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Face Recognition Beyond the Visible Spectrum

Pradeep Buddharaju, Toannis Pavliclis, and Chinmay Manohar

Abstract. The facial vascular network is highly characteristic of the individual,
much the way his fingerprint is. An unobtrusive way to capture tius information
is through thermal imaging. The convective heat transfer effect from the flow of
“hot’ arterial blood in superficial vessels creates characteristic thermal imprints.
which are at a gradient with the surrounding tissue. This casts sigrnioid edges on
the bin ian tissue where major blood vessels are present. We present an algorith
mic methodology to extract and represent the facial vasculature. The methodology
combines image morphology and probabilistic inference. The morphology captures
the overall structure of the vascular network and the probabilistic part reflects the
positional uncertainty for the vessel walls, clue to the phenomenon of thermal diffu
sion. The accuracy of the methodology is tested through extensive experimentation
and meticulous ground—truthing. Furthermore, the efficacy of this information for
identity recognition is tested on substantial databases.

9.1 Introduction

Biometrics has received a lot of attention during the last few years both from

the academic arid business communities. It has emerged as a preferred alter
native to traditional forms of identification. such as card IDs, which are not
embedded into one’s physical characteristics. Researcim into several biometric
modalities including face. fingerprint, iris, and retina recognition has produced
varying degrees of success (Jam et al., 1999). Face recognition stands as the
most appealing modality, in as much as it is the natural mode of identifica
tion among humans and is totally unobtrusive. At the same time, however, it
is one of the most challenging modalities (Zhao et al., 2003). Research into
face recognition has been biased towards the visible spectrum for a variety of
reasons. Among those is the availability and low cost of visible band cameras
aid the undeniable fact that face recognition is one of the primary activities
of the human visual system. Machine recognition of human faces, however.
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has proven more problematic thaai the seemingly effortless face recognition

performed by humans. The major culprit is light variability, which is preva

lent in the visible spectrum clue to the reflective nature of incident light in

this band. Secondary problems ale associated with the difficulty of detecting

facial disguises (Pavhdis and Symosek. 2000).

As a solution to the aforementioned problems. researchers have started

investigating the use of thermal infrared for face recognition purposes

(Prokoski. 2000; Socohinsky and Selinger, 2002; Wilder et al., 1996). How

ever. many of these research efforts in thermal face recognition use the ther

mal infrared band only as a way to see in the. dark or reduce the deleterious

effect of light variability (Socolinsky et al. 2001; Selinger and Socolinsky.

2004). Methodologically, they do not differ very much from face recognition

algorithms in the visible band, which can he classified as appearance-based

(Cutler. 1996: Chen et al.. 2003) and feature-based approaches (Srivastava

and Liu, 2003; Buddharaju et al.. 2004). The only difference between the

two modalities is that each pixel in a visible image contains intensity values

whereas the infrared images have temperature values. Hence all the visible

face recognition algorithms can he readily applied to infrared facial images.

In this chapter, we propose a. novel approach to the problem of ther

mal facial recognition by extracting the superficial blood vessels on the face

(see Figure 9.1). Our goal is to promote a different way of thinking in the

area of face recognition in thermal infrared, which can he approached in a

distinct manner when compared with other modalities. It consists of a sta

tistical face segmentation and a physiological feature extraction algorithm

Fig. 9.1. Generic map of superficial blood vessels on the face. Courtesy of Pri
mal Pictures (Moxham et al., 2002). (a) Overview of arterial network; (b) overview

of venous network; (c) arteries and veins together underneath the surface of the

facial skin.
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tailored to thermal phenoinenology. Prokoski et al. anticipated the possibility
of extracting the vascular network from thermal facial images and using it as a
feature space for face recognition (Prokoski and Riedel. 1998). However, they
did not present an algorithmic approach for achieving this. We present a full
abstraction methodology to extract the vascular network from infrared facial
imagery (Buddharaju et al.. 2005, 2006).

This is functional imaging at its best, as the vessel network is imaged
through its function (blood flow). The bionietric advantage is that this
information is very difficult to be altered purposefully. Therefore, it has the
potential to become a foolproof ID method for high—end security applications.
This chapter also presents an in—depth study of uniqueness and repeatability
characteristics of facial vasculature. which are very important for any physical
feature to be a biometric technology.

