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Abstract This paper presents methodological advances on pulse measurement
through thermal imaging of the face - a modality that recovers thermo-physiological
function. Two previous methods that capitalized on heat transfer effects along and
across the vessel during pulse propagation, have been brought together in a fusion
scheme. In addition, three key design issues have been investigated. The first one
is parameter optimization. The second is development of improved motion tracking
algorithms. The third is implementation of a comparative hypothesis verification
study. Comparative experiments that were conducted on a data-set of 12 subjects,
highlighted the virtues of the new methodology versus the legacy ones. Specifically,
the new method reduced the instantaneous measurement error from 10.5% to 7.2%,
while it improved mean accuracy from 88.6% to 98%. This advancement brings
clinical applications of the technology within sight.
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1 Introduction

The blood pressure and velocity rise rapidly as a result of the opening of the aortic
valve in early systole. This spike in blood pressure and momentum travels the length
of the aorta and is passed on to peripheral arteries such as the brachial, the carotid,
and beyond. The thus formed pulse is an example of a traveling wave in a fluid
medium that involves transport of mass and heat. The alteration of the electric field
that moves the heart’s muscle and the thermo-mechanical effects of pulse propaga-
tion in the vascular network create opportunities for measurement across different
modalities. The method that is considered to be the gold standard for pulse measure-
ment is Electrocardiography (ECG) [12]. It produces crisp results because it focuses
on the source (heart). Other commonly used methods, such as piezoelectric probing
[3], photoplethysmography [13] and Doppler ultrasound [8], focus on the vascular
periphery. One main characteristic of all these methods is that require contact with
the subject. There are clinical applications, however, where a contact-free method
is desirable. Such applications usually involve sustained physiological monitoring
of patients who are in delicate state or form; examples range from sleep studies to
neonatal monitoring.

The research presented in this article is in the context of stand off physiological
monitoring through passive imaging, a concept first proposed by Pavlidis et al. [16].
In this context, methods for measuring blood perfusion [17], vessel blood flow [10],
breathing rate [15], and pulsation [5, 11, 19] have been developed.

Specifically, regarding pulsation, Chekmenev et al. [5] developed an interesting
thermal imaging method that used wavelet analysis to quantify pulsation. Good per-
formance results were reported on a dataset of eight subjects. The issues of tissue
tracking and sensitivity analysis, however, were not adequately addressed.

Garbey et al. [11] and Sun et al. [19] developed different thermal imaging pul-
sation methods that used Fourier analysis. The dominant heart rate frequency was
estimated by averaging the power spectra of each pixel in a pre-selected segment of
a superficial vessel. Two variant methods were developed: the Along (ALM) [11]
and the Across (ACM) [19]. The thermal imprint along (ALM) or across (ACM) the
center line of a large superficial vessel was selected. Both methods were limited by
the use of a non-optimal parameter set, the presence of tracking errors, and the lack
of in-depth statistical analysis.

This paper addresses the limitations of previous contact-free approaches of pulse
recovery and reports substantial methodological advances. The new Pulse Recov-
ery Thermal Imaging (PRETI) method, features parameter optimization for both the
ALM and ACM models, which it uses within a fusion scheme. In this fusion scheme,
there is a choice between three tissue tracking algorithms. These are the coalitional
tracker, where a single tracking network is used, the tandem tracker, where two
tracking networks are used in conjunction, and the micro-tracker, which features
fine tuning capability. The investigation reveals which measurement model (ALM
or ACM) can pair with what motion tracking algorithm to offer a better trade-off be-
tween performance and computational complexity. All combinations are compared
with the baseline (REF) pulse measurement methods [11, 19] in a set of experimen-
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tal data drawn from 12 subjects, per an approved protocol from the local Institutional
Review Board (IRB).

The rest of the paper is organized as follows: Section 2 describes the new mea-
surement methodology. Section 3 describes the experiments. Section 4 presents the
optimization results. Finally, Section 5 concludes the paper.

