
Chapter 5

Coalitional Tracker for Deception Detection
in Thermal Imagery

Jonathan Dowdall, loannis Pavlidis, and Panagiotis Tsiamyrtzis

Abstract We propose a novel tracking method that uses a network of independent

particle filter trackers whose interactions are modeled using coalitional game theory.

Our tracking method is general; it maintains pixel-level accuracy, and can negotiate

surface deformations and occlusions. We tested our method in a substantial video

set featuring nontrivial motion from over 40 objects in both the infrared and vi

sual spectra. The coalitional tracker demonstrated fault-tolerant behavior that far

exceeds the performance of single-particle filter trackers. Our method represents a

shift from the typical tracking paradigms and may find application in demanding

imaging problems across the electromagnetic spectrum.

Keywords: Tracking Particle filter . Coalitional game theory . Thermal imaging

5.1 Introduction

The extraction of high-level information from video through the use of computer vi

sion algorithms has become increasingly important over the past decade. A diverse

array of applications use this technology, including quality control in the manufac

turing sector [1.21, surveillance in the security industry [3,4], biomedical measure

ments for health care [5—7], and behavioral analysis [8—10]. Of key importance to

all these computer vision applications is the ability to detect and track objects in

their respective input video streams. The problem of tracking can be cast as guess

ing how things change over time. Specifically, tracking involves modeling how the

parameters of the object modulate in successive input frames by using prior knowl

edge. When this is done accurately, it can be useful in a number of applications for

which knowing the cuffent state of a given target object is important. An intriguing

line of computer vision research focuses on measurements of physiological signals

on facial tissue. The measurements are performed on infrared imagery and are used
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in biomedical [5—71 and behavioral applications [8—101. Although a large body of
work has been devoted to facial tracking research [11—13], we found the existing
methods insufficient to achieve the high degree of accuracy required in imaging
measurements of facial tissue. This was our initial motivation for exploring a novel
tracking paradigm.

5.1.1 Prior Work

Computer vision tracking has been dominated by sequential Monte Carlo methods
(particle filtering) [14] for the last several years. Among the most popular particle
filter tracking methods is the CONDENSATION algorithm, which was introduced
by Isard et al. circa 1998 [15—17].

An interesting tracking methodology based on deformable templates was also de
veloped in parallel. Typical deformable templates focus on tracking object contours,
not surfaces [18]. Therefore, they cannot adequately address out-of-plane tracking,
like the case of left-right facial rotation.

Alternative tracking methodologies employ specific models of the target to pro
vide better accuracy [19—21]. Unfortunately, this increased accuracy comes at the
expense of speed and generality. A noteworthy modeling approach is known as ac
tive appearance modeling, and it takes into account both shape and texture [22,23].
For example, Dornaika et al. [23] first recovered the three-dimension (3D) head
pose using a deformable wire frame and then local motion associated with some
facial features using active appearance model search. Such 3D active appearance
models can potentially perform quality tracking in demanding facial-imaging appli
cations in the visual spectrum. However, their performance may break in thermal
infrared imagery due to thermal diffusion and the resulting fuzzy image edges. In
such an environment, appearance models may have hard time maintaining 3D-2D
(two-dimensional) correspondences, which are partly based on thermal gradients.

Tracking in the thermal infrared spectrum is of particular interest to us because
recent research demonstrated that many vital signs, including blood flow [5], pulse
[6], and breathing function [7], can be measured in this modality. The success of
these measurements depends strongly on a reliable tracking method to register the
motion of facial tissue.

Our method aims to achieve what sophisticated modeling methods reportedly
achieve, but it is more general and robust, it does not employ a single explicit 3D
model but many generic and cooperating 2D particle filter trackers, which are spa
tially distributed over the target’s surface. Our effort can be seen as a first step toward
developing a tracking methodology that is able to accurately track a wide array of
targets across imaging modalities.

There has been some other work on multiple trackers that work together to follow
multiple objects [24—27]. in contrast, we employ multiple trackers to track a single
object.
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5.2 Tracking Methodology

Our goal is to develop a general tracking methodology that can accurately monitor

the motion of the target’s surface even in the presence of deformation or partial

occlusion. Many existing general tracking methods monitor the target’s outline (not

surface). This is a different and far easier problem.