9.2 Facial Vasculature Extraction

In thermal imagery of human tissue the major blood vessels have weak sig
moicl edges. Tins is due to the natural phenomenon of heat diffusion, which
entails that when two objects with different temperatures arc in contact (e.g..
vessel and surrounding tissue), heat conduction creates a snmootii temperature
gradient at the common boundary (Garhey et al., 2004). Tins phenomenon is
strong in some major vessels such as the common carotid artery. and hence
can be clearly seen just by visualizing temperature values around them as
shown in Figure 9.2. The abstraction methodology to extract these edges is
carried out in two stages. Firstly, we segment the facial tissue from the back
ground, which ensures that any furtber processing is applied to the face alone.
rflien we segment all regions on the face that exhibit sigmoid edges, which
give superficial 1)100(1 vessels on time face.

Maximum

Frontal & Parietal
Arteries

Common Carotid
Afley

Minimum

Fig. 9.2. Visualization of the temperature values of a thermal facial image. The
smooth gradient around the common carotid artery can be clearly seen.
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9.2.1 Face Segmentation

Due to its physiology, a human face consists of “hot” parts that correspond to
tissue areas that are rich in vasculature and “cold” parts that correspond to
tissue areas with sparse vasculature. This casts the human face as a biniodal
temperature distribution entity, which can be modeled using a mixture of two

normal distributions. Similarly, the background can he described by a bimodal
temperature distribution with walls being the ‘cold’ objects and the upper
part of the subject’s body dressed in clothes being the “hot” object. The con

sistency of birnodality across subjects and image backgrounds is striking. We
approach the problem of delineating facial tissue from the background using
a Bayesian framework because we have a priori knowledge of the bimodal na
ture of the scei:me. Figure 9.3b shows the temperature distributions of the facial
skin and the background from a typical infrared facial image. We approach
the problem of delineating facial tissue from the background using a Bayesian
framework (Buddharaju et al., 2005: Pavlidis et al., 2006) because we have a
priori knowledge of the bimodal nature of the scene.

We call 6 the parameter of interest, which takes two possible values (skin
s or background b) with sonic probability. For each pixel ,v in the image at
time t, we draw our inference of whether it represents skin (i.e., 6 = s) or
background (i.e.. 6 b) based on the posterior distribution (t) (Ox) given
by:

(1)itj — fi1(sLr), when 0 =

P r,u .dt) —

‘ (q (t)p (bIx) = 1—p (slx,). when 0 b.

We develop the statistics only for skin, and then the statistics for the back
ground can easily lie inferred froiri Equation (9.1).

According to Bayes’ theorem:

(I)
ir(t) (s)f(xtls)

p (sfxt)
= (I (t

(9.2)
ir )(s)f(xtls)+ir )(b)f(b)
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Fig. 9.3. Skin and background: (a) Selection of samples for EM algorithm; (b) corre
sponding bimodal temperature distribution of background region: (c) corresponding
bimodal temperature distribution of skin region.
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Here, ir(t)(s) is the prior skin distribution and f(xts) is the likelihood for pixel
x representing skin at time t. In the first frame (t = 1) the prior distributions

for skin and background are considered equiproba.ble:

= 7r(b). (9.3)

For L> 1, the prior skin distribution 7r (s) at time t is eqial to the posterior
skin distribution at time t — 1:

x(t) (s) = rh-I) (SXt_i). (9.4)

The likelihood f(:rtls) of pixel x representing skin at time t 1 is given by

f(xts) = N()t)) (95)

where the mixture parameters ‘w81(weiglit), (mean). u. (variance):i = 1,
2 and w.92 I

—
w., of the bimodal skin distribution can be initialized and

updated using the Elvi algorithm. For that. we select N representative facial
frames (offline) from a variety of subjects that we call the training set. Then.
we manually segment, for each of the N frames, skin (and background) areas.
which yields N8 skin (and Nb background) pixels as shown in Figure 9.3a.