2 Pulse Measurement Methodology

PRETI is a fusion scheme that involves five steps: (1) Selection of Region of Interest
(ROI); (2) Motion Tracking (tracking the ROI by using the single, sequential, or
automatic tracker); (3) Blood Vessel Registration; (4) Noise Cleaning; and finally
(5) Statistical Analysis. Figure 1 illustrates the steps of the new methodology that
conclude with the computation of pulse. The computed pulse is compared against
a “ground-truth” measurement provided by an ADInstruments piezoelectric device
[1].

Fig. 1 Outline of the new pulse measurement methodology. The thermal imaging measurements
are compared against “ground-truth” values provided by an ADInstruments piezoelectric device
[1].
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2.1 Selection of Region of Interest (ROI)

For a successful measurement of cardiac pulse via thermal imaging, selection and
knowledge of the anatomical region of interest is important. Stand off pulse mea-
surements are typically performed on the face, because it is easily accessible and
features major superficial vasculaturization. Periodic pulsation in facial vasculature
results in localized skin temperature modulation through the mechanism of thermal
diffusion [10].

Most of the facial vasculature is derived from the External Carotid Artery (ECA).
The Superficial Temporal Artery (STA) is a terminal branch of ECA. STA begins
between the ear and the Temporo-Mandibular Joint (TMJ) ascending upwards and
eventually splitting in the upper head area into the frontal and parietal branches
(Figure 2).

Pinar and Govsa [18] reported an excellent study on STA anatomy, its arterial
branches, and their importance. For the purpose of thermal pulse measurment, STA
is the region of choice because it is the most superficial vessel on the face and still
has substantial size (2.73±0.51 mm).

Fig. 2 Illustration of the Superficial Temporal Artery (STA) and its bifurcation around the zygo-
matic arch - from Primal Pictures [14].

2.2 Motion Tracking

The proposed pulse measurement method is contact-free; hence, in the absence of
good tracking, even the slightest movement by the subject will shift the ROI from
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its initial selection. PRETI employs three tracking algorithms, which are described
below, to compensate for motion and provide consistent ROI measurements over
time. At this point, it is important to clarify that there are two types of ROI: The
broader ROIs, which are the tissue areas upon which the trackers operate - these
are the tracking ROIs (TROI). The smaller ROIs that are within the TROIs and atop
the vessel’s thermal imprint, where the measurement is performed - these are the
measurement ROIs (MROI).

Coalitional Tracker: The coalitional tracking algorithm [6] optimizes collabora-
tion among many simple particle-filter trackers, to achieve robustness and preci-
sion usually attainable only by model-based trackers. It was explicitly developed
to support reasonable accuracy of vital sign measurements in thermal infrared,
without resorting to modeling. Please note that modeling of highly dynamic im-
agery of physiological function is quite difficult. The coalitional tracker’s per-
formance deteriorates in the presence of out-of-plane rotations, which are due to
pose changes of the subject’s face. Figure 3 clearly illustrates such a case. The
change in facial pose from time t = 0 (Figure 3 (a)) to time t = 10 sec (Fig-
ure 3 (b)) has caused the coalitional tracker to loosen its grip on TROI. At every
point in time, the new TROI, as determined by the coalitional tracker, is used to
produce the new MROI through a geometric transformation fixed during initial-
ization. Thus, a small TROI error unavoidably translates to a small MROI error
- typically a few pixels. Unfortunately, the thermal footprint of the vessel is also
just a few pixels wide. Thus, even small tracking failures can throw MROI out-
side the vessel’s thermal footprint and introduce substantial measurement errors
(Figure 3 (c) & (d)).
Tandem Tracker: The tandem tracking algorithm uses two coalitional trackers to
overcome the errors introduced by a single coalitional tracker. The top coalitional
tracker tracks a large TROI, which is centered in the general temporal area. At
each point in time this tracker provides cue about the initial position of another
coalitional tracker, which tracks a smaller TROI centered around the temporal
vessel. This “inside” coalitional tracker, performs its own local tracking, using
the cue from the top tracker as an initialization. Finally, the second traacker de-
termines the position of the MROI, through a geometric transformation set at
the beginning. Large coalitional trackers are prone to drift (and small inaccu-
racies), while small coalitional trackers to loss (and total failure). However, if
small coalitional trackers do not get lost due to abrupt motion, they can afford
much more accurate tracking than large ones. The tandem coalitional tracking
scheme capitalizes upon these complementarities to deliver optimal performance
(see Figure 4).
Micro Tracker: The tandem tracker performs better than the single coalitional
tracker at a premium computational cost. As a way to improve performance but
at a more moderate computational cost, a third (and novel) micro-tracking algo-
rithm was introduced. This algorithm, uses a single coalitional tracker in the gen-
eral temporal area, which does not control the relative position of MROI through
a rigid geometric transformation. Instead MROI is localized at each point in time
through a segmentation algorithm that operates in a smaller area around the tem-
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Fig. 3 Example of coalitional tracker performance. Thermal snapshots of the subject at time (a)
t = 0 and (b) t = 10 sec with a coalitional tracker targeting the temporal area. Blow-ups of MROI
at time (c) t = 0 and (d) t = 5 sec, where drift is evident. The tracker cannot cope effectively with
pose changes.

