contrast, the key flat points of the algorithm are uniformly
distributed between the prominent corner points. This behavior is highly
desirable, since the algorithm has not been designed specifically for a polyg-
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Figure 5: A parallelogram contour.

onal fit but for a more generic fit that may be even a spline fit. In fact, some
model-based techniques use the control points for polygonal fits [26, 25, 28|
and some others for spline fits [4]. The algorithm loses very little in terms of
polygonal fit accuracy by placing the key flat points in a distributed instead
of a clustered manner. For example, in the irregular contour case of Figure
7, the error of the optimal fit is 0.8189 pixels while the error of the P & P fit
is 2.1701 pixels. The error of an arbitrary polygonal fit for this shape could
run as high as 42.8378 pixels. The small compromise the algorithm concedes
in the polygonal fit case pays off in the spline fit case where a clustered dis-
tribution like the one favored by the optimal polygonal fit would give very
poor results.

5.3 The Active Deformable Model

The formulation of active deformable models used in this work to approx-
imate the object boundary draws on the work done in recent years by the
computer vision community on active deformable models of contours, often
referred to as “snakes.” Given a continuous contour, described as a vector:

v(s) = (2(s),y(s)) (9)

where s is the arc length, Kass et. al. [16] related the task of finding a
contour in an image to the minimization of an energy function (adopting the
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Figure 6: A triangular contour.

notation used in [29]):

1
nake = /()Esnake(v(s))ds
1

= | [Bun(v(s)
Binage(v(s))  +
Eeon(v(s))]ds.

_|_

(10)

In this function, £}, .. is the total energy of the active deformable model,
E;,; is a measure of internal energy, such as that caused by curvature, and
Eimage 1s a function of image characteristics. The term E,,, is derived from
external constraints. When this continuous model is approximated in a dis-

crete domain (e.g., a digital image) the equation becomes:

n

:nake = Z [aEcont(Uj) + (11)
7= BEcurv(Uj) +
fYEimage (Uj)]

in which FE.,; is derived from the distance between v; and its neighbors,
V(j—1)modn &N V(j41)modn- Feurv 15 a function of the angle at point v;. Again,
Eimage Tepresents the image forces acting on the active deformable model.
The terms «a, 3, and v are weighting parameters which control the proportion

15



Figure 7: An irregular contour.

of the active deformable model’s energy derived from each of the three terms,
which are assumed to be normalized.

Kass et. al. [16] proposed that a minimum be found for this energy function
with a variational calculus approach. Amini et. al. [2] have proposed a
method based on dynamic programming. We have chosen to adopt the greedy
method developed by Williams and Shah [29]. In the greedy method, each
point on the contour is considered in turn. An energy score is calculated for
locations near the current location of the control point and the control point
is moved to the location which results in the lowest energy.

The Eiuryy Fimage, and Feopny terms are usually sufficient to define an ac-
tive deformable model approximation of an image contour when all terms
vary significantly across the neighborhood of possible control point locations.
However, using our current techniques, when the active deformable model is
placed, it may have several control points which are far enough from the
target’s image that the image gradient is unvaryingly zero throughout the
neighborhood of candidate locations. For these points, the term Ejp,qq. plays
no role at all and they only respond to the internal energy and external
constraints, rather than to a combination of image energy and constraints.

To facilitate the initial placement of the active deformable model, we have
augmented the energy equation with an FE,,,4; term inspired by the “bal-
loon factor” used by Yoshimi and Allen [28] to overcome a tendency toward
implosion in their active deformable models.

The FEp04e term is calculated as follows. First, a neighborhood of the
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Figure 8: A single snake point in its window.

control point in the difference image is examined. If the percentage of differ-
ence pixels set within the neighborhood falls short of a predetermined level,
the control point is defined as “outside” the object’s image. To bias move-
ment of the control point toward the object’s image, the locations closest
to the object’s image are assigned the value -1 for E,, 4. Other locations
are assigned the value 0. The locations closest to the object’s image can
be determined because the active deformable model control points are num-
bered counter-clockwise around the closed active deformable model. A simi-
lar energy assignment is performed for control points which are “inside” the
object’s image. Besides aiding initial placement of the contour, this model
energy also occasionally comes into play during later tracking stages when
an object moves very quickly or has been temporarily lost for some other
reason (e.g., occlusion).

5.4 The Control Signal Computation

Concurrently with the energy minimization process described above, a con-
trol signal is generated from the current configuration of the active de-
formable model by a process running on a separate processor. The purpose

17



of this process is to determine the necessary camera translation to recenter
the contour extracted by the active deformable model in the image plane.