Figure 9.4b visualizes the result of our Bayesian segmentation scheme
on the subject shown in Figure 9.4a. Part of the subject’s nose has been
erroneously classified as background and a couple of cloth patches from the
subject’s shirt have been erroneously marked as facial skin. This is due to occa
sional overlapping between portions of the skin and background distributions.
The isolated nature of these mislabeled patches makes them easily correctable
through postprocessing. We apply a three-step postprocessing algorithm on
the binary segmented image. Using foreground (and background) correction.
we find the mislabeled pixels in the foreground (and background) and reas
sign them. Figure 9.4c visualizes the result of postprocessing where all the
segmentation imperfections have been eliminated.

Fig. 9.4. Segmentation of facial skin region: (a) Original thermal facial image;
(b) result of Bayesian segmentation where background is depicted in black; (c) result
of postprocessing.
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9.2.2 Blood Vessel Segmentation

Once a face is delineated from the rest of the scene, the segmentation of
superficial blood vessels from the facial tissue is carried out in the following
two steps (Pavlidis et al., 2006: Manohar, 2004).

Step 1: Process the image to reduce noise and enhance the edges.
Step 2: Apply morphological operations to localize the superficia.l vascula

t nrc.

The weak sigmoid edges formed due to heat diffusion at blood vessels can
be handled effectively using anisotropic diffusion. The anisotropic diffusion
filter is as a process that enhances object boundaries by performing
intraregiori as opposed to interregion smoothing. One can visualize this clearer
in an area with sparser vasculature than that of the face. Figure 9.5 shows
vividly how the application of anisotropic diffusion on the thermal image of
a wrist enhanced the sigmoid edges around the vessel and at the same time
helped to remove noise formed due to hair.

(a)

w

a
E

N

0z

(c) (d)

Fig. 9.5. Anisotropic diffusion on the thermal image of a human wrist: (a) segmentec
wrist image: (b) profile of the line drawn across segmented image (shown in black ir

(a)): (c) result of applying anisotropic diffusion on (a): (ci) profile of the same lin

drawn across diffused image (shown in blac:k in (B)).
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The mathematical equation that describes this process is:

______

-

V(c()VI(x,t)). (9.6)

Ta our case I(t. I) is the thermal infrared image, refers to the spatial
dimensions, and t to time. c(, t) is called the diffusion function. The discrete
version of the anisotropic diffusion filter of Equation (9.6) is as follows.

Iti(:c.y) It + *

+ Cs,t(X, y)Vls,.(.x, y) + cx.(x, ii) y)

+ cW,t(x, y) VIw,(, y)]. (9.7)

The four difflision coefficients and four gradients in Equation (9.7) corre
spourl to four directions (i.e., north, south, east, anti west) with respect to the
location (:ry). Each diffusion coefficient and the corresponding gradient are
calculated in the same manner. For example, the coefficient. along the nort,h
direction is calculated as follows,

(i,y)
c,v,(x, i) = exp(

k2
(9.8)

where ‘N.t = I,(x, p + 1)
— It (z, y).

Image rriorphology is then applied on the diffused image to extract the
blood vessels that are at a relatively low contrast compared to that. of the sur
rounding tissue. We employ for this prpoe a top hat segmentation method,
which is a combination of erosion and dilation operations. Top hat segmen—
tatiori takes one of two forms: white top hat segmentation that enhances the
bright objects in the image or black top hat segmentation that enhances dark
objects. In our case, we are interested in the white top hat segmentation be
cause it helps to enhance the bright (“hot”) riclgelike structures corresponding
to the blood vessels. In this method the original image is first opened arid then
this opened image is subtracted from the original image:

= (I e S) S.

‘top = lopen, (9.9)

where I. jto are the original, opened, and wiute top hat segmented
iniages. respectively. S is the structuring element, and e, e are morpholog
ical erosion and (lilation operations, respectively. Figure 9Gb depicts the re
sult of applying anisotropic diffusion to the segmented facia.l tissue slimvn
in Figure 9.Ga amid Figure 9.6c shows the corresponding vascular network
extracted via white top hat. segmentation.
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9.3 Performance Metrics for Segmentation

To quantify the performance of our segmentation algorithms, we perforrne(

validation studies on the superficial vessels on the forearm. These vessels ar

more pronounced and hence they are easy to nianually segment for ground

truth purposes. Although the validation was performed at a different tissu

area than the face, because of the project’s objective, it gives a quantiflabi

indication of how accurately the method localizes superficial vasculature u

general.
In the validation experiments subjects were sitting at a distance of 6 to 8

from the thermal imaging system. We captured 21 images from 15 subjectE

Therefore, some subjects were imaged more than once in imaging sessions tha

were held days apart.