Fig. 4 Example of tandem tracker performance. Thermal snapshots of the subject with large TROI
on the general temporal area, small TROI around the temporal vessel , and MROI on the thermal
imprint of the temporal vessel at time t = 0 (a-c) and t = 5 sec (d-f).

.
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poral vessel. This is reminiscent of the inner TROI in the tandem tracker. The
difference is that instead of secondary tracking, segmentation is taking place
here. This segmentation fine-tunes the localization of the vessel’s thermal im-
print, stopping in essence the propagation of error from the top tracker ( Fig-
ure 5). The segmentation process involves the following steps:

Step 1: Within the inner ROI perform top-hat segmentation to differentiate
the vessels from the surrounding tissue [4]. The vessels’ thermal imprints are
usually at a gradient from the remaining region, due to convection from the
flow of hot arterial blood.

Step 2: Thin the blood vessel network down to one pixel thickness [4].
Step 3: Find the largest vessel in case there are more than one within the inner

region.
Step 4: Find the best fit for the points of the largest vessel through linear re-

gression.

Fig. 5 Example of a micro tracker performance. Thermal snapshots of the subject at time (a) t = 0
and (b) t = 5 sec with a coalitional tracker targeting the temporal area. Blow-ups of MROI and the
inner region, where vessel segmentation is taking place, at time t = 0 and t = 5 sec.
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2.3 Blood Vessel Registration

The operator can select a thermal imprint along the center line of the STV or at
90 degrees across it applying the ALM or ACM model respectively. The algorithm
expands symmetrically into an elongated rectangle. The width of this rectangle de-
pends on the width of the STV on the thermal imagery. For a subject imaged at 6
feet with a 50-mm lens and when using the ALM model the rectangle’s width is
3-7 pixels. By convention, in the ALM model we place the x-axis of our coordinate
system along the width and the y-axis along the length of the FSTA. The opposite
coordinate system we have in the case of the ACM model. Note that the use of a
rectangle in the case of ACM is a new approach investigated in our experiments. In
the previous version of our ACM model only a single pixel line of 90 degrees across
the vessel under study was considered.

• Tracking Noise Cleaning Algorithm (TNCA): In the next stage our newly de-
veloped TNCA process can be selected. It is a three stage algorithm that is assist-
ing our tracker in the selection of high confidence frames and by correcting the
overestimated maximum pulse frequencies. Here follows a description of each
stage:

1. Tracking Confidence Estimate (TCE): In order to achieve robust track-
ing, we have developed an algorithm, which enables us to detect appearance
change of the TROI by utilizing a template matching technique as a confi-
dence measure. It involves computing a score quantifying the degree of match
between the TROI of two sequential frames. The decision to include the cur-
rent frame to the pulse measurement estimation process is based on a 70%
confidence threshold. An example case is presented in Figure 6.

2. Temperature Thermal Imprint Estimate (TTIE): TTIE is further assisting
the tracker to select frames where the segmented thermal imprints of the STV
are of high quality. The thermal imprint at the first frame (T IF1) is manu-
ally selected by an experienced operator to be as accurate as possible. This
is compared with the current thermal imprint at frame t (T IFt). The com-
parison is based on the complement of the absolute normalized difference
(CAND)(1−ABS(T IFt −T IF1)/T IF1), which is the absolute difference be-
tween the T IFt and T IF1 measurement normalized against the T IF1 and sub-
tracted from unity. This gives a weighted indication of how close the T IFt
measurement is to the T IF1 measurement in each case. Again the decision
to include the current frame to the pulse measurement estimation process is
based on a 95% confidence threshold. Example cases where the TTIE is 95%
versus 18% is presented in Figure 6 (c) and (f) respectively.