We arrived at a fault-tolerant surface-tracking method that works on both infrared

and visual video without resorting to explicit modeling. It uses a network of parti

cle filter trackers that influence each other (see Fig. 5.1). Each individual tracker

is unreliable at times, but the combination of many neighboring trackers produces

robust performance. The intertracker influence is modeled as a coalitional game in

which each tracker is a player, and the goal of the game is to propagate one’s influ

ence in subsequent frames of video. Within this framework, the winning coalition

of trackers is used to calculate the state of the tracked object.

5.2.1 Tracking Network

We use a network of trackers to achieve accurate surface tracking and fault toler

ance. Tracking is maintained even if all but one of the trackers fail in the tracking

network. The trackers are each assigned a different portion of the target’s surface to

track (see Fig. 5.2). By default, the trackers are configured in a regular grid, although

alternative configurations are possible through a feature selection mechanism. in

tertracker communication allows trackers that are correctly tracking the target to

tiqn
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Fig. 5.1 Overview of the tracking method. Initialization consists of the following steps: a extrac

tion of the user-selected region of interest from the input video, b subdivision of the Region of

interest into the tracking network, and c individual tracker template creation. Tracking: the indi

vidual trackers in the tracking network follow their targets. Target state estimation consists of the

following steps: d the winning coalition is produced, e the deformation mesh is calculated from

the winning coalition, and f the deformation mesh is used to calculate the target state. The method

proceeds from initialization to tracking (Lorow 1) to target state estimation (arrow 2) and back to

tracking (arrow 3). In the latter transition, the winning coalition is passed hack to the tracking stage
to distribute the iniertracker influence.
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Fig. 5.2 Example of a 3 x 3 tracking network on a visual image. Each tracker in the network is
shown in a different color. Each tracker is tracking a separate part of the target

“tip-off” other trackers that have become lost regarding the true location of the tar
get’s surface. This intertracker influence is realized within a statistical framework
and is managed by the coalitional game model described in Section 5.2.2.

The idea arose naturally in the effort to address the problem of facial tissue track
ing in the infrared. As the subject’s head moves (e.g., left and right), part of the facial
surface is occluded at times. Trackers that correspond to the occluded part of the face
are aided by trackers that correspond to the exposed part.

In our implementation, each tracker in the tracking network is an individual par

ticle filter tracker. We denote the state of each individual tracker i at time t by x

and its associated image observation by 4. The target tracker’s prior will be formed

using intrasarnp]es S) from tracker i and intersamples S) that correspond to the

(intertracker) influence of tracker I from tracker j. The intersamples S) are gener
ated based on the initial relationship between the trackers involved in the exchange:

(t) (r)
S(1j) = T x (5.1)

where S) is the intersample generated by tracker j for tracker i, and is the

transformation that gives a sample for tracker i given a state for tat-get j at time t.
(U

The transformation is computed during initialization for every possible tracker

- f_ (0) (0)pair .x
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5.2.2 The Goalitional Game

The tracking network is a versatile architecture for tracking objects, but it does not

have any intrinsic method to generate the final target state or to manage tracker

interaction. The simplest solution would be to allow every tracker to influence all

of the other trackers. Unforunately. this is not an optimal solution because trackers

that have lost their target would be allowed to influence other trackers in the network

that have not gone awry. This also highlights the problem of determining which

trackers in the network are correctly tracking their targets and which ones have

strayed away. What is needed is a mechanism that can determine the validity of

each of the trackers, compute the target’s state vector based on the valid trackers,

and finally propagate the influence of the valid trackers to keep the network correctly

tracking the target surface.
There are many optimization algorithms one can use to manage the network of

trackers. We chose to optimize tracker interaction using a game theoretic solution

for two main reasons: It naturally fits the problem space, and it is relatively simple.

Game theory [28—3 I] has been successfully used to analyze topics ranging from

simple deterministic games, to complex economic models [32, 331, and even to in

ternational negotiations [34,35]. Our adaptation was to view the trackers as players

in a cooperative game [36, 37] in which the objective was to increase their influ

ence by forming coalitions with other trackers. The winning coalition would then

be used to compute the state vector of the target and subsequently propagate its

influence onto the entire tracking network.

Specifically, the members in of the winning coalition C’ influence every other

tracker I in the tracking network by adding intersamples S)/). Trackers that are not

members of the winning coalition cannot propagate any influence at all. The intu

itive affinity of the problem space to cooperative gaming is apparent in the example

of facial tissue tracking. There, the winning coalition is composed mostly of trackers

that correspond to the exposed part of the face. These are trackers that feature high-

quality information and give a “helping hand” (influence) to the “clueless” trackers

that correspond to the occluded or deformed part of the face.