It is necessary to choose a definition for the location of a contour. We have
considered two options: 1) the average location of the control points and 2)
the centroid of the closed polygon defined by the contour. We have chosen
to use the average location of the control points. This definition may be
unsatisfying if the control points become bunched together on one side of the
contour, but, in practice, this rarely occurs as the smoothness and continu-
ity constraints described above penalize such configurations. Therefore, the
slight improvement in these cases does not justify the additional processing
time.

There is much more information in the configuration of the active de-
formable model than location. Future systems should be able to take use
this information for 3-D tracking and to overcome partial occlusions.

6 The Minnesota Robotic Visual Tracker

The Minnesota Robotic Visual Tracker (MRVT) [5] that was used for these
experiments consists of the Robot/Control Subsystem (RCS) and the Visual
Processing System (VPS).

The RCS includes a PUMA 560 robotic arm, its Unimate computer/controller,
and a VME-based Single Board Computer (SBC). The manipulator’s trajec-
tory is controlled by the Unimate controller as directed by path updates
provided by an Ironics 68030 VME SBC running CHIMERA. A Sun Sparc-
Station 330 hosts CHIMERA and shares its VME bus with the SBC via
BIT-3 bus extenders. BIT-3 bus extenders also provide shared-memory com-
munication between the RCS and VPS.

The VPS receives input from a video source such as a camera mounted on
the end-effector of a robot arm, a static camera, or stored imagery played
back through a Silicon Graphics Indigo or a video tape recorder (see Figure
9). The output of the VPS may be displayed in a readable format or can be
transferred to another system component and used as an input into a control
subsystem. This flexibility offers a diversity of methods by which software
can be developed and tested on our system. The main component of the VPS
is a Datacube MaxTower system consisting of a Motorola MVME-147 single
board computer running OS-9, a Datacube MaxVideo20 video processor,
and a Datacube Max860 vector processor in a portable 7-slot VME chassis.
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Figure 9: MRVT system architecture.
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Figure 10: Experimental setup for balloon tracking.

The VPS performs the calculation of the difference image and the active
deformable model energy minimization and calculates any desired control
input. It can supply the data or the input via shared memory to an off-
board processor via a Bit-3 bus extender for use as input to the RCS. The
video processing and calculations required to produce the desired control
input are performed under a pipeline programming model using Datacube’s
Imageflow libraries.

7 Experiments

Initially, two types of experiments were run. In the first, a partially-inflated
balloon was moved by hand in the robot’s workspace. These runs were ana-
lyzed for timing information as well as qualitative information about system
performance. Quantitative measures of tracking quality are not available
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Figure 11: Experimental setup for quantitative trials.

from these runs, as the nature of the experiments denies access to “ground
truth.” To obtain quantitative data about system performance, a second set
of experiments were conducted. In these trials, a SGI Indigo workstation was
used to create a display of an object in motion along a circular path. While
the MRVT tracked the object on the display, the control commands issued
to the controller were collected. By comparing the control commands to the
actual path of the object, tracking performance can be quantified.

In the balloon-tracking experiments, a black balloon attached to a stick was
maneuvered in the manipulator’s workspace by an operator. The workspace
background was grey and fairly uniform, creating few distracting difference
pixels (i.e., non-object pixels which appear in the difference image). Em-
pirically discovering gains which overcame this noise and resulted in good
tracking performance was not difficult. The minimization algorithm per-
formed approximately 2000 point updates per second (e.g., over eight trials,
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totaling 13 minutes and 9 seconds, eight-point snakes performed 251 updates
per second). This update rate was seemed adequate for snakes with as many
as 16 control points.

Informal testing did reveal one difficulty with the current implementation.
The E,,04¢ term, which aids initial placement, interferes with tracking when
the active deformable model is not a simple polygon. Various techniques to
guarantee simplicity have been implemented and tested, but none has been
effective without unacceptable performance penalties.

In the second set of experiments, a target was generated on an SGI Indigo
and presented on a 27 inch monitor just outside the robot’s workspace (see
Figure 11). This target, a 7.3 cm square, repeatedly traveled in a circular
path with a diameter of 25.7 cm or along a square path with sides of 27 cm.
While traveling at about 8 cm/sec, deformation was introduced by rotating
the square 360 degrees on its z-axis during each circuit. The position com-
mands sent to the Unimate controller were collected. The first 1200 points
from two sample runs are plotted in Figure 12. The left-hand and right-hand
plots contain data from a four-point and eight-point model, respectively.

These plots demonstrate the trade-off between additional control points
and system performance. In the four-point trials, the minimization algo-
rithm performed 505 updates per second and the control loop sent 212 path
instructions per second to the arm. In the eight-point trials, the minimiza-
tion algorithm performed half as many updates per second (250) and only
146 control instructions were sent per second. Apparently, two iterations
are not enough for the minimization algorithm to converge. Although the
eight-point snake was able to track the target, the plots reveal many more
oscillations in the path and a lack of consistency. One goal of future work
should be to improve the performance of the minimization algorithm, so that
better tracking can be obtained with more complex models.