3. Peak Correction: Our experiments are set up in a quite indoor environment
and we test healthy subjects who are relaxed during the recording. Under these
conditions it is reasonable to assume that their pulse should range between 40
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Fig. 6 Example cases of using the Tracking Confidence (TCE) and Temperature Thermal Imprint
Estimate (TTIE) noise cleaning steps. (a)We can see the TROI where the tracker is having an 80%
confidence, the resulting MROI at (b), and STV registration at (c) where the TTIE is 95%. (d)
The tracking ROI where the tracker is having a 55% confidence, the resulting measurement ROI
at (e), and frontal STV registration at (f) where the TTIE is 18%. In the (d), (e) and (f) cases the
associated frame is rejected.

and 100 beats per minute (bmp). Therefore, we can facilitate pulse recovery by
removing signals with frequency lower than 0.67 Hz (40 bmp) and higher than
1.67 Hz (100 bmp). This pulse range is selected by setting the Low/High Pulse
values in the common parameters section of the UI. However, there is still a
possibility to overestimate/underestimate the maximum frequencies computed
during pulse estimation. These can be triggered by a low/high estimation of
the camera frame rate that affects the conversion of the pulse frequency from
BPM to Hz (see Equation 1).

Low/High Rate =
Low/High Pulse(BPM) ·TimeWindow

Sec Per Min ·FrameRate
(Hz) (1)

Even though it is computed to be on average 30 frames per sec (fps), it may
go even below 20fps or even above 45fps. Thus, we may recover a sudden
and very high/low pulse (e.g. 120/30bpm) of a normal subject with an average
pulse of 70bpm. We know that in long observation periods the pulse frequency
is expected to dominate in the spectral domain, since it is more consistent
than white noise. Therefore, in such cases the algorithm can replace the over-
estimated pulse or peak frequency with the Dynamic Mean Pulse Frequency
(DMPF) (see step three of the ACM model in Appendix 5).
DMPF is initially computed over an extended period of time T (T ≥30 sec).
In our new methodology and in order to achieve a better DMPF measurement,
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we keep updating the mean pulse measurement. The estimation starts from
the beginning of the clip and can be updated after each time window of 2N

frames (N ∈ [7,11]) or 4 ·k sec (k ∈ [1,5]). A typical window selected by the
user through the UI is 64 frames or ≈ 0.5 sec.
An example case where the peak correction step is employed is presented in
Figure 7.

Fig. 7 Peak Correction example case. The algorithm can pick up wrong estimations of the thermal
pulse at time t and correct them with the latest mean pulse update.

• Statistical Analysis: In this step, we apply a Fourier-based method on the tracked
ROI of the STV. It is applied in a novel manner to capitalize upon the pulse prop-
agation effect and extract the dominant pulse frequency. Two models are used,
the ALM and ACM when we select to operate either along or across the STV.
By operating on the frequency domain and combining appropriately the power
spectra of the time evolution signal of the temperature profiles, the signal can be
reinforced. Thus, in the next stage, the Adaptive Estimation Filtering (AEF) is
employed in the same manner after either the ALM or the ACM modeling. AEF
convolves the FFT outcome with a normalized historic power spectrum. In the
last step the cardiac pulse is computed by recovering the highest energy content
of the filtered power spectrum.
A brief description of the ALM, ACM and AEF can be found on the Appendix 5,
Appendix 5, and Appendix 5 respectively. More details can be found on [11, 19].
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3 Experimental Setup

A high-quality TI system has been designed for data collection that can obtain
highly accurate measurements. The centerpiece of the system is a MWIR camera
[9] with 50-mm lens. The lenses allow focusing on parts of the subject with rich
superficial vasculature (e.g. face) at distances between 3 and 10 feet. The camera
is capable of capturing 30 fps in a full spatial resolution of 640× 480 pixels. The
camera sits atop a pan-tilt device to allow flexible positioning. We also use a dif-
ferential blackbody as a calibrating device. The temperature resolution of the black-
body matches that of the thermal camera. To achieve maximum portability, all the
aforementioned hardware components are placed in a cart and communicate with a
powerful workstation.