The ground truth was created by manual delineation at a variable supei

resolution level (up to pixel by pixel) by medical experts. The ground-trut

results from the two experts were reconciled and a composite ground-trut

set was formed as a result. Figure 9.7 depicts some samples from the t]iernn

image set used in the validation experiments along with the corresponding sel

rnentation results. Figure 9.8 depicts the generic vascular map of the forearm

to facilitate interpretation. In the forearm, vasculature is sparser and grandc

witli respect to the face. This facilitates ground—truthing and visualiza.t.ioi

Indeed, even a layman can identify in the images of Figure 9.7 the radii

arterio-venuous complex, which runs hotter (brighter) across the length of th

arm and it. is successfully segmented by our algorithm.

We perform quantitative analysis in terms of two measures: overlap mati

and Hausdorif distance. To avoid any confusion some definitions are in orde

The builclir.g block that we need in the definitions of the measures is the notio

of a confusion matrix. The confusion matrix tells us about the extent of ti’

overlap between the segmented and ground-truthed images. Figure 9.9 show

the confusion mat rix for a two-class classifier:

• TP is the number of correct predictions that a pixel belongs to a vess

Fig. 9.6. Vascular network extraction: (a) original segmented image; (b) anisotrop

imily diffused Image; (c) blood vessels extracted using white top hat segmentation

(positive).



9 Face Recognition Beyond the Visible Spectrum [65

Fig. 9.7. (a) samples from the thermal imaging set used to validate the vasculature
segmentation algorithm; (b) corresponding segmentation results.

• FP is the number of incorrect predictions that a pixel belongs to a vessel
(positive).

• FN is the nimiber of incorrect predictions that a pixel belongs to surround
ing tissue (negative).

• TN is the number of correct predictions that a pixel belongs to surrounding

tissue (negat i r)
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Predicted

Positives Negatives

Actual Positives TP FP

Negatives FN TN

Fig. 9.9. C’onfusioii matrix.

Based on the confusion matrix definition let us define the measures we
to quantify the overlap ratio.

Accvracy: Accuracy of a system is defined as the ratio of correctly ci
sified pixels (true positives and true negatives) to the total number of pix
available at hand. It is usually expressed as a percentage. Accuracy is ti
calculated as

TP+TN
Accvruc

= TP + TN + FP + FN
(9.

Specificity (or Precision): Specificity is he ability to correctly iclent
the background pixels. it is the ratio of the number of number of true negati’
to the sum of true negatives and false positives, and it is given as

TN

Jidai

Vr1r ,1’r ctrpai

Fig. 9.8. Arterial and venous network in the forearm. (Courtesy Gray (1977).

Spccijmcitmj
= TV —I- FP

(9:
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Fig. 9.10. Performance measures for overlap ratio: (a) Accuracy; (h) specificity:
(c) sensitivity; (d) receiver operating characteristic (ROC) curve.

Sensitivity (or Recall,): Sensitivity is the ability to correctly identify the
segmented pixel. It is the ratio of the number of true positives to the sum of
true positives arid false negatives,

Sensitivity
= TP±FN

(9.12)

The plots for accurac . precision, recall. and ROC are shown in Figure 9.10.
One can observe that the method segments vascular thermal imprints with

accuracy that is consistently above 95%. Precision and recall also feature very
high values. All these performance measures indicate that there is very good
overlapping between the segmented and expertly handdrawn vessels.

Quantifying t.he extent of overlap between segmented and expertly delin
eated vessel iniprints is not enough to fully illurrnnate the qualities of the
segmentation algorithm. For this reason we also used the Hausdorif distance,
which is a measure of the closeness of two contours. Specifically, the Hausdorif
distance is the maximum distance of a set to the nearest point in the other set.
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Fig. 9.11. Hausdorif distance plot between the automatically segmented and
expertly delineated images.