The coalitional form of an N-—tracker ganie is given by the pair (2J1), where

= {l.2...,N} is the set of trackers and 11 is a real-valued function, called the

characteristic function of the game, defined on the set of all coalitions (subsets of

2), which has cardinality 21’. and satisfying 11(0) = 0 [28]. In other words, the

empty set has value zero. The size of a coalition C will be denoted from now on

by k, where k e { 1.2. N}, and there are () coalitions of size k. The quantity

17 (CK) may be considered as the value, or worth. or power, of coalition C’t C £2

when its members act together as a unit.
The definition of a coalitional game is quite general and leaves the specification

of the characteristic function to the game designer. We designed a characteristic

function for the tracking game that encompasses four scores. These scores are cal

culated from the trackers participating in the coalition under consideration at time t:
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• template match a’
• geometric alignment c’

• interfrarne projection agreement y(t)

• interframe membership retention (‘)

The characteristic scores support the fact that quality tracking is characterized by
consistency in the content and geometric configuration of the individual trackers.
Specifically, the template match score rewards trackers that maintain consistent
imaging content. The geometric alignment score favors coalitions whose mem
bers have geometric alignment analogous to the original (t = 0) configuration. The
interfrarne projection agreement score is a continuity constraint. It improves robust
ness by penalizing abrupt (and improbable) changes of the projected state of the
target between successive frames. The interframe membership retention score is
also a continuity constraint. It reflects the tendency of the winning coalition from
the previous time step to retain its members.

The template match score for a coalition k of size k at time I is given by

= (5.2)

where refers to the template match score (a number in [0,1]) of member m1 in
the coalition C’k at time t.

For the second and third scores, we first need to define the function that mea
sures the geometric alignment between two target projections (see Fig. 5.3), as are
coniputed from samples s and s3:

— S,)2 + (S — S11)2
G(F(s1),F(s)) = G(Si.Sj) = ox I —

__________________

Md

+(l—w)x [i_ ‘°:] (5.3)

where F(s) is a function that transforms the tracker sample s into its colTesponding
target projection S. S;) are the (x.y) coordinates of the center of target pro
jection S,, while S is the angle of rotation about the center of target projection S.

Md is set to the maximum movement allowed by the target in a single frame, while
M0 is the (positive) maximum rotation allowed by the target in a single frame. The
weight o appropriately penalizes the center and angle discrepancies. Ideally, the tar
get projections in Fig. 5.3 c should have coincided (perfect alignment), so that the
combined projection of the two tracker samples is reminiscent of the original target
shape. Note that the upper hound for G(...) is I (when the two target projections are
identical), but the lower bound is not necessarily 0. This would have been the case
if we chose M and M0 to be the maximum observed values at time!, but this would
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Fig. 5.3 Geometric alignment of tracker’s target projections: a target projection at 1 0, b tracker

network overlaid on the initial target projection, c trackers 6 and 7 at a subsequent time along

with their corresponding target projections, d parameterization of target projections to facilitate

measurement of geometric alignment

have slowed the computation. Besides, we do not mind giving negative scores to

some tracker pairs (i.e., penalizing as opposed to rewarding them) whose geometric

alignment is very bad.
Having defined the geometric alignment function for a pair of samples Lsee

Eq. (5.3)1, we use it to compute the geometric alignment score of a coalition of

size k:

G (s’) . (5.4)

(2) 1=

where and are target projections corresponding to the samples with the

highest template match scores for coalition members m1, Inj, respectively. Regarding

the function fc’k), we have f( 1) = 0, and it is nondecreasing fork 2,3 N. The

is analogous to the average of the geometric alignment of all possible tracker

pairs in the coalition. In general, as the size of the coalition increases, the average

of the geometric alignment function of the members of the coalition decreases. To

compensate for that loss, we introduced the linear function 1(k), whose role is to

reward higher-order coalitions as opposed to lower-order ones.
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Fig. 5.4 lntcrfrarne projection agreement: a target projection at t = 0. b tracker network overlaid on
the initial target projection, c the target projection at time! — 1 and tracker 6 with its corresponding

target projection at time 1, d parameicrization of target projections to facilitate measurement of

interframe projection agreement

We also use the geometric alignment function for a pair of samples [see Eq. (5.3)1
to compute the interframe projection agreement score (see Fig. 5.4):