Data collection is performed using healthy subjects. Subjects suffering from neu-
ropathies, micro or macro-angiopathy, as well as strong smokers have been ex-
cluded. Before data collection the subjects are briefed and after that they signed
a consent document. During data collection each subject is sitting about 6 feet away
from the TI system. Then, as reported in Section 2, the TI measurements computed
by our system are compared with the GT measurements. These are reported by the
piezoelectric device. The MLT 1010 piezoelectric pulse transducer used is wired
to the subject’s index finger tip. Our pulse measurement experimental setup can be
viewed in Figure 1.

4 System Optimization

The optimization framework of the PRETI system in terms of performance and
computational cost is quite complex. Global optimization requires an exhaustive
evaluation of an uncountable number. Hence, in practice only partial optimization is
feasible with many parameters taking default values after an efficient parameter se-
lection process. The main design issues are to fine-tune the harmonic analysis of the
signals through parameter optimization of the baseline models, and then to improve
the quality of the extracted physiological signals through sophisticated tracking and
a noise reduction algorithm.

To evaluate the performance of our PRESTI system we employ three optimality
criteria. The first and most important criterion is the Paired Student’s T-Test (PSTT),
a statistical hypothesis test that is used to compare two sets of quantitative data (in
our case ground truth pulse and pulse estimation data). We also calculate the cu-
mulative sums (CUSUM) between the instantaneous pulse measurements and their
corresponding ground-truth ones. In equation 2 we can see how the cumulative per-
centage error for subject i is computed.

E i
cum =

1
T

T

∑
t=1

∣∣Si
T (t)−Si

G(t)
∣∣

Si
G(t)

(2)
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Finally, we compute the normalized mean pulse difference (NMPD) which based on
the CAND of the mean pulse against the mean ground-truth measurements over the
whole thermal clip (see equation 3).

NMPD = 1−
∣∣ST −SG

∣∣
SG

(3)

We tested our approach on 12 subjects (6 male/female) with ages in the range of
24-55 years old. The description of the parameter selection process follows.

The description of the parameter selection process follows.

4.1 Parameter Selection

The two main goals of this investigation are first to find the most efficient parameter
set in terms of performance for each model and for all subjects. Then we prove that
the application of those sets in combination with the use of the TNCA algorithm
provide an additional performance advantage. Based on previous studies and the
physiology of the vessels of the subjects under study, the baseline system (REF)
involves both the ALM and ACM models and the fixed parameters are the length
(L) of the thermal imprint (7-10 pixels), the pulse range (40-100bpm), and the time
window (512 frames). In the REF system there is no TNCA algorithm employed.

In this study for both models we keep the length (L) of the thermal imprint and the
pulse range that we restrict our investigation fixed as before. We investigate further
into the importance of the width (W) of the thermal imprint, and the time window
(frame range) of the history data. What follows is the investigation performed to
identify the optimum parameter set per model in terms of performance.

• ALM: In the case of the ALM model the values of W investigated are extended
from 1 to 11 pixels in 6 steps (1, 3, 5,..., 11). The choice of these prime numbers
guarantees that the central line selected by the operator is always in the middle
on the vessel and the additional pixel lines are to the right and left of it. Also this
range is practically selected so that any vessel width in the forehead of our 12
subjects is included within the MROI Figure 8.

• ACM: In the case of the ACM model the range of W is extended from 1 to 13
pixels in 7 steps (1, 3, 5,..., 13) as shown in Figure 9. Some additional parameters
that are investigated are the quadratic interpolation (to apply or not and how many
times) as well as the mean and variance of the Normal distribution N(µp,σ̄2

p ).
• Both Models: In both of our models we extend the investigation of the time

window from 128 and up to 2048 frames (2N frames for N ∈ [7,11]) and we
include the use of the TNCA algorithm and its associated parameters.