\Iore formally. Hausdorif distance from set A to set B is a max-miri function,
(letmed as

lr(A, B) = max(min(d(A. B))) (9.13)

where a and b are points of sets A and B, respectively, and d(a. b) is any metric
between these points: for siniplicity, we take d(a, b) as the Euclidean distance
between a and h. The algorithm to find out the Hausdorff distance is:

1. h=0

2. for every point ai of A,
2.1 shortest = Inf
2.2 for every point bj of B

dij = d (ai , bj )
if dij < shortest then

shortest = dij
2.3 if shortest > h then

h shortest

Figure 9.11 allows the I-Iausdorff distance calculated between our manual
segmented data and the original data. The low Flausdorif distance values indi
cate that. the two sets in our case are close to each other. In other words, the
automatically segmented vessel curves are very close to the expertly drawn
ones.

9.4 Facial Vasculature for Biometric IderLtification

If a human physiological or behavioral characteristic has to be considered as a
biometric feature, it should satisfy certain desirable characteristics such as urn
versality, uniqueness, repeat ability collectabiliry, performance, acceptability,

0 5 10 15 20
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and circumventIon (lain et al., 1999). Every living and nonliving object at
a finite tmriperature emits radiations, which are captured by infrared cain—
eras. The temperature data can be universally extracted by appiying Planck’s
equation on the radiations captured from the face, which on further analy
sis yields vascular structure. The niain advantage of face recognition among
other biometric technologies is that it is completely noncontact and allows
for on-the-fly identification. Minimal or no cooperation is demanded from a
peIsou in order to extract his or her facial vasculature. Hence, this technology
is easily collectable and is highly acceptable. Because the vascular network lies
below the skin arid is imaged through its function (blood flow), it is almost
impossible to be forged making it very hard to circumvent. Buddharaju et al.
(20052006) showed that the performance of the biometric identification sys
tem based on facial vasculature is very promising. This leaves the following
characteristics of facia.l vasculature to be addressed in order to be c’onsiclered
as a good biotrietric technology.

1. Un.iquc’rmess: Is it possible for two persons t.o have the same vascular
structure on the face’?

2. I?epcatabiit.q: Is facial vasculature invariant, with time?

Pankrmnti et al. (2002) studied intraclass and iriterclass variations among
fingerprints probabilistically using the minutia points extracted from finger
print ridges. Recently Zhu et ai. (2006) developed a stochastic model to cap
ture variability among fingerprint minutia datasets. Similar techniques can be
apphed to study the variability among facial vasculatures of different indivici—
uals. 1\[imitia points can be extracted from branching points of vessels similar
to the way fingerprint nnnutia points are extracted at the bifurcations and
endings of fingerprint ridges as shown in Figure 9.12.

(a)

Fig. 9.12. (a) Fingerprint minntia points (Pankamiti et al., 2002); (b) minutia points
extracted from branches of facial vasculature.
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9.4.1 Uniqueness

The pattern of the underlying blood vessels of the face (arid the corresponding
thermal imprints) is quite complex (see Figure 9.1). The question is whether
this complex pattern is characteristic of each individual and can serve as a
useful biometric signature.

In tile area of medicine some very interesting work was conducted regarding
the uniqueness of the facial vascular network. The primary motivation behind
this line of research was the localization of anatomical features for reconstruc
tive surgery purposes. For example, Pinar and Govsa (2006) conducted exten
sive research on the anatomy of the superficial temporal artery (STA) and its
branches. They studied the STA anatomy in 27 subjects. Among other things
they found that the bifurcation point of STA (see Figure 9.13) was above tile
zygomatic arch in only 20 out of tile 27 samples. In 6 samples the bifurcation
was exactly over tile arch arid in one sample there was no bifurcation at all.
Further variability was observed in the STA branches. Specifically, in one sam
pie double parietal branches were observed. In 21 samples zygornatico-orbital
arteries rail towards tile face, parallel to the zygomatic arch and distributed
in the orbicularis oculi muscle. One has to take into account that STA is only
one major facial vessel among many. Assuming that such variability is typical
of other facial vessels and branches, their combination is hound to produce a
very characteristic pattern for each individual.