= LG(s,S(t1)) (5.5)

where is the target projection corresponding to the sample with the highest tem

plate match score for coalition member at time t; S(t—) is the target projection

corresponding to the target state at time i — I (previous frame). The interframe mem

bership retention score for a coalition k of size k at time t is given by

(,-) (5.6)

where m is the ith member of coalition C at time t, C’ is the winning coalition

from the previous time step. and is defined as

I — I if in is not a member of C
(m.C) . . (5.7)

+1 if in isa member ofC

where in is a tracker, and C is a coalition.
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Having defined the four scores, we proceed with the definition of the character

istic game function ri (C’k):

TI(’)(ck) = a X + + 0y x + a x (5.8)

where are the weights (values range in [0,1] and sum to 1) assigned

to the four scores. Note that because of the function f(k) in the geometric alignment

score, the characteristic score may exceed the value of I. This may happen when we

have higher-order coalitions and quite good geometric alignment.

For every size of coalition k {1,2... ,N}, we have () different coalitions of

size k, out of which we select the one with the highest payoff. To avoid complicating

the symbology, C’k will continue to denote the preferred coalition of size k. Thus, we

decide the winning coalition Ct at time t to be

Ct = argmaxTT (C’t) (5.9)

In coalitional game theory. sometimes the characteristic function is a nonclecreas

ing function of the size of the coalition (i.e., superadditivity) [281. In our case, this

is not desirable because there may exist trackers that have lost their targets. In other

words, the grand coalition (i.e., the coalition where all players/trackers participate)

is not always the optimal to use. Thus, we need to give rewards to coalitions in such

a way that the winning coalition is the coalition whose members best approximate

the target. This is achieved by reducing the characteristic function of the coalition if

it acquires poor trackers. Superadditivity is also related to the .1(k) function since if

.1(k) increases, say exponentially, then the geometric alignment score will dominate

the other three scores, allowing superadditivity. In our case, having a linear f(k)

worked fairly well.

£2.3 Target State Estimation

We compute the final target state S’ from the winning coalition C1 in two steps. In

the first step. we compute the deformation mesh M’ from the winning coalition. The

deformation mesh M’ is composed of a set of points A = (at,... ,a,,,), which are

distributed over the selected target region during the initialization step. Each point

is linked to anywhere between one through four trackers depending on its spatial

location; one on the corners, two on the borders, and four on the inside. For each

point, a transformation matrix Ta is computed that, when applied to the center c1

of tracker j. gives the location of the point a,:

a1 =
1 [cii]

T/ to1 (5.10)
j=t i)



122 J. Dowdall et al.

Fig. 5.5 Border points of
the target projection. The
target projection is shown in
white. The deformation mesh
is shown in blue, and the
deformation mesh points are
shown

?b.84 C 31Z9C 35.14”C

where a is one of the points in the deformation mesh Mt, n is the number of trackers

linked to the mesh point a, and üj is the weight associated with tracker j. If the
tracker j is a member of the winning coalition, the associated weight is the tracker’s

template match score = otherwise, it is 0 oi = 0. Next, the four border

points outlining the target projection in the clockwise direction B (b1,. . . ,b4) are
computed from the mesh points A (see Fig. 5.5).

‘a
= _j__ [] T’ (5.11)

where rn is the number of points in the deformation mesh, b1 is one of the border
points, a is one of the points in the deformation mesh M, 7’ is the transformation
from point a to b1. o. is the weight associated with mesh point a1, which is the
summation of each of its ii1 member tracker weights:

‘Ii

fUaJ = (5.12)

and a is the total weight of all mesh points a1:

‘a

—

(5.13)
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The second step is to compute the final target state St from the deformation mesh

Mt by using the border points B. The target parameter vector P = (P1. 1)5), is

defined as follows:

• P1 is the x coordinate of the target center.

• P2 is the y coordinate of the target center.

• p is the rotation about the center of the target.

• p4 is the width of the target.

• p is the height of the target.

The parameter vector P is computed from the border points B of the winning coali

tion C as follows:

P1 = (5.14)

P2 = (5.15)

J)3 = (5.16)

b1)2+ (bj bar)2 —b4)2 + (biy —b4,)2
17

2
-+

2
(5. )

— J_b4)2+ (b11 —h4)2 —b3)2+ (h2. — b3)2
5 18JJ5_

2
+

2

where Cl is the cardinality of the winning coalition.

5.2.4 Configuration of Tracking Network

By varying the number of trackers and their relative spatial location, one could pro

duce a large number of possible configurations for the tracking network. We narrow
clown this to a manageable subset by considering only uniform grids over a rectan
gular region (see Fig. 5.6).