In Table 1 we present the parameters used before and after optimization.
The results of applying the optimum parameters in the REF system are presented

in Table 2 where we can compare the performance of the baseline system with the
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Fig. 8 ALM : Example case where the vessel width is 7 pixels. We can see how the ALM algorithm
performs when we select different rectangles along the vessel orientation. The widths selected are
(a) 1px, (b) 3px, (c) 5px, (d) 7px, (e) 9px, and finally (f) 11px.

Fig. 9 ACM : Example case where the vessel width is 7 pixels. We can see how the ACM algorithm
performs when we select different rectangles vertical to the vessel orientation. The widths selected
are (a) 1px, (b) 3px, (c) 5px, (d) 7px, (e) 9px, and finally (f) 11px.
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Table 1 Parameters used before and after optimization. Opt=optimization, TW=Time Window,
and QI(ta)=Quadratic Interpolation (Times Applied).

Models Opt TNCA Length Width TW QI(ta)
ALM No No 7-10px 3-7px 512 -

Yes Yes 7-10px 1px 128 -
ACM No No 7-10px 1px 512 5

Yes Yes 7-10px 7px 2048 1

optimized one, with and without employing the TNCA algorithm. Note also that
while the optimized parameter set was achieved for each subject, due to space here
we present only the average performance results for all subjects.

Table 2 Performance results before (REF) and after an efficient parameter selection and the use of
the TNCA algorithm (OPT). OPT=Optimization, REF=Baseline, MDL=Model, TT=T-Test.

MDL TNCA REF OPT
TT CuSum NMPD TT CuSum NMPD

ALM No Fail 10.54 88.63 Fail 7.78 97.26
Yes - - - Pass 6.89 97.57

ACM No Fail 10.14 94.56 Fail 8.15 98.50
Yes - - - Pass 6.88 98.55

Based on the above results we can see that the efficient parameter selection
achieved better performance results and that the use of the TNCA algorithm is the
key for the statistical test to pass. Hence, in the next step we select the optimum
parameter set per model, we apply the TNCA algorithm, and then we investigate
which motion tracking methodology we should follow to achieve maximum perfor-
mance with the minimum computational cost. There are three alternative tracking
optimization approaches that we can use, i.e. the SITA, the SETA and the AUTA
as described at Section 1. These are compared to the REF system. This study is
analyzed in Section 4.2.

4.2 Motion Tracking

After the optimum parameter selection for each thermal signal analysis model our
goal is to investigate various testing configurations. In our design strategy we inves-
tigate the three alternative PRETIS tracking optimization approaches, the SITA, the
SETA and the AUTA. By employing the optimum parameters and TNCA algorithm
we performed 10 experiments per tracking approach for each subject. Then the re-
sults are averaged and finally compared to the baseline approach. We use the same
optimality criteria as described in the beginning of Section 4, and at the same time
we compute the response time for each configuration. Both the performance as well
as the response time results are presented below.
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4.2.1 Performance Results

In Figures 10, 11, and 12 we illustrate the performance results for each subject when
employing either the ALM or ACM model with the use of the optimum parameter
set as well as the TNCA algorithm identified above. We can see the results after
running each experiment 10 times for each of the SITA, SETA, or AUTA motion
tracking approach. The criteria used are the CuSum and the NMPD as described in
the beginning of Section 4.

In Table 3 the final performance results are presented when averaging the above
results for all subjects. We can see the benefits of optimization when comparing
the REF and SITA approaches where only a single tracker was used before and
after parameter optimization while using also the TNCA algorithm. Based on the
T-Test criterion it is clear that the SETA approach offers by far the best results. The
CUSUM and NMPD criteria also support our selection. Finally, note that the AUTA
approach did not perform as well as expected. Although very good results have been
achieved, micro-tracking needs to be further optimized. This is planned to be part
of our future work.

Table 3 Final performance results when using the REF system and all our motion tracking ap-
proaches after optimization. The mean values and standard deviation for all subjects are presented
after running each experiment 10 times per subject. Opt=Optimization, REF=Baseline.