Bifurcation

Superficial Tempora
Artery (STA)

Fig. 9.13. Example of the superficial temporal artery (STA) and its bifurcation
around the zygomatic arch. Courtesy of Primal Pictures (Moxham et al. 2002).
Clinical studies have established its highly variable topology across individuals.
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In another study. medical researchers found nnplicit evidence of unique
ness of the cutaneous vasculature in the lngh variability of reflex drives
(Rowell, 1977).

In addition. one has to take into account that the proposed face recog
nition method does not depend only on the topology of the facial vascular
network but also on the fat depositions and skin complexion. The reason is
that imagery is formed by the thermal imprints of the vessels and not the
vessels directly. Even if the vessel topology were absolutely the same across
individuals, still the thermal imprints would differ due to variable absorption
from different fat padding (skinny faces versus puffy faces) (De Geef et al.,
2006) and variable heat conductance from different skin complexions (dark
skin is less conductive).

In addition to the medical evidence that appears to le strong and the sup
porting heat transfer principles, uniqueness” of the facial vascular network
is also reinforced by the experimental investigation we presented in our previ
ous eflorts (Buddharaju et al.. 2005, 2006). Such experimental investigations
constitute the main “proof of uniqueness’ in other biometric modalities (e.g..
fingerprint recognition: Pankai.iti et. al.. 2002) and of course they gain more
weight as the size of the databases increases. In the case of thermal facial ves
sel imprints, the size of the databases is still relatively small. yet. statistically
significant (several hundred samples). One particular example that makes a
very strong case for “uniqueness” is the discovery of different thermal facial
vessel imprints even in identical twins (Prokoski and Riedel. 1998).

In the last few years one relevant biometric that has gained acceptance
is the venous structure at the back of the hand. It is imaged typically with
active iiear-infrared light and the image is formed due to hackscattering. The
claim of “uniqueness” is based primarily on experimental evidence from data
base classification efforts. No substantial medical research was pursued on the
uniqueness of the hand’s venous structure, as reconstructive hand surgery is
not as prevalent as facial surgery. In addition, the venous network at the back
of the hand is riot nearly as complicated as the facial vessel network (see
Figure 9.1). Yet, it is increasingly accepted as a legitimate biometric (Zhuang
et al., 2005) and it is used in practice (Snowflake Technologies) based mainly
on expernneiital evidence from database classification efforts. Hence. evidence
from medical research anti reasoning based on heat transfer principles suggest
that time facial vessel network is characteristic of each individual.

9.4.2 Repeatability

As shown in Figure 9.12. minutia points can he extracted iromn the branches

of blood vessel contours hi was similar to those used for fingerprint minutia
extraction. Numerous methods have been proposed for matching fingerprint
minutiae. most of which try to simulate the way forensic experts compare
fingerprints (Nialtoni et al., 2003). Similar techniques can be einplcived to
match thermal minutia points of two subjects. We first reported time complete
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marchiig algorithni arid experimental results on the University of Houston
database in Buddliaraju et al. (2005. 2006). where the iiiterestccl reader may
find more details.

A major challenge associated with thermal face recognition is the recog
nition performance over time (Socolinsky and Selinger, 2004). Facial thermo
grains may change depending on the physical condition of the subject. This
renders the task of acquiring similar features for the same person over time
difficult. Previous face recognition methods in thermal infrared that use di

rect temperature tiata reported degraded performance over time (Chen et al.,

2003, 2005). However, our method attempts to solve tins problem by extract
ing facial physiological information to build its feature space. This information
is not only characteristic of each person but also remains relatively invariant
to physical conditions. Although the thermal facial maps of the same subject
appear to shift, the vascular network is more resistant to change. In imag

ing terms, the contrast between the temperatures in the vascular pixels and
the surrounding pmeiS is relatively invariant, albeit the absolute temperature
values shift appreciably. This is a direct consequence of the tlierrnoregulat.ory
rnechanisni of the. human body. Our morphological image processing simply
capitalizes upon this phenomenon and extracts the invariant vascular contours
from the variable facial thermal maps.