__m__

hr

____ ____ ____ ____

RRRR ____

Fig. 5.6 Tracking network configurations selected for evaluation
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An important consideration when picking a network configuration is the num
ber of coalitions that must he evaluated to make a final target prediction because
the number of coalitions increases with the number of trackers in the network (see
Fig. 5.7).

To determine the relative performance of each of the configurations, we used
each configuration to track the same target (i.e., a face) in a thermal video sequence.
The true target position was annotated in each frame of the thermal video sequence
to allow computation of the tracking errors from the various configurations (see
Fig. 5.8).

The results show correlation between the number of trackers and tracking accu
racy (see Fig. 5.9). Another trend in the data is that extra columns of trackers within
the network configuration seem to be more beneficial than extra rows (see Fig. 5.9).
This is explained by the facial motion exhibited in the particular experiment. The
subject looks side to side and thereby deforms out of plane in the horizontal axis.
Therefore, tracking configurations that add more detail along the horizontal dimen
sion (i.e., more columns) perform better in the experiment.

Fig. 5.7 Number of coalitions for each network configuration

0

a
C
c3
w

Lu

B 1 tracker
B 2 trackers 1x2
1 2 trackers 2x1

4 trackers 2x2
j 6 trackers 2x3
1 6 trackers 3x2
j 8 trackers 2x4
I 8 trackers 4x2
1 9 trackers 3x3
• l2trackers4x3
B l6trackers4x4

600

C
0

0
U

300
0
2

0 -- -
.-- _i -

1 2 2 4 6 6 8 8 9 12 16
Number ofTrackers

56 -________ B 1 tracker
• 2 trackers 1x2
..J 2 trackers 2x1
a 4 trackers 2x2
j 6 trackers 2x3

28 .j 6 trackers 3x2

4 j 8 trackers 2x4

I
I B

0 - J’ B 16 trackers 4x4
12110 Frame Number

Fig. 5.8 Tracking errors of network configurations along the tinieline: two large spikes colTespond
to our-of-plane movement by the target



5 Coalitional Tracker for Deception Detection 25

12 / B 1 tracker
U 2 trackers 1x2

.j 2 trackers 2x1

2 zi 4 trackers 2x2
.j 6 trackers 2x3

6 1 6 trackers 3x2
0

.- j 8 trackers 2x4

I U 8 trackers 4x2

1 9 trackers 3x3
• 12 trackers 4x3

I i I I • U 16 trackers 4x4

1 2 2 4 6 6 8 8 9 12 16

Fig. 5.9 Mean tracking error of network configurations as computed from the data in Fig. 5.8

Not surprisingly, there is not one tracking network configuration that fits every

situation. The tracking network configuration must be selected based on the intended

application and the type of target motion expected. In our case, we chose as a com

promising solution a 3 x 3 tracking network configuration because we had a diverse

assortment of target motions within our data set.

5.3 Experimental Design

An important consideration in our experimental design was exact quantification of

the tracker’s performance. For this, we needed an environment that would provide

automatic ground-truthing. The cornerstone of our experimental design, however,

was the provision to test our tracking method on video input from at least two dif

ferent hands of the electromagnetic spectrum, one reflected and one radiated. The

motivation was to demonstrate that the methodology is general enough to handle

both. To satisfy this specification, we performed experiments using visual band

video (reflected) and midwave infrared video (radiated). The underlying implica

tion was that if the tracker worked on both visual and midwave infrared video, then

the tracker would be general enough to be adapted to other radiated bands, such as

long-wave infrared, as well as other reflected bands, such as the near infrared.

5.3.1 Design of Simulated Tracking Environment

We used a simulated tracking environment to precisely quantify the tracker’s per

formance. The environment was initialized to a frame of thermal video, antI then

the tracker was initialized to the target. The target to he tracked was then translated

about the image plane while simitltaneously undergoing transformations. Because
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the target transformations were dictated by the simulated environment, we could
measure the true target state against its state projected by the tracker for each frame.
Every simulated run was 200 frames in length.

5.3.2 Design of Thermal Infrared Experiment

For the purpose of testing the tracking algorithm on thermal infrared video, we se
lected a data set that was used in previous publications [12]. It consists of 39 video
clips, each containing a main human subject undergoing an interview. We chose to
track 1,000 frames of video from each of the subject clips, for a total of 39,000
frames of video. The chosen video segments featured a temporary occlusion of the
main subject by another subject who was passing through the field of view. More
important, the clips featured out-of-plane rotation of facial tissue as subjects were
rotating their heads left or right, up or down. We chose a single-particle filter tracker
to compare against the coalitional tracker. Both the single-particle filter and coali
tional trackers featured identical parameteization. Both the single-particle filter and
the coalitional network were tasked to track exactly the same facial tissue of each
subject. The ground-truthing of this experiment was the reconciliation of the obser
vations of two independent operators.