For comparison, Figure 14 plots the path of a manipulator following the
same target along a square path at similar speed, demonstrating how the
controller handles discontinuities in the target path, and acceleration and
deceleration of the manipulator.

We also tried the P & P algorithm for the automatic selection of control
points. Preliminary results of experiments incorporating the P & P algorithm
for automatic control point selection in a model-based tracking scheme [26]
suggest that this approach holds great promise. The P & P algorithm extends
the previous version of our system in two important ways. It automates the
selection of both the number and location of control points. its operator.
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Figure 12: Tracking a rotating square target with a four-point model (measure-
ments in mm).

Experiments were conducted in which a target was presented on a 27 inch
monitor located one meter from the end-effector mounted camera. The tar-
get, a 7.3 cm tall square or triangle, moved around a rectangular path of 100
cm at approximately 8 cm/sec. The position commands sent to the robotic
arm were collected and are graphically illustrated in Figures 15 - 17. Pre-
vious results [26] (see Figure 16) were compared to results using the P & P
Algorithm (see Figure 17).

The previous system used a predetermined number of control points irre-
spective of the target’s shape. These points were manually placed near the
object contour in a highly regular configuration. The generic constraints used
by the tracking algorithm created a bias toward equidistant points and equal
angles between edges. The new system uses the P & P algorithm to auto-
matically select control points. Because the P & P algorithm does not choose
equally spaced points, the constraints used during tracking were modified to
reward configurations with angles close to the initial angles and distances
close to the initial distances.

The model-based tracking scheme with the manual selection of control
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Figure 13: Tracking a rotating square target with an eight-point model (measure-
ments in mm).

points worked well only when a small number of control points was selected
and the points described the contour well. Since that system encouraged
equidistance between control points and equal angles between edges, it per-
formed best when the contour of the object being tracked could be approx-
imated by an equilateral polygon (a highly regular shape) with as many
vertices as the model had control points. For less regular shapes or control
point configurations, performance degraded. For example, the system in [26]
lost track of the square target after just one revolution when an eight-point
model was used (see Figure 16). The old system was not tested with the
(non-equilateral) triangular target, since this target is not a highly regular
shape.

The system using the P & P algorithm for automatic point selection per-
formed substantially better. Ten trials were measured. In the first five, the
arm tracked the moving square. In the second five, the triangular target was
tracked. Results from the first trial with each target are presented in Fig-
ures 15 and 17 respectively. The control point selection algorithm invariably
selected ten points for the square and six points for the triangle that appro-
priately described the shapes. The tracker maintained tracking of the objects

24



—~ -
100}
50}
—\& ~100 -50 50 100
_50
- 100}

Figure 14: Tracking a deforming square target with a four-point model (measure-
ments in mm).

for several revolutions. In this experiment, the P & P tracker exhibited its
ability to maintain tracking at fairly high speeds of different target shapes
(square, triangle).

In order to show the generality of the approach, we used the method in
another domain (pedestrian tracking). With exactly the same formulation
like in the case of visual servoing, our system can successfully track motion
of a walking pedestrian, even when the pedestrian’s image deforms in unex-
pected ways such as those caused by thrusting out one’s arms or kicking a
leg forward in an exaggerated manner (Figures 18 and 19). It is also fairly
robust with respect to occlusions such as when two pedestrians pass in oppo-
site directions or a single pedestrian passes behind a large tree. Potentially,
more than one pedestrian could be tracked simultaneously. Although such
a system should be equally robust with respect to occlusions caused by two
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Figure 15: Tracking of a triangular target with the P & P algorithm (mea-
surements in mm).

tracked pedestrians passing one another, it would probably not be possible to
tell whether the active deformable models had continued to track the same
individual. Such a system might have difficulty distinguishing between two
pedestrians approaching one another and then returning the way they came
and two pedestrians walking past one another.

Further development of the transportation-related system will require over-
coming the inherent limitations of using a difference image to provide image
forces for the active deformable model. These problems include short and
long time-scale changes in the background caused by lighting changes or con-
tinuous regular movement of objects in the scene, for example, the rustling
of leaves in the wind. The system is also vulnerable to the effects of camera
self-motion. A slight jitter in the camera mount could cause many patches
of noise in the difference image. Although these patches will generally be
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Figure 16: Tracking of a square target without the P & P algorithm. The
target was lost after one revolution (measurements in mm).

ignored once contour tracking has begun, they do disturb the initial place-
ment of the snake. Richards et. al. [23] describe two enhancements to the
difference image framework to overcome these difficulties. First, by slowly
modifying the ground image in a controlled way, changes in the background
can be incorporated in the ground image. Second, to overcome the place-
ment problem, additional processing of image regions can be done to identify
portions of the image consistent with the appearance of a pedestrian. We
plan to incorporate these improvements in our system. Consideration should
also be given to methods which would make it possible to mount the camera
in a moving vehicle.
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Figure 17: Tracking of a square target with the P & P algorithm (measure-
ments in mm).