Due to the small iiumber of subjects in the University of Houston database
for whoni we had images spread over several months no statistically significant
quantification of the low permanence problem was possible. For this reason,
we obtained permission to apply the method on the database of the University
of Notre Dame (Computer Vision Lab). TIns database has a large collection of

facial images acquired from both visible and long—wave infrared cameras. They
held acquisitions weekly and most, of the subjects in the dat abase participated
multiple times.

In more detail, the database consists of 2294 images acquired from
63 subjects during nine different sessions under specific lighting and expres
sion conditions. Time spatial resolution of the images is 312 x 239 pixels (about
half of that featured in the IJH database). They used three lights during data
collection, one located in the center approximately 8 ft in front of the subject.
one located 4 ft to the right, and the other 4 ft to the left of the subject. The
subjects were asked to provide two expressions during acquisition, “neutral”
and “smiling”. The database is divided into four dliff’erent gallery and probe
sets using the FERET-style naming convention (Phillips et al.. 2000).

1. LF (central light. turned off) + PA (neutral expression)
2. LF (central light ti.irnecl off) + FB (smiling expression)
3. LM (all three lights on) + FA (neutral expression)
4. LM (all three lights on) + PB (smiling expression)

The database also contains an exclusive training set (different from the
gallery and probe sets) with samples collected from several subjects, froni
winch a. face spmmce can be constructed for the PCA recognition algorithm.
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We cliii riot use this training set because our algorithm is feature-based and
hence does not require any explicit training. However, each of the gallery sets
(say LF —FA) can be tested against the other three probe sets (say LF---- FB,
LM-—-FA, and LM-—FB). rflns way we tested our algorithm on 12 different
pairs of gallery and probe sets. In each of these experiments, the gallery set
had one image per subject, and the probe set had several disjoint images
per subject depending on how marty different acquisition sessions the subject
attended. Figure 9.14 shows a sample of the gallery and probe images of a
subject front the University of otre Dame database.

The authors of the University of Notre Dame (UND) database compared
the performance of face recognition in visible and JR modalities from both
same-session and time-gap datasets (Chen et al., 2003, 2005). They used
a PCA-based face recognition algorithm for these studies. They found that
both visible arid IR modalities performed well on same—session experiments,
and that none of them was significantly better than the other. However, in
time-lapse experiments they found that. the PCA-based recognition using JR
images had poor performance. This is an expected outcome because PCA is
an appearance-based face recognition algorithm that directly uses tempera
ture values to project the query image onto face space. The thermal facial
map may be different between gallery arid probe images depending on the
ambient am! physical conditions, which may cause the PCA algorithm to fail.

We compared tIme performance of our method with a PCA-basecl recog
nit ion algorithm to test the robustness of features extracted from the facial
vascular network. Table 9.1 suinniarizes the rank 1 recognition results using
our algoritlun versus the PCA algorithm on each of the 12 possible experi
nrients. Each entry of the left column in the table corresponds to a gallery set,
and each entry in the top row corresponds to a probe set. From the results, it
can he clearly seen that our method yields better recognition results despite
the presence of time and temperature variations inherent in this database.
This is clear mclication that by abstracting away the thermal facial map to
a physiological feature vector the low permanence problem can be addressed
more adequately.

9.5 Operational Limitations

Malor operational limitations to time vascular feature extraction method from
the face fall into following categories.

I. Glasses are opaque in the infrared domain anti hence block important
vascular information around the eyes. Also, too much facial hair usually
blocks the radiations emitted from the surface of the skin. and hence causes
the part of the face with (bulky) hair to get segmented out. Figure 9.15

showS examples of face segmentation where parts of the face contammg
glasses and hair are segnient.ecl out.
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Fig. 9.14. Sample images of a subject in the University of Notre Dame database. The
images were acquired over the span of several months: (a) visible images (not used
here); (h) corresponding thermal infrared images; differences in the thermal facial
maps can be visually appreciated: (c) vascular annotation after the application of

our feature extraction algorithm.
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Table 9.1. Rank 1 recognition performance of our algorithm (UI-I) versus the PCA
algorithm on each of the 12 experiments on the UND database

Probe

Gallery FA—LF(%) FA—LM (%) FB—LF (%) FB—LM (%)
FA—LF — 82.65 (UH) 80.77 (UH) 81.33 (UH)