5.3.3 Design of Visual Experiment

To demonstrate that the tracking methodology can also be applied to visual band
video, we performed experiments on a series of visual videos, each containing a
different type of target. These targets included faces and cans.

5.4 Experimental Results

5.4.1 Results of Simulated Tracking Environment

We first measured the accuracy of the coalitional tracker (see Fig. 5.10). The coali
tional tracker maintained a mean error of about 1 pixel, which is sufficient for
demanding applications, such as physiological measurements [5]. Moreover, the
coalitional tracker exhibited consistent performance over 20 identical trials (see
Fig. 5.10). This is extremely important because it would be impossible to extract
useful physiological measurements if the tracker gave inconsistent results each time
it was run. However, due to the stochastic nature of particle filtering, it is very diffi
cult to a]together eliminate minute variability from the tracking result. To determine
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Fig. 5.10 Error and stability analysis of single-particle filter (green) versus coalitional tracking

(red). Both trackers were used to track the same target in 20 identical trials using the simulated

tracking environment
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Fig. 5.11 EtTor analysis of single-particle filter (green) versus coalitional tracking using the track

ing network (red). Both trackers were used to track the same target in 20 tdals using the sim

ulated tracking environment. Each trial involved increasingly faster translational and rotational

target motion

ihe operational limits of the tracker, we measured its error under increasingly faster

target motion in the simulated tracking environment (see Fig. 5.11). The superior

performance of the coalitional tracker in complex and fast transformations is evi
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Projected Image

Fig. 5.12 Out-of-plane facial rotation. Any rotation that is not about the z-axis is considered out-
of-plane rotation

dent. The coalitional tracker was also capable of negotiating out-of-plane facial ro
tations (see Fig. 5.12) much more successfully than the single-particle filter tracker
(see Fig. 5.13).

5.4.2 Results of Thermal Infrared Experiment

The results from the thermal infrared experiment (see Fig. 5.14 and Table 5.1)
clearly show that the coalitional tracker provides superior tracking over the single-
particle filter tracker. The proposed method proved robust in typical (see Fig. 5.15)
and difficult (see Fig. 5.16) operational scenarios. The few failures of the coalitional
tracker were mainly caused by significant out-of-plane rotation or substantial occlu
sion of the target (see Fig. 5.17).

A rare case of failure is exemplified in Fig. 5.18, when the subject experienced
rapid physiological changes on a grand scale. The subject in the figure underwent
facial temperature increase in excess of 2°C within 6 mm due to a state of high
anxiety. This problem is due to the template measurement method, which assumes
that the target’s projection will not change dramatically over time. One possible
solution 10 this problem is to dynamically update the template as presented in [39].

We extracted a sample physiological measurement from subject S2 (inventory
reported in [12]) and compared it against the respective ground truth signal. The
measured signal is the mean temperature of the subject’s periorbital area through
the course of the video clip. It is evident that the coalitional tracker enables the ac
quisition of a signal nearly identical to the ground truth (see Fig. 5.19), an indication
of its fitness for accurate physiological measurements.
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Fig. 5.13 Out-of-plane rota
tion comparison. Lefi, single-

particle filter tracker (green);
,-ithr. coalitional tracker (red).
a Initial frame. b and c in
termediate frames, d final
flame in a I -mm thermal clip.
The poor performance of the
single-particle fiLter tracker is
evident

I_I’ IiiJi iii I i I I1iI i
O1O2O3O4QOO7OIO91Q111213141516171I192O21222324232272I29SOfl323334353633t39

Sob

sing1 P.tio1o riit 1rokinq • Co.litlon.1 Tooking

Fig. 5.14 Tracking failure graph for the 39 video clips in the thermal data set. For each clip the

number of single-particle filter and coalitional tracking failures is shown in green and red, respec

tively. The absence of red bars in some video clip entries indicates perfect performance of the

coal i tional tracker
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TabJe 5.1 Causation of tracking failures in the thermal dma set

Reason for failure Coalitional tracker failures Single-tracker failures

Target rotation 1 18
Partial occlusion 2 9
No recovery 1 2

Total 4 29

Fig. 5.15 Typical facial-tracking examples from the thermal data set. The selected subjects repre

sent different ethnicities and both genders

Fig. 5.16 Successful coalitional tracking in the presence of difficult circumstances in the thermal

spectrum: a target rotating in plane, b target rotating out of plane, c target rotating out of plane,

d target partially occluded

5.4.3 Results of Visual Experiment

The coalitional tracker performed robustly in several visual band experiments with

various objects (faces and cans). The template was composed of 3-tuples (red, green.

and blue reflectance values) instead of temperatures. The motion patterns iicluded
translation, rotation, and scaling (see Fig. 5.20 and Fig. 5.21).