8 Discussion

Although the results of the experiments described in Section 7 demonstrate
the promise of a system combining the active deformable models for visual
tracking with a visual servoing system, they also illustrate drawbacks of the
current implementation.

Two factors affect the quality of tracking which must be discriminated. The
initial set of experiments conflates changes produced by the sheer number of
control points with effects caused by the match between the number of control
points and with the points of high curvature on the object boundary.

For example, performance degraded significantly when an eight-point model
was used to track a four-sided figure. However, there are two reasonable
explanations for this difference. 1) The extra computation required to mini-
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Figure 18: A six-point active deformable model tracking a pedestrian.

mize an eight-point model reduced total model update time by a factor large
enough to create a qualitative drop-off in overall performance. Or, 2) the
match between object shape and model was not good enough to achieve a
stable minimum.

It should be noted that an important strength of the minimization algo-
rithm (its local character) is also a weakness in this case. In no sense does
the algorithm trade-off higher curvature in one region to achieve lower curva-
ture in another. It relentlessly attempts to reduce curvature (or approach a
default angle) at every control point. Further, because the minimization only
considers a small number of alternative positions for the control point, it can-
not make dramatic changes in configuration to arrive at a globally optimal
configuration.

The current system would also benefit from a theoretical basis for the
selection of the gains applied to the different elements of the energy function.
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Figure 19: The difference image which provides image forces for the active
deformable model.

Presently, these gains must be empirically determined for each application, by
observing the behavior of the active deformable model in action and adjusting
parameters to overcome performance deficiencies.

Empirically determined gains have given satisfactory results, but a theoret-
ical framework for gain selection would allow for the automatic determination
of gains, which will be necessary for deployment if such systems are to be
used successfully in commercial manufacturing settings.

9 Future Work

There are a number of promising areas for the further development of this
system. These include further exploration of the performance of the algo-
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rithm described here and enhancements to the system. These enhancements
may either increase the robustness of the system or extend its capabilities.

One issue which should be further explored is the necessity of using dif-
ference images as the input to the placement and energy minimization al-
gorithms. If we can assume that more prior information is available about
the shape, color or texture of the object, then an alternative placement al-
gorithm could be developed. If color or texture is known, then a different
segmentation routine could be used. If shape is known, then a Generalized
Hough Transform could be applied to an edge-detected image. The energy
minimization algorithm relies on the difference image to provide image seg-
mentation for the E,, 4 term in Equation (11). It is also used as an input
to the edge detection process, but this design decision was made solely to
increase ease of implementation. When new placement routines are available,
the minimization algorithm should be tested with raw grey scale image data.

More experiments should also be done to determine whether the mean of
control points is the most useful definition of the center of active deformable
model. Although the mean is very simple to compute, it directly reflects the
location of the control points—not the location of the entire shape. Consider
that there are many sets of control points that define the same boundary
(when control points are allowed to be collinear, which they frequently are).
These sets of control points do not, however, have the same mean. If the
location of a model is defined as the center of mass of the shape defined by
its boundary, then the location of the model is invariant across these different
sets of control points.

System robustness can be improved by arriving at a reliable measure for
system failure. One such measure for the energy minimization technique de-
scribed in this chapter is a “cross-over” in the active deformable model. As
mentioned previously, when the model is not a simple polygon, the E,,,4e
term no longer works in concert with the other energy terms, which fre-
quently leads to uncontrollable expansion of the model. If a computationally
inexpensive check could be devised for violation of this condition, the system
could be stopped, and new control points selected.

Finally, the ability of the system to move relative to the target object
can be enhanced by making better use of the information available in the
momentary configuration of the active deformable model. Currently, only
the location of the mean of the model control points is recovered. By using
the relative positions and distributions of the control points, the control input
can be extended to take into account apparent scaling or skewing of the model
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points. For example, increases in the model scale should correlate inversely
with decreases in the distance from the object to the camera. Theoretical
groundwork for this extension exists in the previous work of Colombo [9] and
Andrew Blake’s group [8].

10 Conclusions

We have presented an approach to visual servoing using active deformable
models to track image contours. We use these models to track the bound-
aries of the object’s image in the difference image. By tracking the object’s
contour, we avoid some difficulties associated with visual servoing techniques
which track features, such as the occlusion of features or changes in the
features due to object deformations. Moreover, because we close the control-
loop by using partial solutions from an iterative technique, the movement
of the manipulator actually simplifies the task of the process which tracks
the object using active deformable models. To illustrate the potential of our
algorithms, we implemented them on the MRVT system and presented a
detailed description of their real-time performance.
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