78.74 (PCA) 76.83 (PCA) 75.77 (PCA)
FA—LM 81.46 (UH) —- 79.38 (UH) 80.25 (UH)

79.23 (PCA) — 75.22 (PCA) 73.56 (PCA)
FB-—-LF 80.27 (UH) 81.92 (UH) 80.56 (UH)

74.88 (PCA) 76.57 (PCA) 74.23 (PCA)
FB—LM 80.67 (UI-I) 82.25 (UI-I) 79.46 (UH) —

69.56 (PCA) 74.58 (PCA) 78.33 (PCA)

Fig. 9.15. (a) Thermal facial image with glasses and (b) result of segmentation.
(c) Thermal facial image with facial hair and glasses and (d) result of segmentation.
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2. The robustness of the method degrades when there is substantial perspi
rat ion. Tins results in a highly nonlinear shift of the thermal map that
radically alters the radiation profile of the face. For the moment., this
should be considered as the operational limit of the method. A practical
scenario where such a case may arise is when a subject is imaged after

strenuous exercise that lasted several niiriutes. Another possible break
down may arise when the subject. remains in a very hot environment
heavily dressed, for a substantial amount of time.
We have performed an experiment whereby a subject is imaged at the
following instances.

• In a baseline condition (Figure 9.16. image la)
• After 1 mm of rigorous walking (Figure 9.16, image 2a)
• After 5 mm of rigorous walking (Figure 9.16, image 3a)
• After 5 mm of rigorous jogging (Figure 9.16. image 1a)

Column b of Figure 9.16 shows the corresponding vessel extraction results.
In the case of image 2a, the metabolic rate of the subject shifted to higher
gear, hut perspiration is still not a major problem. One can find evidence
of the higher metabolic rate by looking at the left temporal area, where
the region around the rich vasculat.ure has become deeper cyan (hotter)
in image 2a with respect to image la. This is an example of’ a positive
linear shift (warming up). which the vessel extraction algorithm handles
quite well (see image 2b versus image ib). As the exercise become more
strenuous and lasts longer, perspiration increases and introduces a nega
tive nonlinear shift (cooling down) in the thermal map. This is especially
pronounced in the forehead where most of the perspiration pores are. Due
to this, some unwanted noise starts creeping in image 3b, which becomes
more draniatic iii image 4b. The performance of the vessel extraction al
gorithm deteriorates but not uniformly. For example, the vessel extraction
algorithm continues to perform quite well in the cheeks where perspira
tion pores are sparse and the cooling down effect is not heavily nonlinear.
In contrast, performance is a lot worse in the forehead area. where some
spurious vessel contours are introduced due to severe nonlinearity in the
thermal map shift.

9.6 Conclusions

We have outlined a. novel approach to the problem of face recognition in ther

mal infrared. The cornerstone of the approach is the use of characteristic
and tune-invariant physiological information to construct the feature space.
We presented a two—stage segmentation algorithm to extract superficial vas—
culature. from the thermal facial image. The facial tissue is first separated
from the background using a Bayesian segmentation method. The vascu
lar network on tIne surface of the skin is then extracted based on a white
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I
(c)

Fig. 9.16. Effect. of perspiration on feature extraction. Thermal facial image of a
subject (la) at rest; (2a) after 1 minute of rigorous walking; (3a) after 5 mm of rig
orous walking: (4a) after 5 mm of rigorous jogging. and (lb,2b,3b,4b) corresponding
vascular network maps: and (c) color map used to visualize temperature values.

top-hat segiueiitation preceded by anisotropic diffusion. The good performance
measures confirm the validity of segmentation algorithms.

The most important conclusion of our research so far, is that physiology—
based face rec:ogiiition appears to be feasible and have potential. especially as
a way of addressing the issue of uniqueness and low permanence over time.
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Although thermal facial maps shift over time, the contrast between superficial
vasculature and surrounding tissue remains invariant. This physiological fea
ture has permanence and is very difficult to alter (under the skin). Therefore,
it gives a potential advantage to any face recognition method that may use
it. It is an indication that the method is aided by the natural uniqueness and
constancy of the feature space.
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