Fig. 5.17 Tracking failures in the thermal spectrum. a and c The target has rotated out of plane

beyond the tracker’s ability to compensate. b The original target (periorbital area) is largely oc

cluded. d The target has undergone extreme physiological changes relative to the initial tracking

frame (see Fig. 5.18 for more details)
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Fig. 5.18 Coalitional tracker performance under substantial physiological changes. a Tracker ini
tialization. b The subject’s face undergoes a substantial thermal change in the middle of the video

clip. The tracker is still performing correctly, but the winning coalition is composed of fewer track

ers that are able to follow their targets. c Toward the end of the clip, the subject’s facial thermal

l3role continues to change dramatically, and the coalitional tracker is off target

36.10
3’ 36.00

_____

i—Ground
35.90 I Truth
35.80 I — Coalitional

______________________

Tracker

35,50
1 1664 3327 4990 6653

Frame Number

Fig. 5.19 Physiological signal extracted using coalitional tracking (iii ed) versus the ground truth

signal

5.5 Application Perspective

Coalitional tracking is a fairly general framework and can be applied to a variety of

problems across imaging modalities. Nevertheless, it was originally developed for a

particular modality (i.e., thermal infrared) and for specific applications (i.e., physio

logical measurements on the face). To measure the success of coalitional tracking, it
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Fig. 5.20 Example of tracking a face experiencing scaling and translation in the visual spectrum.
The frames are shown chronologically from left to right. The deformation mesh is shown in blue,
and the white rectangle represents the projected target state

Fig. 5.21 Example of tracking an oblect experiencing scaling and translation in the visual spec
trum. The frames are shown chronologically from left to right. The defonation mesh is shown in
blue, and the white rectangle represents the projected target state

is important to understand its original application framework and impact. We touch
on two major applications for which coalitional tracking is now used routinely: lie
detection and sleep studies.

Levine et al. [8] reported a physiological sign of stress manifested as increased
blood flow in the orbital muscle. Pavlidis et al. [9] demonstrated the potential of
this stress sign as a lie detection indicator in the context of a well-designed inter
rogation. The importance of this cannot be overestimated. It was the first time that
a localized physiological sign of cholinergic origin was identified on the face as
“polygraph ready.” The facial locale is ideal for casual observation as it is typically
exposed. Furthermore, the sympathetic relevance of the periorbital sign ranks very
high because the face is heavily innervated with neuronal pathways. In summary,
we had a primary stress indicator easily observable, but unfortunately not easily
measurable. To begin, there was significant difficulty in sensing blood flow in the
orbital muscle because of the delicate nature of the tissue. A popular method for
sensing blood flow is ultrasound. Imagine, for example, the examiner rubbing the
eyes of the subject with an ultrasound wand to get a blood flow measurement on
the orbital muscle. This would clearly be impractical, particularly in the context of
psychophysiological experiments. The problem was solved with the introduction of
thermal imaging as the modality of choice for such measurements. Superficial blood
flow under thin facial tissue emits a heat signature clue to convection, which can be
captured and analyzed by a thermal imaging sensor package. Thermal imaging did
not only solve the sensing problem in a practical way, but also superbly supported
psychophysiological experiments because it is totally unobtrusive.
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The fact that the measurement was done at a distance might have been a blessing
from the psychological point of view, but it posed a challenge from the medical
point of view. What was needed was a virtual probe to isolate the area of interest
in the image — a nontrivial segmentation problem. Moreover, a tracking method
had to be developed to keep this virtual probe in the orbital area irrespective of head

motion. Both segmentation and tracking had to maintain pixel-level accuracy for the

measurement to remain valid. The tracking problem, which is of interest here, was

especially challenging due to the functional nature of thermal infrared imaging and

the real-time requirements of the application. Thermal imaging of the face depicts
physiological changes. Therefore, it is highly dynamic, unpredictable, and difficult