Criteria Method REF SITA SETA AUTA
T-Test ALM 0 12 100 10

ACM 0 17 97 20
CUSUM ALM Mean 10.56 8.11 7.26 7.82

ACM STD 10.14 9.84 7.27 9.35
ALM Mean 1.249 0.948 0.585 0.003
ACM STD 1.374 1.106 0.581 0.008

NMPD ALM Mean 88.63 95.24 97.11 95.32
ACM STD 94.56 95.23 98.04 95.04
ALM Mean 0.743 0.563 0.682 0.422
ACM STD 2.243 1.752 0.683 1.691

4.2.2 Response Time Results

The response time results are presented in Figure 13 when using the REF system
or any of the other three motion tracking optimization approaches. We are using
blue color for the ALM model and red color for the ACM model. With blue is also
indicated the average video time of all subjects that are processed in this study. In
that way we can see whether any of our approaches can process real-time all frames
captured by the thermal camera.

In terms of time the SITA approach when using the optimized ALM model gives
the best time. However, in combination with our performance results we highlight
as our best option the SETA approach when using the optimized ALM model.
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Fig. 10 ACM with SITA: Performance results when using the CuSum and the NMPD criteria. We
perform 10 experiments per parameter set and highlight the min, mean, and max values per subject
and for each criterion employed.

5 Conclusions

In this paper we report substantial improvements in the design and methodology of
a baseline pulse recovery thermal imaging system. The experimental results demon-
strate that a proper parameter selection and the use of a TNCA algorithm have im-
proved considerably the performance of our proposed PRETIS system when com-
pared to the baseline one. TNCA in particular improves system performance up to
15.6% while imposing only a maximum of 3.98% increase in the computational
complexity of the system.

After an efficient parameter selection in either model of the baseline system we
compare three motion tracking methodologies in terms of system performance and
response time. When using either model the response time of SITA is the lowest one
when compared to all other approaches and when using as a reference the baseline
approach. However, it failed in almost 84% of the statistically significant tests. Even
though SETA is 13% slower than SITA, it is still 11% faster than the baseline system
when the ALM model is employed. SETA when using the ALM model proves to be
the best overall solution also in terms of performance since it passes all statistically
significant tests, achieving also the lowest CuSum error (7.26%) and the highest
accuracy in terms of NMPD (97.11%). Similar results are achieved when using the
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Fig. 11 ALM/ACM with SEQTP: Performance results when using the CuSum and the NMPD
criteria. We perform 10 experiments per parameter set and highlight the min, mean, and max values
per subject and for each criterion employed.

SETA approach with the ACM model (almost all T-Tests passed, CuSum 7.27%,
NMPD (98.04%). However, in this case the response time is at least 4 times higher
than when using the ALM model and thus it is considered to be as our second
best choice. Finally, even though AUTA was designed to further improve our pulse
estimations by minimizing noise it fails in about 80% of the statistically significant
tests and thus its operation requires some further investigation.

Investigating different optimization strategies on a PRETIS system is an interest-
ing task. However, the conclusions of this work were drawn in the context of the our
database. For future work we plan to perform a new data collection process where a
minimum of 30 subjects will participate. A new camera with a better spatial resolu-
tion and a new protocol will be used that has been designed so that motion noise is
minimized. Furthermore, we intend to optimize separately our new AUTA approach
and to design a new theoretical framework that will improve system performance.
We believe that our advanced research work will find great applications in the areas
where the monitoring of heart rate through a passive sensing system is needed and
in the cases where motion artifacts and poor subject cooperation are considered a
serious problem.
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Fig. 12 ALM/ACM with AUTA: Performance results when using the CuSum and the NMPD
criteria. We perform 10 experiments per parameter set and highlight the min, mean, and max values
per subject and for each criterion employed.

Fig. 13 Response time results when using the three motion tracking approaches. The best cases in
terms of performance are also highlighted.
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Appendix

Description of the ALM Model: Here follows a brief description of the Along the
Vessel Model:

• In step one, within the MROI the operator selects manually or automatically a
straight segment of 7-10 pixels (depending on the vessel selected) along the cen-
ter line of the superficial blood vessel. The algorithm expands symmetrically into
an elongated rectangle the width of which can be from 1-13 pixels (as opposed
to 3-7 pixels used before). The width of this rectangle depends on the width of
the vessel on the thermal imagery.

• In step two, we record the time evolution of the pixel matrix delineated by rect-
angle R for 2N frames, where N ∈ [7,11] (only the use of N=9 or 512 frames was
reported in our previous studies. In this paper we investigated all values of N).
Thus, we produce a 3-D matrix A(x,y, t), where x and y is the spatial extent of
rectangle R and t is the timeline.

• In step three and in order to reduce the noise, we average the pixel temperatures
along the x dimension.

• In step four, for each effective pixel on the measurement line we obtain the time
evolution signal of its temperature. We apply the FFT on each of these signals.

• In step five, we average all the power spectra computed in the previous step into
a composite power spectrum.

Description of the ACM Model: Here follows a brief description of the Across
the Vessel Model:

• In step one the operator draws manually or automatically a line that traverses the
cross-section of the thermal imprint of the vessel (e.g., FSTA). The section spans
between 1-15 pixels (as opposed to 3-7 pixels used before). The spatial resolution
of the measurement line is increased by applying quadratic interpolation once (as
opposed to 5 times used before) to minimize the computational complexity while
achieving good performance. We model the cross-section temperature function
using the first five (5) cosine functions of the Fourier series.

• In step two we compute the ridge and the boundary points at each frame. The
first corresponds to the middle of the vessel’s cross section, where the blood flow
speed is maximal, while the second is recorded at the vessel’s boundary where
the minimum blood flow speed occurs. The time evolution of these points form
the ridge and boundary temperature functions (RT F and BT F ) respectively.

• In step three we compute the Static Mean Pulse Frequency (SMPF). We apply
the FFT on both RT F and BT F 1D signals and obtain their power spectrum (Pr and
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Pb). We model both power spectrum as a multi-Normal distribution by applying
a Parzen window method [7] and get the multi-Normal distributions Pr’ and Pb’.
We multiply Pr’ and Pb’ to obtain the combined model spectrum Prb’. Then, we
find the frequency fn for which Prb’ assumes its maximum amplitude. The fn
frequency is considered as the SMPF of the subject during the time period of the
first T ≥ 30 sec or≈ 1024 frames and it is represented as the Normal distribution
N(µp,σ̄2

p ) with mean µp= fp and variance σ̄2
p .

In this paper we go a step further and compute the dynamic MPF (DMPF). This
is performed by updating the MPF for every 64 frames after the first 1024 frames.
We have also optimized the value of the variance to achieve better performance
results.

• In step four we compute the Instantaneous Pulse Frequency (IPF). We apply
exactly the same procedure that we described in step 3 for long observation peri-
ods (T ≥ 30 sec). Then, we can use either the SMPF or the DMPF computed to
localize our attention in the IPF spectrum by multiplying Prb’ with N(µp,σ̄2

p ) that
is denoted as Prb”. The tentative IPF is the frequency fi for which the amplitude
of the spectrum Prb” is maximum.

Adaptive Estimation Filter and Pulse Recovery: The instantaneous computa-
tion described by both ALM and ACM suffers by occasional thermo-regulatory va-
sodilation and noise despite the effective mechanisms built into both models. This
problem has been addressed by building an estimation function that takes into ac-
count the current measurement as well as a series of past measurements. This idea
is based on the adaptive line enhancement method reported in [2]. In our previous
studies we reported that the current power spectrum of the temperature signal is
being computed over the previous 29=512 frames by applying the ALM or ACM
models. Now we investigate a frame range from 128 and up to 2048 frames (2N

frames for N ∈ [7,11]).
To compute the pulse frequency first we convolve the current power spectrum

computed by either model with a weighted average of the power spectra computed
during the previous 60 frames. This is because at the average speed of 30 fps sus-
tained by our system, there is at least one full pulse cycle contained within 60 frames
even in extreme physiological scenarios. Then we compute the Historical Frequency
Response (HFR) at a particular frequency. HFR is given as the summation of all the
corresponding frequency responses for the spectra, normalized over the total sum
of all the frequency responses for all the historical spectra. Finally, we convolve
the HFR with the current power spectrum and we then designate as pulse the fre-
quency that corresponds to the highest energy value of the filtered spectrum within
the operational frequency band.
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