to model. Despite the absence of strong models, tracking still has to be accurate
enough to support valid medical measurements. Plus, it has to be highly efficient

as the technology created an opportunity for lie detection “on the fly,” which the

polygraph community wanted to fully exploit.
Coalitional tracking solved these conflicting requirements and facilitated re

search and development in a big way. The secret of its success is that it efficiently

optimized the behavior of many weak model trackers to achieve robustness and ac

curacy reminiscent of strong model trackers in structural imaging domains (e.g.,

computed tomography). Coalitional tracking was used to measure stress in three

major government experiments involving multiple lie detection interviews of more

than 150 subjects. This accounts for hundreds of recording hours and millions of

frames. All the thermal videos used in the experiments detailed in Section 5.4.2 are

a small subset of the lie detection inventories.
Starting in February 2007, coalitional tracking was also applied with great suc

cess in sleep studies at the University of Texas Medical School. The physiologi

cal measurement of interest in this case was breathing (see Fig. 5.22). Patients in

sleep studies suffer from chronic respiratory diseases that manifest themselves dur

ing sleep. A prime example of such a disease is obstructive sleep apnea, for which

breathing is suspended for a few seconds, several times every minute. This creates
temporary asphyxiation, which triggers the “fight-or-flight” response. As the phe

nomenon repeats itself every few seconds, it results in an almost permanent load

Fig. 5.22 Coalitional tracker monitoring a subject’s nasal region during inventory of sleep study
experiments at the University of Texas Medical School
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on the cardiovascular system and poor-quality sleep. Both have serious long-term
repercussions on the health of the patient. Diagnosis of sleep apnea involves mon
itoring of the patient’s sleep for several nights in the lab. During these times, the
patient is heavily instrumented (see Fig. 5.23), a highly uncomfortable proposition
for anyone, but especially for people who suffer from sleep prob]ems. Therefore,
there is strong motivation to unwire the patient to the extent possible.

Coalitional tracking helped to reliably extract the breathing signal through ther
mal imagery. The monitoring periods exceeded one h for every patient. The accuracy
of the imaging computation was ascertained against the clinical gold standard (i.e.,
thermistor). In contrast to the lie detection application in which the subject’s head
moves in moderate amounts all the time, during sleep studies the patient’s head
exhibits minute motor motion (i.e., due to breathing) and occasionally abrupt large-
scale motion (i.e., turning). The different motion profiles in the two applications
represent a comprehensive testing of the tracker’s abilities.

Fig. 5.23 Patient wired for sleep study (Courtesy University of Texas Medical School)
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5.6 Conclusion

We have proposed a novel tracking method. Our method uses a spatially distributed

network of trackers whose interactions are modeled using coalitional game theory.

The output of the method provides pixel-level tracking accuracy, even in the pres

ence of multidimensional target transformation.
We tested our method in thermal and visual video sets featuring faces and ob

jects. We compared the performance of the proposed coalitional tracker with that

of a single-particle filter tracker. The coalitional tracker exhibited superior perfor

mance in both regular and challenging tasks. The strength of the method comes from

the redundancy that is elegantly encoded in its game theoretic structure. Detailed

quantification and ground truth verification indicated that the new method provides

accuracy appropriate for demanding medical imaging applications. Equally impor

tant is the fact that the method appears to be general and flexible enough to use in

imaging applications across the electromagnetic spectrum.

5.6.1 Future Work

The particular adaptation of game theory to tracking presented in this chapter is but

one of many possible approaches that might be adopted. For example, the problem

of tracking could be alternatively viewed as a noncooperative game in which the

trackers compete with each other, and the final solution could then be modeled as a

Nash (strategic) equilibrium [29]. Plus, active research areas in game theory, such

as stochastic and differential gaines [41], could potentially be adapted for use in

tracking.
An important area that is amenable to improvement is the current static template

scheme. Although it works well in the thermal infrared band, where emission of

most objects does not change dramatically in short observation periods (e.g., a few

minutes), it is potentially vulnerable in the visual band, where reflected light may

change dramatically over a split second depending on the angle of incidence. A

dynamic template mechanism will eliminate this vulnerability.
The current method is based on deterministic management of probabilistic

trackers. A future method may be developed that will be based on probabilis

tic management of probabilistic trackers. This can be realized within a Bayesian

framework in which the posterior weight of each tracker in the coalitional game

would be computed from its prior and an appropriate likelihood function. Since this
will add probabilistic memory into coalition membership, one can eliminate the

membership retention factor in the culTent characteristic function, which in essence

crudely plays the same role.
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